/* * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "asn1_decoder.h" #include "common.h" #include "ui.h" #include "verifier.h" #include "mincrypt/dsa_sig.h" #include "mincrypt/p256.h" #include "mincrypt/p256_ecdsa.h" #include "mincrypt/rsa.h" #include "mincrypt/sha.h" #include "mincrypt/sha256.h" #include #include #include #include extern RecoveryUI* ui; /* * Simple version of PKCS#7 SignedData extraction. This extracts the * signature OCTET STRING to be used for signature verification. * * For full details, see http://www.ietf.org/rfc/rfc3852.txt * * The PKCS#7 structure looks like: * * SEQUENCE (ContentInfo) * OID (ContentType) * [0] (content) * SEQUENCE (SignedData) * INTEGER (version CMSVersion) * SET (DigestAlgorithmIdentifiers) * SEQUENCE (EncapsulatedContentInfo) * [0] (CertificateSet OPTIONAL) * [1] (RevocationInfoChoices OPTIONAL) * SET (SignerInfos) * SEQUENCE (SignerInfo) * INTEGER (CMSVersion) * SEQUENCE (SignerIdentifier) * SEQUENCE (DigestAlgorithmIdentifier) * SEQUENCE (SignatureAlgorithmIdentifier) * OCTET STRING (SignatureValue) */ static bool read_pkcs7(uint8_t* pkcs7_der, size_t pkcs7_der_len, uint8_t** sig_der, size_t* sig_der_length) { asn1_context_t* ctx = asn1_context_new(pkcs7_der, pkcs7_der_len); if (ctx == NULL) { return false; } asn1_context_t* pkcs7_seq = asn1_sequence_get(ctx); if (pkcs7_seq != NULL && asn1_sequence_next(pkcs7_seq)) { asn1_context_t *signed_data_app = asn1_constructed_get(pkcs7_seq); if (signed_data_app != NULL) { asn1_context_t* signed_data_seq = asn1_sequence_get(signed_data_app); if (signed_data_seq != NULL && asn1_sequence_next(signed_data_seq) && asn1_sequence_next(signed_data_seq) && asn1_sequence_next(signed_data_seq) && asn1_constructed_skip_all(signed_data_seq)) { asn1_context_t *sig_set = asn1_set_get(signed_data_seq); if (sig_set != NULL) { asn1_context_t* sig_seq = asn1_sequence_get(sig_set); if (sig_seq != NULL && asn1_sequence_next(sig_seq) && asn1_sequence_next(sig_seq) && asn1_sequence_next(sig_seq) && asn1_sequence_next(sig_seq)) { uint8_t* sig_der_ptr; if (asn1_octet_string_get(sig_seq, &sig_der_ptr, sig_der_length)) { *sig_der = (uint8_t*) malloc(*sig_der_length); if (*sig_der != NULL) { memcpy(*sig_der, sig_der_ptr, *sig_der_length); } } asn1_context_free(sig_seq); } asn1_context_free(sig_set); } asn1_context_free(signed_data_seq); } asn1_context_free(signed_data_app); } asn1_context_free(pkcs7_seq); } asn1_context_free(ctx); return *sig_der != NULL; } // Look for an RSA signature embedded in the .ZIP file comment given // the path to the zip. Verify it matches one of the given public // keys. // // Return VERIFY_SUCCESS, VERIFY_FAILURE (if any error is encountered // or no key matches the signature). int verify_file(unsigned char* addr, size_t length, const Certificate* pKeys, unsigned int numKeys) { ui->SetProgress(0.0); // An archive with a whole-file signature will end in six bytes: // // (2-byte signature start) $ff $ff (2-byte comment size) // // (As far as the ZIP format is concerned, these are part of the // archive comment.) We start by reading this footer, this tells // us how far back from the end we have to start reading to find // the whole comment. #define FOOTER_SIZE 6 if (length < FOOTER_SIZE) { LOGE("not big enough to contain footer\n"); return VERIFY_FAILURE; } unsigned char* footer = addr + length - FOOTER_SIZE; if (footer[2] != 0xff || footer[3] != 0xff) { LOGE("footer is wrong\n"); return VERIFY_FAILURE; } size_t comment_size = footer[4] + (footer[5] << 8); size_t signature_start = footer[0] + (footer[1] << 8); LOGI("comment is %zu bytes; signature %zu bytes from end\n", comment_size, signature_start); if (signature_start > comment_size) { LOGE("signature start: %zu is larger than comment size: %zu\n", signature_start, comment_size); return VERIFY_FAILURE; } if (signature_start <= FOOTER_SIZE) { LOGE("Signature start is in the footer"); return VERIFY_FAILURE; } #define EOCD_HEADER_SIZE 22 // The end-of-central-directory record is 22 bytes plus any // comment length. size_t eocd_size = comment_size + EOCD_HEADER_SIZE; if (length < eocd_size) { LOGE("not big enough to contain EOCD\n"); return VERIFY_FAILURE; } // Determine