/* * (C) Copyright 2006 * Texas Instruments, * Jian Zhang * Richard Woodruff * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ #include #include #include #include #include #include #include #include #include #include #include /* Used to index into DPLL parameter tables */ struct dpll_param { unsigned int m; unsigned int n; unsigned int fsel; unsigned int m2; }; typedef struct dpll_param dpll_param; /* Following functions are exported from lowlevel_init.S */ extern dpll_param * get_mpu_dpll_param(); extern dpll_param * get_iva_dpll_param(); extern dpll_param * get_core_dpll_param(); extern dpll_param * get_per_dpll_param(); #define __raw_readl(a) (*(volatile unsigned int *)(a)) #define __raw_writel(v,a) (*(volatile unsigned int *)(a) = (v)) #define __raw_readw(a) (*(volatile unsigned short *)(a)) #define __raw_writew(v,a) (*(volatile unsigned short *)(a) = (v)) /******************************************************* * Routine: delay * Description: spinning delay to use before udelay works ******************************************************/ static inline void delay(unsigned long loops) { __asm__ volatile ("1:\n" "subs %0, %1, #1\n" "bne 1b":"=r" (loops):"0"(loops)); } void udelay (unsigned long usecs) { delay(usecs); } /***************************************** * Routine: board_init * Description: Early hardware init. *****************************************/ int board_init (void) { return 0; } /************************************************************* * get_device_type(): tell if GP/HS/EMU/TST *************************************************************/ u32 get_device_type(void) { int mode; mode = __raw_readl(CONTROL_STATUS) & (DEVICE_MASK); return(mode >>= 8); } /************************************************ * get_sysboot_value(void) - return SYS_BOOT[4:0] ************************************************/ u32 get_sysboot_value(void) { int mode; mode = __raw_readl(CONTROL_STATUS) & (SYSBOOT_MASK); return mode; } /************************************************************* * Routine: get_mem_type(void) - returns the kind of memory connected * to GPMC that we are trying to boot form. Uses SYS BOOT settings. *************************************************************/ u32 get_mem_type(void) { u32 mem_type = get_sysboot_value(); switch (mem_type){ case 0: case 2: case 4: case 16: case 22: return GPMC_ONENAND; case 1: case 12: case 15: case 21: case 27: return GPMC_NAND; case 3: case 6: return MMC_ONENAND; case 8: case 11: case 14: case 20: case 26: return GPMC_MDOC; case 17: case 18: case 24: return MMC_NAND; case 7: case 10: case 13: case 19: case 25: default: return GPMC_NOR; } } /****************************************** * get_cpu_rev(void) - extract version info ******************************************/ u32 get_cpu_rev(void) { u32 cpuid=0; /* On ES1.0 the IDCODE register is not exposed on L4 * so using CPU ID to differentiate * between ES2.0 and ES1.0. */ __asm__ __volatile__("mrc p15, 0, %0, c0, c0, 0":"=r" (cpuid)); if((cpuid & 0xf) == 0x0) return CPU_3430_ES1; else return CPU_3430_ES2; } /****************************************** * cpu_is_3410(void) - returns true for 3410 ******************************************/ u32 cpu_is_3410(void) { int status; if(get_cpu_rev() < CPU_3430_ES2) { return 0; } else { /* read scalability status and return 1 for 3410*/ status = __raw_readl(CONTROL_SCALABLE_OMAP_STATUS); /* Check whether MPU frequency is set to 266 MHz which * is nominal for 3410. If