/* * Copyright 2007 The Android Open Source Project * * General purpose hash table, used for finding classes, methods, etc. * * When the number of elements reaches 3/4 of the table's capacity, the * table will be resized. */ #ifndef _MINZIP_HASH #define _MINZIP_HASH #include "inline_magic.h" #include #include #include /* compute the hash of an item with a specific type */ typedef unsigned int (*HashCompute)(const void* item); /* * Compare a hash entry with a "loose" item after their hash values match. * Returns { <0, 0, >0 } depending on ordering of items (same semantics * as strcmp()). */ typedef int (*HashCompareFunc)(const void* tableItem, const void* looseItem); /* * This function will be used to free entries in the table. This can be * NULL if no free is required, free(), or a custom function. */ typedef void (*HashFreeFunc)(void* ptr); /* * Used by mzHashForeach(). */ typedef int (*HashForeachFunc)(void* data, void* arg); /* * One entry in the hash table. "data" values are expected to be (or have * the same characteristics as) valid pointers. In particular, a NULL * value for "data" indicates an empty slot, and HASH_TOMBSTONE indicates * a no-longer-used slot that must be stepped over during probing. * * Attempting to add a NULL or tombstone value is an error. * * When an entry is released, we will call (HashFreeFunc)(entry->data). */ typedef struct HashEntry { unsigned int hashValue; void* data; } HashEntry; #define HASH_TOMBSTONE ((void*) 0xcbcacccd) // invalid ptr value /* * Expandable hash table. * * This structure should be considered opaque. */ typedef struct HashTable { int tableSize; /* must be power of 2 */ int numEntries; /* current #of "live" entries */ int numDeadEntries; /* current #of tombstone entries */ HashEntry* pEntries; /* array on heap */ HashFreeFunc freeFunc; } HashTable; /* * Create and initialize a HashTable structure, using "initialSize" as * a basis for the initial capacity of the table. (The actual initial * table size may be adjusted upward.) If you know exactly how many * elements the table will hold, pass the result from mzHashSize() in.) * * Returns "false" if unable to allocate the table. */ HashTable* mzHashTableCreate(size_t initialSize, HashFreeFunc freeFunc); /* * Compute the capacity needed for a table to hold "size" elements. Use * this when you know ahead of time how many elements the table will hold. * Pass this value into mzHashTableCreate() to ensure that you can add * all elements without needing to reallocate the table. */ size_t mzHashSize(size_t size); /* * Clear out a hash table, freeing the contents of any used entries. */ void mzHashTableClear(HashTable* pHashTable); /* * Free a hash table. */ void mzHashTableFree(HashTable* pHashTable); /* * Get #of entries in hash table. */ INLINE int mzHashTableNumEntries(HashTable* pHashTable) { return pHashTable->numEntries; } /* * Get total size of hash table (for memory usage calculations). */ INLINE int mzHashTableMemUsage(HashTable* pHashTable) { return sizeof(HashTable) + pHashTable->tableSize * sizeof(HashEntry); } /* * Look up an entry in the table, possibly adding it if it's not there. * * If "item" is not found, and "doAdd" is false, NULL is returned. * Otherwise, a pointer to the found or added item is returned. (You can * tell the difference by seeing if return value == item.) * * An "add" operation may cause the entire table to be reallocated. */ void* mzHashTableLookup(HashTable* pHashTable, unsigned int itemHash, void* item, HashCompareFunc cmpFunc, bool doAdd); /* * Remove an item from the hash table, given its "data" pointer. Does not * invoke the "free" function; just detaches it from the table. */ bool mzHashTableRemove(HashTable* pHashTable, unsigned int hash, void* item); /* * Execute "func" on every entry in the hash table. * * If "func" returns a nonzero value, terminate early and return the value. */ int mzHashForeach(HashTable* pHashTable, HashForeachFunc func, void* arg); /* * An alternative to mzHashForeach(), using an iterator. * * Use like this: * HashIter iter; * for (mzHashIterBegin(hashTable, &iter); !mzHashIterDone(&iter); * mzHashIterNext(&iter)) * { * MyData* data = (MyData*)mzHashIterData(&iter); * } */ typedef struct HashIter { void* data; HashTable* pHashTable; int idx; } HashIter; INLINE void mzHashIterNext(HashIter* pIter) { int i = pIter->idx +1; int lim = pIter->pHashTable->tableSize; for ( ; i < lim; i++) { void* data = pIter->pHashTable->pEntries[i].data; if (data != NULL && data != HASH_TOMBSTONE) break; } pIter->idx = i; } INLINE void mzHashIterBegin(HashTable* pHashTable, HashIter* pIter) { pIter->pHashTable = pHashTable; pIter->idx = -1; mzHashIterNext(pIter); } INLINE bool mzHashIterDone(HashIter* pIter) { return (pIter->idx >= pIter->pHashTable->tableSize); } INLINE void* mzHashIterData(HashIter* pIter) { assert(pIter->idx >= 0 && pIter->idx < pIter->pHashTable->tableSize); return pIter->pHashTable->pEntries[pIter->idx].data; } /* * Evaluate hash table performance by examining the number of times we * have to probe for an entry. * * The caller should lock the table beforehand. */ typedef unsigned int (*HashCalcFunc)(const void* item); void mzHashTableProbeCount(HashTable* pHashTable, HashCalcFunc calcFunc, HashCompareFunc cmpFunc); #endif /*_MINZIP_HASH*/