how much of the file is covered by the signature. // This is everything except the signature data and length, which // includes all of the EOCD except for the comment length field (2 // bytes) and the comment data. size_t signed_len = length - eocd_size + EOCD_HEADER_SIZE - 2; unsigned char* eocd = addr + length - eocd_size; // If this is really is the EOCD record, it will begin with the // magic number $50 $4b $05 $06. if (eocd[0] != 0x50 || eocd[1] != 0x4b || eocd[2] != 0x05 || eocd[3] != 0x06) { LOGE("signature length doesn't match EOCD marker\n"); return VERIFY_FAILURE; } size_t i; for (i = 4; i < eocd_size-3; ++i) { if (eocd[i ] == 0x50 && eocd[i+1] == 0x4b && eocd[i+2] == 0x05 && eocd[i+3] == 0x06) { // if the sequence $50 $4b $05 $06 appears anywhere after // the real one, minzip will find the later (wrong) one, // which could be exploitable. Fail verification if // this sequence occurs anywhere after the real one. LOGE("EOCD marker occurs after start of EOCD\n"); return VERIFY_FAILURE; } } #define BUFFER_SIZE 4096 bool need_sha1 = false; bool need_sha256 = false; for (i = 0; i < numKeys; ++i) { switch (pKeys[i].hash_len) { case SHA_DIGEST_SIZE: need_sha1 = true; break; case SHA256_DIGEST_SIZE: need_sha256 = true; break; } } SHA_CTX sha1_ctx; SHA256_CTX sha256_ctx; SHA_init(&sha1_ctx); SHA256_init(&sha256_ctx); double frac = -1.0; size_t so_far = 0; while (so_far < signed_len) { size_t size = signed_len - so_far; if (size > BUFFER_SIZE) size = BUFFER_SIZE; if (need_sha1) SHA_update(&sha1_ctx, addr + so_far, size); if (need_sha256) SHA256_update(&sha256_ctx, addr + so_far, size); so_far += size; double f = so_far / (double)signed_len; if (f > frac + 0.02 || size == so_far) { ui->SetProgress(f); frac = f; } } const uint8_t* sha1 = SHA_final(&sha1_ctx); const uint8_t* sha256 = SHA256_final(&sha256_ctx); uint8_t* sig_der = NULL; size_t sig_der_length = 0; size_t signature_size = signature_start - FOOTER_SIZE; if (!read_pkcs7(eocd + eocd_size - signature_start, signature_size, &sig_der, &sig_der_length)) { LOGE("Could not find signature DER block\n"); return VERIFY_FAILURE; } /* * Check to make sure at least one of the keys matches the signature. Since * any key can match, we need to try each before determining a verification * failure has happened. */ for (i = 0; i < numKeys; ++i) { const uint8_t* hash; switch (pKeys[i].hash_len) { case SHA_DIGEST_SIZE: hash = sha1; break; case SHA256_DIGEST_SIZE: hash = sha256; break; default: continue; } // The 6 bytes is the "(signature_start) $ff $ff (comment_size)" that // the signing tool appends after the signature itself. if (pKeys[i].key_type == Certificate::RSA) { if (sig_der_length < RSANUMBYTES) { // "signature" block isn't big enough to contain an RSA block. LOGI("signature is too short for RSA key %zu\n", i); continue; } if (!RSA_verify(pKeys[i].rsa, sig_der, RSANUMBYTES, hash, pKeys[i].hash_len)) { LOGI("failed to verify against RSA key %zu\n", i); continue; } LOGI("whole-file signature verified against RSA key %zu\n", i); free(sig_der); return VERIFY_SUCCESS; } else if (pKeys[i].key_type == Certificate::EC && pKeys[i].hash_len == SHA256_DIGEST_SIZE) { p256_int r, s; if (!dsa_sig_unpack(sig_der, sig_der_length, &r, &s)) { LOGI("Not a DSA signature block for EC key %zu\n", i); continue; } p256_int p256_hash; p256_from_bin(hash, &p256_hash); if (!p256_ecdsa_verify(&(pKeys[i].ec->x), &(pKeys[i].ec->y), &p256_hash, &r, &s)) { LOGI("failed to verify against EC key %zu\n", i); continue; } LOGI("whole-file signature verified against EC key %zu\n", i); free(sig_der); return VERIFY_SUCCESS; } else { LOGI("Unknown key type %d\n", pKeys[i].key_type); } } free(sig_der); LOGE("failed to verify whole-file signature\n"); return VERIFY_FAILURE; } // Reads a file containing one or more public keys as produced by // DumpPublicKey: this is an RSAPublicKey struct as it would appear // as a C source literal, eg: // // "{64,0xc926ad21,{1795090719,...,-695002876},{-857949815,...,1175080310}}" // // For key versions newer than the original 2048-bit e=3 keys // supported by Android, the string is preceded by a version // identifier, eg: // // "v2 {64,0xc926ad21,{1795090719,...,-695002876},{-857949815,...,1175080310}}" // // (Note that the braces and commas in this example are actual // characters the parser expects to find in the file; the ellipses // indicate more numbers omitted from this example.) // // The file may contain multiple keys in this format, separated by // commas. The last key must not be followed by a comma. // // A Certificate is a pair of an RSAPublicKey and a particular hash // (we support SHA-1 and SHA-256; we store the hash length to signify // which is being used). The hash used is implied by the version number. // // 1: 2048-bit RSA key with e=3 and SHA-1 hash // 2: 2048-bit RSA key with e=65537 and SHA-1 hash // 3: 2048-bit RSA key with e=3 and SHA-256 hash // 4: 2048-bit RSA key with e=65537 and SHA-256 hash // 5: 256-bit EC key using the NIST P-256 curve parameters and SHA-256 hash // // Returns NULL if the file failed to parse, or if it contain zero keys. Certificate* load_keys(const char* filename, int* numKeys) { Certificate* out = NULL; *numKeys = 0; FILE* f = fopen(filename, "r"); if (f == NULL) { LOGE("opening %s: %s\n", filename, strerror(errno)); goto exit; } { int i; bool done = false; while (!done) { ++*numKeys; out = (Certificate*)realloc(out, *numKeys * sizeof(Certificate)); Certificate* cert = out + (*numKeys - 1); memset(cert, '\0', sizeof(Certificate)); char start_char; if (fscanf(f, " %c", &start_char) != 1) goto exit; if (start_char == '{') { // a version 1 key has no version specifier. cert->key_type = Certificate::RSA; cert->rsa = (RSAPublicKey*)malloc(sizeof(RSAPublicKey)); cert->rsa->exponent = 3; cert->hash_len = SHA_DIGEST_SIZE; } else if (start_char == 'v') { int version; if (fscanf(f, "%d {", &version) != 1) goto exit; switch (version) { case 2: cert->key_type = Certificate::RSA; cert->rsa = (RSAPublicKey*)malloc(sizeof(RSAPublicKey)); cert->rsa->exponent = 65537; cert->hash_len = SHA_DIGEST_SIZE; break; case 3: cert->key_type = Certificate::RSA; cert->rsa = (RSAPublicKey*)malloc(sizeof(RSAPublicKey)); cert->rsa->exponent = 3; cert->hash_len = SHA256_DIGEST_SIZE; break; case 4: cert->key_type = Certificate::RSA; cert->rsa = (RSAPublicKey*)malloc(sizeof(RSAPublicKey)); cert->rsa->exponent = 65537; cert->hash_len = SHA256_DIGEST_SIZE; break; case 5: cert->key_type = Certificate::EC; cert->ec = (ECPublicKey*)calloc(1, sizeof(ECPublicKey)); cert->hash_len = SHA256_DIGEST_SIZE; break; default: goto exit; } } if (cert->key_type == Certificate::RSA) { RSAPublicKey* key = cert->rsa; if (fscanf(f, " %i , 0x%x , { %u", &(key->len), &(key->n0inv), &(key->n[0])) != 3) { goto exit; } if (key->len != RSANUMWORDS) { LOGE("key length (%d) does not match expected size\n", key->len); goto exit; } for (i = 1; i < key->len; ++i) { if (fscanf(f, " , %u", &(key->n[i])) != 1) goto exit; } if (fscanf(f, " } , { %u", &(key->rr[0])) != 1) goto exit; for (i = 1; i < key->len; ++i) { if (fscanf(f, " , %u", &(key->rr[i])) != 1) goto exit; } fscanf(f, " } } "); LOGI("read key e=%d hash=%d\n", key->exponent, cert->hash_len); } else if (cert->key_type == Certificate::EC) { ECPublicKey* key = cert->ec; int key_len; unsigned int byte; uint8_t x_bytes[P256_NBYTES]; uint8_t y_bytes[P256_NBYTES]; if (fscanf(f, " %i , { %u", &key_len, &byte) != 2) goto exit; if (key_len != P256_NBYTES) { LOGE("Key length (%d) does not match expected size %d\n", key_len, P256_NBYTES); goto exit; } x_bytes[P256_NBYTES - 1] = byte; for (i = P256_NBYTES - 2; i >= 0; --i) { if (fscanf(f, " , %u", &byte) != 1) goto exit; x_bytes[i] = byte; } if (fscanf(f, " } , { %u", &byte) != 1) goto exit; y_bytes[P256_NBYTES - 1] = byte; for (i = P256_NBYTES - 2; i >= 0; --i) { if (fscanf(f, " , %u", &byte) != 1) goto exit; y_bytes[i] = byte; } fscanf(f, " } } "); p256_from_bin(x_bytes, &key->x); p256_from_bin(y_bytes, &key->y); } else { LOGE("Unknown key type %d\n", cert->key_type); goto exit; } // if the line ends in a comma, this file has more keys. switch (fgetc(f)) { case ',': // more keys to come. break; case EOF: done = true; break; default: LOGE("unexpected character between keys\n"); goto exit; } } } fclose(f); return out; exit: if (f) fclose(f); free(out); *numKeys = 0; return NULL; }