yes return true else false */ if (((status >> 8) & 0x3) == 0x2) return 1; else return 0; } } /***************************************************************** * sr32 - clear & set a value in a bit range for a 32 bit address *****************************************************************/ void sr32(u32 addr, u32 start_bit, u32 num_bits, u32 value) { u32 tmp, msk = 0; msk = 1 << num_bits; --msk; tmp = __raw_readl(addr) & ~(msk << start_bit); tmp |= value << start_bit; __raw_writel(tmp, addr); } /********************************************************************* * wait_on_value() - common routine to allow waiting for changes in * volatile regs. *********************************************************************/ u32 wait_on_value(u32 read_bit_mask, u32 match_value, u32 read_addr, u32 bound) { u32 i = 0, val; do { ++i; val = __raw_readl(read_addr) & read_bit_mask; if (val == match_value) return (1); if (i == bound) return (0); } while (1); } #ifdef CFG_3430SDRAM_DDR /********************************************************************* * config_3430sdram_ddr() - Init DDR on 3430SDP dev board. *********************************************************************/ void config_3430sdram_ddr(void) { /* reset sdrc controller */ __raw_writel(SOFTRESET, SDRC_SYSCONFIG); wait_on_value(BIT0, BIT0, SDRC_STATUS, 12000000); __raw_writel(0, SDRC_SYSCONFIG); /* setup sdrc to ball mux */ __raw_writel(SDP_SDRC_SHARING, SDRC_SHARING); /* set mdcfg */ __raw_writel(SDP_SDRC_MDCFG_0_DDR, SDRC_MCFG_0); /* set timing */ if ((get_mem_type() == GPMC_ONENAND) || (get_mem_type() == MMC_ONENAND)){ __raw_writel(INFINEON_SDRC_ACTIM_CTRLA_0, SDRC_ACTIM_CTRLA_0); __raw_writel(INFINEON_SDRC_ACTIM_CTRLB_0, SDRC_ACTIM_CTRLB_0); } if ((get_mem_type() == GPMC_NAND) ||(get_mem_type() == MMC_NAND)){ __raw_writel(MICRON_SDRC_ACTIM_CTRLA_0, SDRC_ACTIM_CTRLA_0); __raw_writel(MICRON_SDRC_ACTIM_CTRLB_0, SDRC_ACTIM_CTRLB_0); } __raw_writel(SDP_3430_SDRC_RFR_CTRL_165MHz, SDRC_RFR_CTRL_0); __raw_writel(SDP_SDRC_POWER_POP, SDRC_POWER); /* init sequence for mDDR/mSDR using manual commands (DDR is different) */ __raw_writel(CMD_NOP, SDRC_MANUAL_0); delay(5000); __raw_writel(CMD_PRECHARGE, SDRC_MANUAL_0); __raw_writel(CMD_AUTOREFRESH, SDRC_MANUAL_0); __raw_writel(CMD_AUTOREFRESH, SDRC_MANUAL_0); /* set mr0 */ __raw_writel(SDP_SDRC_MR_0_DDR, SDRC_MR_0); /* set up dll */ __raw_writel(SDP_SDRC_DLLAB_CTRL, SDRC_DLLA_CTRL); delay(0x2000); /* give time to lock */ } #endif // CFG_3430SDRAM_DDR /************************************************************* * get_sys_clk_speed - determine reference oscillator speed * based on known 32kHz clock and gptimer. *************************************************************/ u32 get_osc_clk_speed(void) { u32 start, cstart, cend, cdiff, val; val = __raw_readl(PRM_CLKSRC_CTRL); /* If SYS_CLK is being divided by 2, remove for now */ val = (val & (~BIT7)) | BIT6; __raw_writel(val, PRM_CLKSRC_CTRL); /* enable timer2 */ val = __raw_readl(CM_CLKSEL_WKUP) | BIT0; __raw_writel(val, CM_CLKSEL_WKUP); /* select sys_clk for GPT1 */ /* Enable I and F Clocks for GPT1 */ val = __raw_readl(CM_ICLKEN_WKUP) | BIT0 | BIT2; __raw_writel(val, CM_ICLKEN_WKUP); val = __raw_readl(CM_FCLKEN_WKUP) | BIT0; __raw_writel(val, CM_FCLKEN_WKUP); __raw_writel(0, OMAP34XX_GPT1 + TLDR); /* start counting at 0 */ __raw_writel(GPT_EN, OMAP34XX_GPT1 + TCLR); /* enable clock */ /* enable 32kHz source *//* enabled out of reset */ /* determine sys_clk via gauging */ start = 20 + __raw_readl(S32K_CR); /* start time in 20 cycles */ while (__raw_readl(S32K_CR) < start); /* dead loop till start time */ cstart = __raw_readl(OMAP34XX_GPT1 + TCRR); /* get start sys_clk count */ while (__raw_readl(S32K_CR) < (start + 20)); /* wait for 40 cycles */ cend = __raw_readl(OMAP34XX_GPT1 + TCRR); /* get end sys_clk count */ cdiff = cend - cstart; /* get elapsed ticks */ /* based on number of ticks assign speed */ if (cdiff > 19000) return (S38_4M); else if (cdiff > 15200) return (S26M); else if (cdiff > 13000) return (S24M); else if (cdiff > 9000) return (S19_2M); else if (cdiff > 7600) return (S13M); else return (S12M); } /****************************************************************************** * get_sys_clkin_sel() - returns the sys_clkin_sel field value based on * -- input oscillator clock frequency. * *****************************************************************************/ void get_sys_clkin_sel(u32 osc_clk, u32 *sys_clkin_sel) { if(osc_clk == S38_4M) *sys_clkin_sel= 4; else if(osc_clk == S26M) *sys_clkin_sel = 3; else if(osc_clk == S19_2M) *sys_clkin_sel = 2; else if(osc_clk == S13M) *sys_clkin_sel = 1; else if(osc_clk == S12M) *sys_clkin_sel = 0; } /****************************************************************************** * prcm_init() - inits clocks for PRCM as defined in clocks.h * -- called from SRAM, or Flash (using temp SRAM stack). *****************************************************************************/ void prcm_init(void) { u32 osc_clk=0, sys_clkin_sel; dpll_param *dpll_param_p; u32 clk_index, sil_index; /* Gauge the input clock speed and find out the sys_clkin_sel * value corresponding to the input clock. */ osc_clk = get_osc_clk_speed(); get_sys_clkin_sel(osc_clk, &sys_clkin_sel); sr32(PRM_CLKSEL, 0, 3, sys_clkin_sel); /* set input crystal speed */ /* If the input clock is greater than 19.2M always divide/2 */ if(sys_clkin_sel > 2) { sr32(PRM_CLKSRC_CTRL, 6, 2, 2);/* input clock divider */ clk_index = sys_clkin_sel/2; } else { sr32(PRM_CLKSRC_CTRL, 6, 2, 1);/* input clock divider */ clk_index = sys_clkin_sel; } /* The DPLL tables are defined according to sysclk value and * silicon revision. The clk_index value will be used to get * the values for that input sysclk from the DPLL param table * and sil_index will get the values for that SysClk for the * appropriate silicon rev. */ sil_index = get_cpu_rev() - 1; /* Unlock MPU DPLL (slows things down, and needed later) */ sr32(CM_CLKEN_PLL_MPU, 0, 3, PLL_LOW_POWER_BYPASS); wait_on_value(BIT0, 0, CM_IDLEST_PLL_MPU, LDELAY); /* Getting the base address of Core DPLL param table*/ dpll_param_p = (dpll_param *)get_core_dpll_param(); /* Moving it to the right sysclk and ES rev base */ dpll_param_p = dpll_param_p + 2*clk_index + sil_index; /* CORE DPLL */ /* sr32(CM_CLKSEL2_EMU) set override to work when asleep */ sr32(CM_CLKEN_PLL, 0, 3, PLL_FAST_RELOCK_BYPASS); wait_on_value(BIT0, 0, CM_IDLEST_CKGEN, LDELAY); sr32(CM_CLKSEL1_EMU, 16, 5, CORE_M3X2); /* m3x2 */ sr32(CM_CLKSEL1_PLL, 27, 2, dpll_param_p->m2); /* Set M2 */ sr32(CM_CLKSEL1_PLL, 16, 11, dpll_param_p->m); /* Set M */ sr32(CM_CLKSEL1_PLL, 8, 7, dpll_param_p->n); /* Set N */ sr32(CM_CLKSEL1_PLL, 6, 1, 0); /* 96M Src */ sr32(CM_CLKSEL_CORE, 8, 4, CORE_SSI_DIV); /* ssi */ sr32(CM_CLKSEL_CORE, 4, 2, CORE_FUSB_DIV); /* fsusb */ sr32(CM_CLKSEL_CORE, 2, 2, CORE_L4_DIV); /* l4 */ sr32(CM_CLKSEL_CORE, 0, 2, CORE_L3_DIV); /* l3 */ sr32(CM_CLKSEL_GFX, 0, 3, GFX_DIV); /* gfx */ sr32(CM_CLKSEL_WKUP, 1, 2, WKUP_RSM); /* reset mgr */ sr32(CM_CLKEN_PLL, 4, 4, dpll_param_p->fsel); /* FREQSEL */ sr32(CM_CLKEN_PLL, 0, 3, PLL_LOCK); /* lock mode */ wait_on_value(BIT0, 1, CM_IDLEST_CKGEN, LDELAY); /* Getting the base address to PER DPLL param table*/ dpll_param_p = (dpll_param *)get_per_dpll_param(); /* Moving it to the right sysclk base */ dpll_param_p = dpll_param_p + clk_index; /* PER DPLL */ sr32(CM_CLKEN_PLL, 16, 3, PLL_STOP); wait_on_value(BIT1, 0, CM_IDLEST_CKGEN, LDELAY); sr32(CM_CLKSEL1_EMU, 24, 5, PER_M6X2); /* set M6 */ sr32(CM_CLKSEL_CAM, 0, 5, PER_M5X2); /* set M5 */ sr32(CM_CLKSEL_DSS, 0, 5, PER_M4X2); /* set M4 */ sr32(CM_CLKSEL_DSS, 8, 5, PER_M3X2); /* set M3 */ sr32(CM_CLKSEL3_PLL, 0, 5, dpll_param_p->m2); /* set M2 */ sr32(CM_CLKSEL2_PLL, 8, 11, dpll_param_p->m); /* set m */ sr32(CM_CLKSEL2_PLL, 0, 7, dpll_param_p->n); /* set n */ sr32(CM_CLKEN_PLL, 20, 4, dpll_param_p->fsel);/* FREQSEL */ sr32(CM_CLKEN_PLL, 16, 3, PLL_LOCK); /* lock mode */ wait_on_value(BIT1, 2, CM_IDLEST_CKGEN, LDELAY); /* Getting the base address to MPU DPLL param table*/ dpll_param_p = (dpll_param *)get_mpu_dpll_param(); /* Moving it to the right sysclk and ES rev base */ dpll_param_p = dpll_param_p + 2*clk_index + sil_index; /* MPU DPLL (unlocked already) */ sr32(CM_CLKSEL2_PLL_MPU, 0, 5, dpll_param_p->m2); /* Set M2 */ sr32(CM_CLKSEL1_PLL_MPU, 8, 11, dpll_param_p->m); /* Set M */ sr32(CM_CLKSEL1_PLL_MPU, 0, 7, dpll_param_p->n); /* Set N */ sr32(CM_CLKEN_PLL_MPU, 4, 4, dpll_param_p->fsel); /* FREQSEL */ sr32(CM_CLKEN_PLL_MPU, 0, 3, PLL_LOCK); /* lock mode */ wait_on_value(BIT0, 1, CM_IDLEST_PLL_MPU, LDELAY); /* Getting the base address to IVA DPLL param table*/ dpll_param_p = (dpll_param *)get_iva_dpll_param(); /* Moving it to the right sysclk and ES rev base */ dpll_param_p = dpll_param_p + 2*clk_index + sil_index; /* IVA DPLL (set to 12*20=240MHz) */ sr32(CM_CLKEN_PLL_IVA2, 0, 3, PLL_STOP); wait_on_value(BIT0, 0, CM_IDLEST_PLL_IVA2, LDELAY); sr32(CM_CLKSEL2_PLL_IVA2, 0, 5, dpll_param_p->m2); /* set M2 */ sr32(CM_CLKSEL1_PLL_IVA2, 8, 11, dpll_param_p->m); /* set M */ sr32(CM_CLKSEL1_PLL_IVA2, 0, 7, dpll_param_p->n); /* set N */ sr32(CM_CLKEN_PLL_IVA2, 4, 4, dpll_param_p->fsel); /* FREQSEL */ sr32(CM_CLKEN_PLL_IVA2, 0, 3, PLL_LOCK); /* lock mode */ wait_on_value(BIT0, 1, CM_IDLEST_PLL_IVA2, LDELAY); /* Set up GPTimers to sys_clk source only */ sr32(CM_CLKSEL_PER, 0, 8, 0xff); sr32(CM_CLKSEL_WKUP, 0, 1, 1); delay(5000); } /***************************************** * Routine: secure_unlock * Description: Setup security registers for access * (GP Device only) *****************************************/ void secure_unlock(void) { /* Permission values for registers -Full fledged permissions to all */ #define UNLOCK_1 0xFFFFFFFF #define UNLOCK_2 0x00000000 #define UNLOCK_3 0x0000FFFF /* Protection Module Register Target APE (PM_RT)*/ __raw_writel(UNLOCK_1, RT_REQ_INFO_PERMISSION_1); __raw_writel(UNLOCK_1, RT_READ_PERMISSION_0); __raw_writel(UNLOCK_1, RT_WRITE_PERMISSION_0); __raw_writel(UNLOCK_2, RT_ADDR_MATCH_1); __raw_writel(UNLOCK_3, GPMC_REQ_INFO_PERMISSION_0); __raw_writel(UNLOCK_3, GPMC_READ_PERMISSION_0); __raw_writel(UNLOCK_3, GPMC_WRITE_PERMISSION_0); __raw_writel(UNLOCK_3, OCM_REQ_INFO_PERMISSION_0); __raw_writel(UNLOCK_3, OCM_READ_PERMISSION_0); __raw_writel(UNLOCK_3, OCM_WRITE_PERMISSION_0); __raw_writel(UNLOCK_2, OCM_ADDR_MATCH_2); /* IVA Changes */ __raw_writel(UNLOCK_3, IVA2_REQ_INFO_PERMISSION_0); __raw_writel(UNLOCK_3, IVA2_READ_PERMISSION_0); __raw_writel(UNLOCK_3, IVA2_WRITE_PERMISSION_0); __raw_writel(UNLOCK_1, SMS_RG_ATT0); /* SDRC region 0 public */ } /********************************************************** * Routine: try_unlock_sram() * Description: If chip is GP type, unlock the SRAM for * general use. ***********************************************************/ void try_unlock_memory(void) { int mode; /* if GP device unlock device SRAM for general use */ /* secure code breaks for Secure/Emulation device - HS/E/T*/ mode = get_device_type(); if (mode == GP_DEVICE) { secure_unlock(); } return; } /********************************************************** * Routine: s_init * Description: Does early system init of muxing and clocks. * - Called at time when only stack is available. **********************************************************/ void s_init(void) { watchdog_init(); #ifdef CONFIG_3430_AS_3410 /* setup the scalability control register for * 3430 to work in 3410 mode */ __raw_writel(0x5ABF,CONTROL_SCALABLE_OMAP_OCP); #endif try_unlock_memory(); set_muxconf_regs(); delay(100); prcm_init(); per_clocks_enable(); config_3430sdram_ddr(); } /******************************************************* * Routine: misc_init_r * Description: Init ethernet (done here so udelay works) ********************************************************/ int misc_init_r (void) { return(0); } /****************************************************** * Routine: wait_for_command_complete * Description: Wait for posting to finish on watchdog ******************************************************/ void wait_for_command_complete(unsigned int wd_base) { int pending = 1; do { pending = __raw_readl(wd_base + WWPS); } while (pending); } /**************************************** * Routine: watchdog_init * Description: Shut down watch dogs *****************************************/ void watchdog_init(void) { /* There are 3 watch dogs WD1=Secure, WD2=MPU, WD3=IVA. WD1 is * either taken care of by ROM (HS/EMU) or not accessible (GP). * We need to take care of WD2-MPU or take a PRCM reset. WD3 * should not be running and does not generate a PRCM reset. */ sr32(CM_FCLKEN_WKUP, 5, 1, 1); sr32(CM_ICLKEN_WKUP, 5, 1, 1); wait_on_value(BIT5, 0x20, CM_IDLEST_WKUP, 5); /* some issue here */ __raw_writel(WD_UNLOCK1, WD2_BASE + WSPR); wait_for_command_complete(WD2_BASE); __raw_writel(WD_UNLOCK2, WD2_BASE + WSPR); } /********************************************** * Routine: dram_init * Description: sets uboots idea of sdram size **********************************************/ int dram_init (void) { return 0; } /***************************************************************** * Routine: peripheral_enable * Description: Enable the clks & power for perifs (GPT2, UART1,...) ******************************************************************/ void per_clocks_enable(void) { /* Enable GP2 timer. */ sr32(CM_CLKSEL_PER, 0, 1, 0x1); /* GPT2 = sys clk */ sr32(CM_ICLKEN_PER, 3, 1, 0x1); /* ICKen GPT2 */ sr32(CM_FCLKEN_PER, 3, 1, 0x1); /* FCKen GPT2 */ #ifdef CFG_NS16550 /* Enable UART1 clocks */ sr32(CM_FCLKEN1_CORE, 13, 1, 0x1); sr32(CM_ICLKEN1_CORE, 13, 1, 0x1); #endif delay(1000); } /* Set MUX for UART, GPMC, SDRC, GPIO */ #define MUX_VAL(OFFSET,VALUE)\ __raw_writew((VALUE), OMAP34XX_CTRL_BASE + (OFFSET)); #define CP(x) (CONTROL_PADCONF_##x) /* * IEN - Input Enable * IDIS - Input Disable * PTD - Pull type Down * PTU - Pull type Up * DIS - Pull type