/* * Copyright (C) 2009 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * This program constructs binary patches for images -- such as boot.img * and recovery.img -- that consist primarily of large chunks of gzipped * data interspersed with uncompressed data. Doing a naive bsdiff of * these files is not useful because small changes in the data lead to * large changes in the compressed bitstream; bsdiff patches of gzipped * data are typically as large as the data itself. * * To patch these usefully, we break the source and target images up into * chunks of two types: "normal" and "gzip". Normal chunks are simply * patched using a plain bsdiff. Gzip chunks are first expanded, then a * bsdiff is applied to the uncompressed data, then the patched data is * gzipped using the same encoder parameters. Patched chunks are * concatenated together to create the output file; the output image * should be *exactly* the same series of bytes as the target image used * originally to generate the patch. * * To work well with this tool, the gzipped sections of the target * image must have been generated using the same deflate encoder that * is available in applypatch, namely, the one in the zlib library. * In practice this means that images should be compressed using the * "minigzip" tool included in the zlib distribution, not the GNU gzip * program. * * An "imgdiff" patch consists of a header describing the chunk structure * of the file and any encoding parameters needed for the gzipped * chunks, followed by N bsdiff patches, one per chunk. * * For a diff to be generated, the source and target images must have the * same "chunk" structure: that is, the same number of gzipped and normal * chunks in the same order. Android boot and recovery images currently * consist of five chunks: a small normal header, a gzipped kernel, a * small normal section, a gzipped ramdisk, and finally a small normal * footer. * * Caveats: we locate gzipped sections within the source and target * images by searching for the byte sequence 1f8b0800: 1f8b is the gzip * magic number; 08 specifies the "deflate" encoding [the only encoding * supported by the gzip standard]; and 00 is the flags byte. We do not * currently support any extra header fields (which would be indicated by * a nonzero flags byte). We also don't handle the case when that byte * sequence appears spuriously in the file. (Note that it would have to * occur spuriously within a normal chunk to be a problem.) * * * The imgdiff patch header looks like this: * * "IMGDIFF1" (8) [magic number and version] * chunk count (4) * for each chunk: * chunk type (4) [CHUNK_{NORMAL, GZIP, DEFLATE, RAW}] * if chunk type == CHUNK_NORMAL: * source start (8) * source len (8) * bsdiff patch offset (8) [from start of patch file] * if chunk type == CHUNK_GZIP: (version 1 only) * source start (8) * source len (8) * bsdiff patch offset (8) [from start of patch file] * source expanded len (8) [size of uncompressed source] * target expected len (8) [size of uncompressed target] * gzip level (4) * method (4) * windowBits (4) * memLevel (4) * strategy (4) * gzip header len (4) * gzip header (gzip header len) * gzip footer (8) * if chunk type == CHUNK_DEFLATE: (version 2 only) * source start (8) * source len (8) * bsdiff patch offset (8) [from start of patch file] * source expanded len (8) [size of uncompressed source] * target expected len (8) [size of uncompressed target] * gzip level (4) * method (4) * windowBits (4) * memLevel (4) * strategy (4) * if chunk type == RAW: (version 2 only) * target len (4) * data (target len) * * All integers are little-endian. "source start" and "source len" * specify the section of the input image that comprises this chunk, * including the gzip header and footer for gzip chunks. "source * expanded len" is the size of the uncompressed source data. "target * expected len" is the size of the uncompressed data after applying * the bsdiff patch. The next five parameters specify the zlib * parameters to be used when compressing the patched data, and the * next three specify