selection is inactive * EN - Pull type selection is active * M0 - Mode 0 * The commented string gives the final mux configuration for that pin */ #define MUX_DEFAULT()\ MUX_VAL(CP(SDRC_D0), (IEN | PTD | DIS | M0)) /*SDRC_D0*/\ MUX_VAL(CP(SDRC_D1), (IEN | PTD | DIS | M0)) /*SDRC_D1*/\ MUX_VAL(CP(SDRC_D2), (IEN | PTD | DIS | M0)) /*SDRC_D2*/\ MUX_VAL(CP(SDRC_D3), (IEN | PTD | DIS | M0)) /*SDRC_D3*/\ MUX_VAL(CP(SDRC_D4), (IEN | PTD | DIS | M0)) /*SDRC_D4*/\ MUX_VAL(CP(SDRC_D5), (IEN | PTD | DIS | M0)) /*SDRC_D5*/\ MUX_VAL(CP(SDRC_D6), (IEN | PTD | DIS | M0)) /*SDRC_D6*/\ MUX_VAL(CP(SDRC_D7), (IEN | PTD | DIS | M0)) /*SDRC_D7*/\ MUX_VAL(CP(SDRC_D8), (IEN | PTD | DIS | M0)) /*SDRC_D8*/\ MUX_VAL(CP(SDRC_D9), (IEN | PTD | DIS | M0)) /*SDRC_D9*/\ MUX_VAL(CP(SDRC_D10), (IEN | PTD | DIS | M0)) /*SDRC_D10*/\ MUX_VAL(CP(SDRC_D11), (IEN | PTD | DIS | M0)) /*SDRC_D11*/\ MUX_VAL(CP(SDRC_D12), (IEN | PTD | DIS | M0)) /*SDRC_D12*/\ MUX_VAL(CP(SDRC_D13), (IEN | PTD | DIS | M0)) /*SDRC_D13*/\ MUX_VAL(CP(SDRC_D14), (IEN | PTD | DIS | M0)) /*SDRC_D14*/\ MUX_VAL(CP(SDRC_D15), (IEN | PTD | DIS | M0)) /*SDRC_D15*/\ MUX_VAL(CP(SDRC_D16), (IEN | PTD | DIS | M0)) /*SDRC_D16*/\ MUX_VAL(CP(SDRC_D17), (IEN | PTD | DIS | M0)) /*SDRC_D17*/\ MUX_VAL(CP(SDRC_D18), (IEN | PTD | DIS | M0)) /*SDRC_D18*/\ MUX_VAL(CP(SDRC_D19), (IEN | PTD | DIS | M0)) /*SDRC_D19*/\ MUX_VAL(CP(SDRC_D20), (IEN | PTD | DIS | M0)) /*SDRC_D20*/\ MUX_VAL(CP(SDRC_D21), (IEN | PTD | DIS | M0)) /*SDRC_D21*/\ MUX_VAL(CP(SDRC_D22), (IEN | PTD | DIS | M0)) /*SDRC_D22*/\ MUX_VAL(CP(SDRC_D23), (IEN | PTD | DIS | M0)) /*SDRC_D23*/\ MUX_VAL(CP(SDRC_D24), (IEN | PTD | DIS | M0)) /*SDRC_D24*/\ MUX_VAL(CP(SDRC_D25), (IEN | PTD | DIS | M0)) /*SDRC_D25*/\ MUX_VAL(CP(SDRC_D26), (IEN | PTD | DIS | M0)) /*SDRC_D26*/\ MUX_VAL(CP(SDRC_D27), (IEN | PTD | DIS | M0)) /*SDRC_D27*/\ MUX_VAL(CP(SDRC_D28), (IEN | PTD | DIS | M0)) /*SDRC_D28*/\ MUX_VAL(CP(SDRC_D29), (IEN | PTD | DIS | M0)) /*SDRC_D29*/\ MUX_VAL(CP(SDRC_D30), (IEN | PTD | DIS | M0)) /*SDRC_D30*/\ MUX_VAL(CP(SDRC_D31), (IEN | PTD | DIS | M0)) /*SDRC_D31*/\ MUX_VAL(CP(SDRC_CLK), (IEN | PTD | DIS | M0)) /*SDRC_CLK*/\ MUX_VAL(CP(SDRC_DQS0), (IEN | PTD | DIS | M0)) /*SDRC_DQS0*/\ MUX_VAL(CP(SDRC_DQS1), (IEN | PTD | DIS | M0)) /*SDRC_DQS1*/\ MUX_VAL(CP(SDRC_DQS2), (IEN | PTD | DIS | M0)) /*SDRC_DQS2*/\ MUX_VAL(CP(SDRC_DQS3), (IEN | PTD | DIS | M0)) /*SDRC_DQS3*/\ MUX_VAL(CP(GPMC_A1), (IDIS | PTD | DIS | M0)) /*GPMC_A1*/\ MUX_VAL(CP(GPMC_A2), (IDIS | PTD | DIS | M0)) /*GPMC_A2*/\ MUX_VAL(CP(GPMC_A3), (IDIS | PTD | DIS | M0)) /*GPMC_A3*/\ MUX_VAL(CP(GPMC_A4), (IDIS | PTD | DIS | M0)) /*GPMC_A4*/\ MUX_VAL(CP(GPMC_A5), (IDIS | PTD | DIS | M0)) /*GPMC_A5*/\ MUX_VAL(CP(GPMC_A6), (IDIS | PTD | DIS | M0)) /*GPMC_A6*/\ MUX_VAL(CP(GPMC_A7), (IDIS | PTD | DIS | M0)) /*GPMC_A7*/\ MUX_VAL(CP(GPMC_A8), (IDIS | PTD | DIS | M0)) /*GPMC_A8*/\ MUX_VAL(CP(GPMC_A9), (IDIS | PTD | DIS | M0)) /*GPMC_A9*/\ MUX_VAL(CP(GPMC_A10), (IDIS | PTD | DIS | M0)) /*GPMC_A10*/\ MUX_VAL(CP(GPMC_D0), (IEN | PTD | DIS | M0)) /*GPMC_D0*/\ MUX_VAL(CP(GPMC_D1), (IEN | PTD | DIS | M0)) /*GPMC_D1*/\ MUX_VAL(CP(GPMC_D2), (IEN | PTD | DIS | M0)) /*GPMC_D2*/\ MUX_VAL(CP(GPMC_D3), (IEN | PTD | DIS | M0)) /*GPMC_D3*/\ MUX_VAL(CP(GPMC_D4), (IEN | PTD | DIS | M0)) /*GPMC_D4*/\ MUX_VAL(CP(GPMC_D5), (IEN | PTD | DIS | M0)) /*GPMC_D5*/\ MUX_VAL(CP(GPMC_D6), (IEN | PTD | DIS | M0)) /*GPMC_D6*/\ MUX_VAL(CP(GPMC_D7), (IEN | PTD | DIS | M0)) /*GPMC_D7*/\ MUX_VAL(CP(GPMC_D8), (IEN | PTD | DIS | M0)) /*GPMC_D8*/\ MUX_VAL(CP(GPMC_D9), (IEN | PTD | DIS | M0)) /*GPMC_D9*/\ MUX_VAL(CP(GPMC_D10), (IEN | PTD | DIS | M0)) /*GPMC_D10*/\ MUX_VAL(CP(GPMC_D11), (IEN | PTD | DIS | M0)) /*GPMC_D11*/\ MUX_VAL(CP(GPMC_D12), (IEN | PTD | DIS | M0)) /*GPMC_D12*/\ MUX_VAL(CP(GPMC_D13), (IEN | PTD | DIS | M0)) /*GPMC_D13*/\ MUX_VAL(CP(GPMC_D14), (IEN | PTD | DIS | M0)) /*GPMC_D14*/\ MUX_VAL(CP(GPMC_D15), (IEN | PTD | DIS | M0)) /*GPMC_D15*/\ MUX_VAL(CP(GPMC_nCS0), (IDIS | PTU | EN | M0)) /*GPMC_nCS0*/\ MUX_VAL(CP(GPMC_nCS1), (IDIS | PTU | EN | M0)) /*GPMC_nCS1*/\ MUX_VAL(CP(GPMC_nCS2), (IDIS | PTU | EN | M0)) /*GPMC_nCS2*/\ MUX_VAL(CP(GPMC_nCS3), (IDIS | PTU | EN | M0)) /*GPMC_nCS3*/\ MUX_VAL(CP(GPMC_nCS4), (IDIS | PTU | EN | M0)) /*GPMC_nCS4*/\ MUX_VAL(CP(GPMC_nCS5), (IDIS | PTU | EN | M0)) /*GPMC_nCS5*/\ MUX_VAL(CP(GPMC_nCS6), (IDIS | PTU | EN | M0)) /*GPMC_nCS6*/\ MUX_VAL(CP(GPMC_nCS7), (IDIS | PTU | EN | M0)) /*GPMC_nCS7*/\ MUX_VAL(CP(GPMC_CLK), (IDIS | PTD | DIS | M0)) /*GPMC_CLK*/\ MUX_VAL(CP(GPMC_nADV_ALE), (IDIS | PTD | DIS | M0)) /*GPMC_nADV_ALE*/\ MUX_VAL(CP(GPMC_nOE), (IDIS | PTD | DIS | M0)) /*GPMC_nOE*/\ MUX_VAL(CP(GPMC_nWE), (IDIS | PTD | DIS | M0)) /*GPMC_nWE*/\ MUX_VAL(CP(GPMC_nBE0_CLE), (IDIS | PTD | DIS | M0)) /*GPMC_nBE0_CLE*/\ MUX_VAL(CP(GPMC_nBE1), (IDIS | PTD | DIS | M4)) /*GPIO_61*/\ MUX_VAL(CP(GPMC_nWP), (IEN | PTD | DIS | M0)) /*GPMC_nWP*/\ MUX_VAL(CP(GPMC_WAIT0), (IEN | PTU | EN | M0)) /*GPMC_WAIT0*/\ MUX_VAL(CP(GPMC_WAIT1), (IEN | PTU | EN | M0)) /*GPMC_WAIT1*/\ MUX_VAL(CP(GPMC_WAIT2), (IEN | PTU | EN | M4)) /*GPIO_64*/\ MUX_VAL(CP(GPMC_WAIT3), (IEN | PTU | EN | M4)) /*GPIO_65*/\ MUX_VAL(CP(DSS_DATA18), (IEN | PTD | DIS | M4)) /*GPIO_88*/\ MUX_VAL(CP(DSS_DATA19), (IEN | PTD | DIS | M4)) /*GPIO_89*/\ MUX_VAL(CP(DSS_DATA20), (IEN | PTD | DIS | M4)) /*GPIO_90*/\ MUX_VAL(CP(DSS_DATA21), (IEN | PTD | DIS | M4)) /*GPIO_91*/\ MUX_VAL(CP(CAM_WEN), (IEN | PTD | DIS | M4)) /*GPIO_167*/\ MUX_VAL(CP(UART1_TX), (IDIS | PTD | DIS | M0)) /*UART1_TX*/\ MUX_VAL(CP(UART1_RTS), (IDIS | PTD | DIS | M0)) /*UART1_RTS*/\ MUX_VAL(CP(UART1_CTS), (IEN | PTU | DIS | M0)) /*UART1_CTS*/\ MUX_VAL(CP(UART1_RX), (IEN | PTD | DIS | M0)) /*UART1_RX*/\ MUX_VAL(CP(McBSP1_DX), (IEN | PTD | DIS | M4)) /*GPIO_158*/\ MUX_VAL(CP(SYS_32K), (IEN | PTD | DIS | M0)) /*SYS_32K*/\ MUX_VAL(CP(SYS_BOOT0), (IEN | PTD | DIS | M4)) /*GPIO_2 */\ MUX_VAL(CP(SYS_BOOT1), (IEN | PTD | DIS | M4)) /*GPIO_3 */\ MUX_VAL(CP(SYS_BOOT2), (IEN | PTD | DIS | M4)) /*GPIO_4 */\ MUX_VAL(CP(SYS_BOOT3), (IEN | PTD | DIS | M4)) /*GPIO_5 */\ MUX_VAL(CP(SYS_BOOT4), (IEN | PTD | DIS | M4)) /*GPIO_6 */\ MUX_VAL(CP(SYS_BOOT5), (IEN | PTD | DIS | M4)) /*GPIO_7 */\ MUX_VAL(CP(SYS_BOOT6), (IEN | PTD | DIS | M4)) /*GPIO_8 */\ MUX_VAL(CP(SYS_CLKOUT2), (IEN | PTU | EN | M4)) /*GPIO_186*/\ MUX_VAL(CP(JTAG_nTRST), (IEN | PTD | DIS | M0)) /*JTAG_nTRST*/\ MUX_VAL(CP(JTAG_TCK), (IEN | PTD | DIS | M0)) /*JTAG_TCK*/\ MUX_VAL(CP(JTAG_TMS), (IEN | PTD | DIS | M0)) /*JTAG_TMS*/\ MUX_VAL(CP(JTAG_TDI), (IEN | PTD | DIS | M0)) /*JTAG_TDI*/\ MUX_VAL(CP(JTAG_EMU0), (IEN | PTD | DIS | M0)) /*JTAG_EMU0*/\ MUX_VAL(CP(JTAG_EMU1), (IEN | PTD | DIS | M0)) /*JTAG_EMU1*/\ MUX_VAL(CP(ETK_CLK), (IEN | PTD | DIS | M4)) /*GPIO_12*/\ MUX_VAL(CP(ETK_CTL), (IEN | PTD | DIS | M4)) /*GPIO_13*/\ MUX_VAL(CP(ETK_D0 ), (IEN | PTD | DIS | M4)) /*GPIO_14*/\ MUX_VAL(CP(ETK_D1 ), (IEN | PTD | DIS | M4)) /*GPIO_15*/\ MUX_VAL(CP(ETK_D2 ), (IEN | PTD | DIS | M4)) /*GPIO_16*/\ MUX_VAL(CP(ETK_D10), (IEN | PTD | DIS | M4)) /*GPIO_24*/\ MUX_VAL(CP(ETK_D11), (IEN | PTD | DIS | M4)) /*GPIO_25*/\ MUX_VAL(CP(ETK_D12), (IEN | PTD | DIS | M4)) /*GPIO_26*/\ MUX_VAL(CP(ETK_D13), (IEN | PTD | DIS | M4)) /*GPIO_27*/\ MUX_VAL(CP(ETK_D14), (IEN | PTD | DIS | M4)) /*GPIO_28*/\ MUX_VAL(CP(ETK_D15), (IEN | PTD | DIS | M4)) /*GPIO_29*/ /********************************************************** * Routine: set_muxconf_regs * Description: Setting up the configuration Mux registers * specific to the hardware. Many pins need * to be moved from protect to primary mode. *********************************************************/ void set_muxconf_regs(void) { MUX_DEFAULT(); } /********************************************************** * Routine: nand+_init * Description: Set up nand for nand and jffs2 commands *********************************************************/ int nand_init(void) { /* global settings */ __raw_writel(0x10, GPMC_SYSCONFIG); /* smart idle */ __raw_writel(0x0, GPMC_IRQENABLE); /* isr's sources masked */ __raw_writel(0, GPMC_TIMEOUT_CONTROL);/* timeout disable */ /* Set the GPMC Vals . For NAND boot on 3430SDP, NAND is mapped at CS0 * , NOR at CS1 and MPDB at CS3. And oneNAND boot, we map oneNAND at CS0. * We configure only GPMC CS0 with required values. Configiring other devices * at other CS in done in u-boot anyway. So we don't have to bother doing it here. */ __raw_writel(0 , GPMC_CONFIG7 + GPMC_CONFIG_CS0); delay(1000); if ((get_mem_type() == GPMC_NAND) || (get_mem_type() == MMC_NAND)){ __raw_writel( M_NAND_GPMC_CONFIG1, GPMC_CONFIG1 + GPMC_CONFIG_CS0); __raw_writel( M_NAND_GPMC_CONFIG2, GPMC_CONFIG2 + GPMC_CONFIG_CS0); __raw_writel( M_NAND_GPMC_CONFIG3, GPMC_CONFIG3 + GPMC_CONFIG_CS0); __raw_writel( M_NAND_GPMC_CONFIG4, GPMC_CONFIG4 + GPMC_CONFIG_CS0); __raw_writel( M_NAND_GPMC_CONFIG5, GPMC_CONFIG5 + GPMC_CONFIG_CS0); __raw_writel( M_NAND_GPMC_CONFIG6, GPMC_CONFIG6 + GPMC_CONFIG_CS0); /* Enable the GPMC Mapping */ __raw_writel(( ((OMAP34XX_GPMC_CS0_SIZE & 0xF)<<8) | ((NAND_BASE_ADR>>24) & 0x3F) | (1<<6) ), (GPMC_CONFIG7 + GPMC_CONFIG_CS0)); delay(2000); if (nand_chip()){ #ifdef CFG_PRINTF printf("Unsupported Chip!\n"); #endif return 1; } } if ((get_mem_type() == GPMC_ONENAND) || (get_mem_type() == MMC_ONENAND)){ __raw_writel( ONENAND_GPMC_CONFIG1, GPMC_CONFIG1 + GPMC_CONFIG_CS0); __raw_writel( ONENAND_GPMC_CONFIG2, GPMC_CONFIG2 + GPMC_CONFIG_CS0); __raw_writel( ONENAND_GPMC_CONFIG3, GPMC_CONFIG3 + GPMC_CONFIG_CS0); __raw_writel( ONENAND_GPMC_CONFIG4, GPMC_CONFIG4 + GPMC_CONFIG_CS0); __raw_writel( ONENAND_GPMC_CONFIG5, GPMC_CONFIG5 + GPMC_CONFIG_CS0); __raw_writel( ONENAND_GPMC_CONFIG6, GPMC_CONFIG6 + GPMC_CONFIG_CS0); /* Enable the GPMC Mapping */ __raw_writel(( ((OMAP34XX_GPMC_CS0_SIZE & 0xF)<<8) | ((ONENAND_BASE>>24) & 0x3F) | (1<<6) ), (GPMC_CONFIG7 + GPMC_CONFIG_CS0)); delay(2000); if (onenand_chip()){ #ifdef CFG_PRINTF printf("OneNAND Unsupported !\n"); #endif return 1; } } return 0; } /* optionally do something like blinking LED */ void board_hang (void) { while (0) {};} /****************************************************************************** * Dummy function to handle errors for EABI incompatibility *****************************************************************************/ void raise(void) { } /****************************************************************************** * Dummy function to handle errors for EABI incompatibility *****************************************************************************/ void abort(void) { }