the header and footer to be wrapped around the * compressed data to create the output chunk (so that header contents * like the timestamp are recreated exactly). * * After the header there are 'chunk count' bsdiff patches; the offset * of each from the beginning of the file is specified in the header. */ #include #include #include #include #include #include #include #include "zlib.h" #include "imgdiff.h" #include "utils.h" typedef struct { int type; // CHUNK_NORMAL, CHUNK_DEFLATE size_t start; // offset of chunk in original image file size_t len; unsigned char* data; // data to be patched (uncompressed, for deflate chunks) size_t source_start; size_t source_len; off_t* I; // used by bsdiff // --- for CHUNK_DEFLATE chunks only: --- // original (compressed) deflate data size_t deflate_len; unsigned char* deflate_data; char* filename; // used for zip entries // deflate encoder parameters int level, method, windowBits, memLevel, strategy; size_t source_uncompressed_len; } ImageChunk; typedef struct { int data_offset; int deflate_len; int uncomp_len; char* filename; } ZipFileEntry; static int fileentry_compare(const void* a, const void* b) { int ao = ((ZipFileEntry*)a)->data_offset; int bo = ((ZipFileEntry*)b)->data_offset; if (ao < bo) { return -1; } else if (ao > bo) { return 1; } else { return 0; } } // from bsdiff.c int bsdiff(u_char* old, off_t oldsize, off_t** IP, u_char* new, off_t newsize, const char* patch_filename); unsigned char* ReadZip(const char* filename, int* num_chunks, ImageChunk** chunks, int include_pseudo_chunk) { struct stat st; if (stat(filename, &st) != 0) { fprintf(stderr, "failed to stat \"%s\": %s\n", filename, strerror(errno)); return NULL; } unsigned char* img = malloc(st.st_size); FILE* f = fopen(filename, "rb"); if (fread(img, 1, st.st_size, f) != st.st_size) { fprintf(stderr, "failed to read \"%s\" %s\n", filename, strerror(errno)); fclose(f); return NULL; } fclose(f); // look for the end-of-central-directory record. int i; for (i = st.st_size-20; i >= 0 && i > st.st_size - 65600; --i) { if (img[i] == 0x50 && img[i+1] == 0x4b && img[i+2] == 0x05 && img[i+3] == 0x06) { break; } } // double-check: this archive consists of a single "disk" if (!(img[i+4] == 0 && img[i+5] == 0 && img[i+6] == 0 && img[i+7] == 0)) { fprintf(stderr, "can't process multi-disk archive\n"); return NULL; } int cdcount = Read2(img+i+8); int cdoffset = Read4(img+i+16); ZipFileEntry* temp_entries = malloc(cdcount * sizeof(ZipFileEntry)); int entrycount = 0; unsigned char* cd = img+cdoffset; for (i = 0; i < cdcount; ++i) { if (!(cd[0] == 0x50 && cd[1] == 0x4b && cd[2] == 0x01 && cd[3] == 0x02)) { fprintf(stderr, "bad central directory entry %d\n", i); return NULL; } int clen = Read4(cd+20); // compressed len int ulen = Read4(cd+24); // uncompressed len int nlen = Read2(cd+28); // filename len int xlen = Read2(cd+30); // extra field len int mlen = Read2(cd+32); // file comment len int hoffset = Read4(cd+42); // local header offset char* filename = malloc(nlen+1); memcpy(filename, cd+46, nlen); filename[nlen] = '\0'; int method = Read2(cd+10); cd += 46 + nlen + xlen + mlen; if (method != 8) { // 8 == deflate free(filename); continue; } unsigned char* lh = img + hoffset; if (!(lh[0] == 0x50 && lh[1] == 0x4b && lh[2] == 0x03 && lh[3] == 0x04)) { fprintf(stderr, "bad local file header entry %d\n", i); return NULL; } if (Read2(lh+26) != nlen || memcmp(lh+30, filename, nlen) != 0) { fprintf(stderr, "central dir filename doesn't match local header\n"); return NULL; } xlen = Read2(lh+28); // extra field len; might be different from CD entry? temp_entries[entrycount].data_offset = hoffset+30+nlen+xlen; temp_entries[entrycount].deflate_len = clen; temp_entries[entrycount].uncomp_len = ulen; temp_entries[entrycount].filename = filename; ++entrycount; } qsort(temp_entries, entrycount, sizeof(ZipFileEntry), fileentry_compare); #if 0 printf("found %d deflated entries\n", entrycount); for (i = 0; i < entrycount; ++i) { printf("off %10d len %10d unlen %10d %p %s\n", temp_entries[i].data_offset, temp_entries[i].deflate_len, temp_entries[i].uncomp_len, temp_entries[i].filename, temp_entries[i].filename); } #endif *num_chunks = 0; *chunks = malloc((entrycount*2+2) * sizeof(ImageChunk)); ImageChunk* curr = *chunks; if (include_pseudo_chunk) { curr->type = CHUNK_NORMAL; curr->start = 0; curr->len = st.st_size; curr->data = img; curr->filename = NULL; curr->I = NULL; ++curr; ++*num_chunks; } int pos = 0; int nextentry = 0; while (pos < st.st_size) { if (nextentry < entrycount && pos == temp_entries[nextentry].data_offset) { curr->type = CHUNK_DEFLATE; curr->start = pos; curr->deflate_len = temp_entries[nextentry].deflate_len; curr->deflate_data = img + pos; curr->filename = temp_entries[nextentry].filename; curr->I = NULL; curr->len = temp_entries[nextentry].uncomp_len; curr->data = malloc(curr->len); z_stream strm; strm.zalloc = Z_NULL; strm.zfree = Z_NULL; strm.opaque = Z_NULL; strm.avail_in = curr->deflate_len; strm.next_in = curr->deflate_data; // -15 means we are decoding a 'raw' deflate stream; zlib will // not expect zlib headers. int ret = inflateInit2(&strm, -15); strm.avail_out = curr->len; strm.next_out = curr->data; ret = inflate(&strm, Z_NO_FLUSH); if (ret != Z_STREAM_END) { fprintf(stderr, "failed to inflate \"%s\"; %d\n", curr->filename, ret); return NULL; } inflateEnd(&strm); pos += curr->deflate_len; ++nextentry; ++*num_chunks; ++curr; continue; } // use a normal chunk to take all the data up to the start of the // next deflate section. curr->type = CHUNK_NORMAL; curr->start = pos; if (nextentry < entrycount) { curr->len = temp_entries[nextentry].data_offset - pos; } else { curr->len = st.st_size - pos; } curr->data = img + pos; curr->filename = NULL; curr->I = NULL; pos += curr->len; ++*num_chunks; ++curr; } free(temp_entries); return img; } /* * Read the given file and break it up into chunks, putting the number * of chunks and their info in *num_chunks and **chunks, * respectively. Returns a malloc'd block of memory containing the * contents of the file; various pointers in the output chunk array * will point into this block of memory. The caller should free the * return value when done with all the chunks. Returns NULL on * failure. */ unsigned char* ReadImage(const char* filename, int* num_chunks, ImageChunk** chunks) { struct stat st; if (stat(filename, &st) != 0) { fprintf(stderr, "failed to stat \"%s\": %s\n", filename, strerror(errno)); return NULL; } unsigned char* img = malloc(st.st_size + 4); FILE* f = fopen(filename, "rb"); if (fread(img, 1, st.st_size, f) != st.st_size) { fprintf(stderr, "failed to read \"%s\" %s\n", filename, strerror(errno)); fclose(f); return NULL; } fclose(f); // append 4 zero bytes to the data so we can always search for the // four-byte string 1f8b0800 starting at any point in the actual // file data, without special-casing the end of the data. memset(img+st.st_size, 0, 4); size_t pos = 0; *num_chunks = 0; *chunks = NULL; while (pos < st.st_size) { unsigned char* p = img+pos; if (st.st_size - pos >= 4 && p[0] == 0x1f && p[1] == 0x8b && p[2] == 0x08 && // deflate compression p[3] == 0x00) { // no header flags // 'pos' is the offset of the start of a gzip chunk. *num_chunks += 3; *chunks = realloc(*chunks, *num_chunks * sizeof(ImageChunk)); ImageChunk* curr = *chunks + (*num_chunks-3); // create a normal chunk for the header. curr->start = pos; curr->type = CHUNK_NORMAL; curr->len = GZIP_HEADER_LEN; curr->data = p; curr->I = NULL; pos += curr->len; p += curr->len; ++curr; curr->type = CHUNK_DEFLATE; curr->filename = NULL; curr->I = NULL; // We must decompress this chunk in order to discover where it // ends, and so we can put the uncompressed data and its length // into curr->data and curr->len. size_t allocated = 32768; curr->len = 0; curr->data = malloc(allocated); curr->start = pos; curr->deflate_data = p; z_stream strm; strm.zalloc = Z_NULL; strm.zfree = Z_NULL; strm.opaque = Z_NULL; strm.avail_in = st.st_size - pos; strm.next_in = p; // -15 means we are decoding a 'raw' deflate stream; zlib will // not expect zlib headers. int ret = inflateInit2(&strm, -15); do { strm.avail_out = allocated - curr->len; strm.next_out = curr->data + curr->len; ret = inflate(&strm, Z_NO_FLUSH); curr->len = allocated - strm.avail_out; if (strm.avail_out == 0) { allocated *= 2; curr->data = realloc(curr->data, allocated); } } while (ret != Z_STREAM_END); curr->deflate_len = st.st_size - strm.avail_in - pos; inflateEnd(&strm); pos += curr->deflate_len; p += curr->deflate_len; ++curr; // create a normal chunk for the footer curr->type = CHUNK_NORMAL; curr->start = pos; curr->len = GZIP_FOOTER_LEN; curr->data = img+pos; curr->I = NULL; pos += curr->len; p += curr->len; ++curr; // The footer (that we just skipped over) contains the size of // the uncompressed data. Double-check to make sure that it // matches the size of the data we got when we actually did // the decompression. size_t footer_size = Read4(p-4); if (footer_size != curr[-2].len) { fprintf(stderr, "Error: footer size %d != decompressed size %d\n", footer_size, curr[-2].len); free(img); return NULL; } } else { // Reallocate the list for every chunk; we expect the number of // chunks to be small (5 for typical boot and recovery images). ++*num_chunks; *chunks = realloc(*chunks, *num_chunks * sizeof(ImageChunk)); ImageChunk* curr = *chunks + (*num_chunks-1); curr->start = pos; curr->I = NULL; // 'pos' is not the offset of the start of a gzip chunk, so scan // forward until we find a gzip header. curr->type = CHUNK_NORMAL; curr->data = p; for (curr->len = 0; curr->len < (st.st_size - pos); ++curr->len) { if (p[curr->len] == 0x1f && p[curr->len+1] == 0x8b && p[curr->len+2] == 0x08 && p[curr->len+3] == 0x00) { break; } } pos += curr->len; } } return img; } #define BUFFER_SIZE 32768 /* * Takes the uncompressed data stored in the chunk, compresses it * using the zlib parameters stored in the chunk, and checks that it * matches exactly the compressed data we started with (also stored in * the chunk). Return 0 on success. */ int TryReconstruction(ImageChunk* chunk, unsigned char* out) { size_t p = 0; #if 0 fprintf(stderr, "trying %d %d %d %d %d\n", chunk->level, chunk->method, chunk->windowBits, chunk->memLevel, chunk->strategy); #endif z_stream strm; strm.zalloc = Z_NULL; strm.zfree = Z_NULL; strm.opaque = Z_NULL; strm.avail_in = chunk->len; strm.next_in = chunk->data; int ret; ret = deflateInit2(&strm, chunk->level, chunk->method, chunk->windowBits, chunk->memLevel, chunk->strategy); do { strm.avail_out = BUFFER_SIZE; strm.next_out = out; ret = deflate(&strm, Z_FINISH); size_t have = BUFFER_SIZE - strm.avail_out; if (memcmp(out, chunk->deflate_data+p, have) != 0) { // mismatch; data isn't the same. deflateEnd(&strm); return -1; } p += have; } while (ret != Z_STREAM_END); deflateEnd(&strm); if (p != chunk->deflate_len) { // mismatch; ran out of data before we should have. return -1; } return 0; } /* * Verify that we can reproduce exactly the same compressed data that * we started with. Sets the level, method, windowBits, memLevel, and * strategy fields in the chunk to the encoding parameters needed to * produce the right output. Returns 0 on success. */ int ReconstructDeflateChunk(ImageChunk* chunk) { if (chunk->type != CHUNK_DEFLATE) { fprintf(stderr, "attempt to reconstruct non-deflate chunk\n"); return -1; } size_t p = 0; unsigned char* out = malloc(BUFFER_SIZE); // We only check two combinations of encoder parameters: level 6 // (the default) and level 9 (the maximum). for (chunk->level = 6; chunk->level <= 9; chunk->level += 3) { chunk->windowBits = -15; // 32kb window; negative to indicate a raw stream. chunk->memLevel = 8; // the default value. chunk->method = Z_DEFLATED; chunk->strategy = Z_DEFAULT_STRATEGY; if (TryReconstruction(chunk, out) == 0) { free(out); return 0; } } free(out); return -1; } /* * Given source and target chunks, compute a bsdiff patch between them * by running bsdiff in a subprocess. Return the patch data, placing * its length in *size. Return NULL on failure. We expect the bsdiff * program to be in the path. */ unsigned char* MakePatch(ImageChunk* src, ImageChunk* tgt, size_t* size) { if (tgt->type == CHUNK_NORMAL) { if (tgt->len <= 160) { tgt->type = CHUNK_RAW; *size = tgt->len; return tgt->data; } } char ptemp[] = "/tmp/imgdiff-patch-XXXXXX"; mkstemp(ptemp); int r = bsdiff(src->data, src->len, &(src->I), tgt->data, tgt->len, ptemp); if (r != 0) { fprintf(stderr, "bsdiff() failed: %d\n", r); return NULL; } struct stat st; if (stat(ptemp, &st) != 0) { fprintf(stderr, "failed to stat patch file %s: %s\n", ptemp, strerror(errno)); return NULL; } unsigned char* data = malloc(st.st_size); if (tgt->type == CHUNK_NORMAL && tgt->len <= st.st_size) { unlink(ptemp); tgt->type = CHUNK_RAW; *size = tgt->len; return tgt->data; } *size = st.st_size; FILE* f = fopen(ptemp, "rb"); if (f == NULL) { fprintf(stderr, "failed to open patch %s: %s\n", ptemp, strerror(errno)); return NULL; } if (fread(data, 1, st.st_size, f) != st.st_size) { fprintf(stderr, "failed to read patch %s: %s\n", ptemp, strerror(errno)); return NULL; } fclose(f); unlink(ptemp); tgt->source_start = src->start; switch (tgt->type) { case CHUNK_NORMAL: tgt->source_len = src->len; break; case CHUNK_DEFLATE: tgt->source_len = src->deflate_len; tgt->source_uncompressed_len = src->len; break; } return data; } /* * Cause a gzip chunk to be treated as a normal chunk (ie, as a blob * of uninterpreted data). The resulting patch will likely be about * as big as the target file, but it lets us handle the case of images * where some gzip chunks are reconstructible but others aren't (by * treating the ones that aren't as normal chunks). */ void ChangeDeflateChunkToNormal(ImageChunk* ch) { if (ch->type != CHUNK_DEFLATE) return; ch->type = CHUNK_NORMAL; free(ch->data); ch->data = ch->deflate_data; ch->len = ch->deflate_len; } /* * Return true if the data in the chunk is identical (including the * compressed representation, for gzip chunks). */ int AreChunksEqual(ImageChunk* a, ImageChunk* b) { if (a->type != b->type) return 0; switch (a->type) { case CHUNK_NORMAL: return a->len == b->len && memcmp(a->data, b->data, a->len) == 0; case CHUNK_DEFLATE: return a->deflate_len == b->deflate_len && memcmp(a->deflate_data, b->deflate_data, a->deflate_len) == 0; default: fprintf(stderr, "unknown chunk type %d\n", a->type); return 0; } } /* * Look for runs of adjacent normal chunks and compress them down into * a single chunk. (Such runs can be produced when deflate chunks are * changed to normal chunks.) */ void MergeAdjacentNormalChunks(ImageChunk* chunks, int* num_chunks) { int out = 0; int in_start = 0, in_end; while (in_start < *num_chunks) { if (chunks[in_start].type != CHUNK_NORMAL) { in_end = in_start+1; } else { // in_start is a normal chunk. Look for a run of normal chunks // that constitute a solid block of data (ie, each chunk begins // where the previous one ended). for (in_end = in_start+1; in_end < *num_chunks && chunks[in_end].type == CHUNK_NORMAL && (chunks[in_end].start == chunks[in_end-1].start + chunks[in_end-1].len && chunks[in_end].data == chunks[in_end-1].data + chunks[in_end-1].len); ++in_end); } if (in_end == in_start+1) { #if 0 printf("chunk %d is now %d\n", in_start, out); #endif if (out != in_start) { memcpy(chunks+out, chunks+in_start, sizeof(ImageChunk)); } } else { #if 0 printf("collapse normal chunks %d-%d into %d\n", in_start, in_end-1, out); #endif // Merge chunks [in_start, in_end-1] into one chunk. Since the // data member of each chunk is just a pointer into an in-memory // copy of the file, this can be done without recopying (the // output chunk has the first chunk's start location and data // pointer, and length equal to the sum of the input chunk // lengths). chunks[out].type = CHUNK_NORMAL; chunks[out].start = chunks[in_start].start; chunks[out].data = chunks[in_start].data; chunks[out].len = chunks[in_end-1].len + (chunks[in_end-1].start - chunks[in_start].start); } ++out; in_start = in_end; } *num_chunks = out; } ImageChunk* FindChunkByName(const char* name, ImageChunk* chunks, int num_chunks) { int i; for (i = 0; i < num_chunks; ++i) { if (chunks[i].type == CHUNK_DEFLATE && chunks[i].filename && strcmp(name, chunks[i].filename) == 0) { return chunks+i; } } return NULL; } void DumpChunks(ImageChunk* chunks, int num_chunks) { int i; for (i = 0; i < num_chunks; ++i) { printf("chunk %d: type %d start %d len %d\n", i, chunks[i].type, chunks[i].start, chunks[i].len); } } int main(int argc, char** argv) { if (argc != 4 && argc != 5) { usage: fprintf(stderr, "usage: %s [-z] \n", argv[0]); return 2; } int zip_mode = 0; if (strcmp(argv[1], "-z") == 0) { zip_mode = 1; --argc; ++argv; } int num_src_chunks; ImageChunk* src_chunks; int num_tgt_chunks; ImageChunk* tgt_chunks; int i; if (zip_mode) { if (ReadZip(argv[1], &num_src_chunks, &src_chunks, 1) == NULL) { fprintf(stderr, "failed to break apart source zip file\n"); return 1; } if (ReadZip(argv[2], &num_tgt_chunks, &tgt_chunks, 0) == NULL) { fprintf(stderr, "failed to break apart target zip file\n"); return 1; } } else { if (ReadImage(argv[1], &num_src_chunks, &src_chunks) == NULL) { fprintf(stderr, "failed to break apart source image\n"); return 1; } if (ReadImage(argv[2], &num_tgt_chunks, &tgt_chunks) == NULL) { fprintf(stderr, "failed to break apart target image\n"); return 1; } // Verify that the source and target images have the same chunk // structure (ie, the same sequence of deflate and normal chunks). if (!zip_mode) { // Merge the gzip header and footer in with any adjacent // normal chunks. MergeAdjacentNormalChunks(tgt_chunks, &num_tgt_chunks); MergeAdjacentNormalChunks(src_chunks, &num_src_chunks); } if (num_src_chunks != num_tgt_chunks) { fprintf(stderr, "source and target don't have same number of chunks!\n"); printf("source chunks:\n"); DumpChunks(src_chunks, num_src_chunks); printf("target chunks:\n"); DumpChunks(tgt_chunks, num_tgt_chunks); return 1; } for (i = 0; i < num_src_chunks; ++i) { if (src_chunks[i].type != tgt_chunks[i].type) { fprintf(stderr, "source and target don't have same chunk " "structure! (chunk %d)\n", i); printf("source chunks:\n"); DumpChunks(src_chunks, num_src_chunks); printf("target chunks:\n"); DumpChunks(tgt_chunks, num_tgt_chunks); return 1; } } } for (i = 0; i < num_tgt_chunks; ++i) { if (tgt_chunks[i].type == CHUNK_DEFLATE) { // Confirm that given the uncompressed chunk data in the target, we // can recompress it and get exactly the same bits as are in the // input target image. If this fails, treat the chunk as a normal // non-deflated chunk. if (ReconstructDeflateChunk(tgt_chunks+i) < 0) { printf("failed to reconstruct target deflate chunk %d [%s]; " "treating as normal\n", i, tgt_chunks[i].filename); ChangeDeflateChunkToNormal(tgt_chunks+i); if (zip_mode) { ImageChunk* src = FindChunkByName(tgt_chunks[i].filename, src_chunks, num_src_chunks); if (src) { ChangeDeflateChunkToNormal(src); } } else { ChangeDeflateChunkToNormal(src_chunks+i); } continue; } // If two deflate chunks are identical (eg, the kernel has not // changed between two builds), treat them as normal chunks. // This makes applypatch much faster -- it can apply a trivial // patch to the compressed data, rather than uncompressing and // recompressing to apply the trivial patch to the uncompressed // data. ImageChunk* src; if (zip_mode) { src = FindChunkByName(tgt_chunks[i].filename, src_chunks, num_src_chunks); } else { src = src_chunks+i; } if (src == NULL || AreChunksEqual(tgt_chunks+i, src)) { ChangeDeflateChunkToNormal(tgt_chunks+i); if (src) { ChangeDeflateChunkToNormal(src); } } } } // Merging neighboring normal chunks. if (zip_mode) { // For zips, we only need to do this to the target: deflated // chunks are matched via filename, and normal chunks are patched // using the entire source file as the source. MergeAdjacentNormalChunks(tgt_chunks, &num_tgt_chunks); } else { // For images, we need to maintain the parallel structure of the // chunk lists, so do the merging in both the source and target // lists. MergeAdjacentNormalChunks(tgt_chunks, &num_tgt_chunks); MergeAdjacentNormalChunks(src_chunks, &num_src_chunks); if (num_src_chunks != num_tgt_chunks) { // This shouldn't happen. fprintf(stderr, "merging normal chunks went awry\n"); return 1; } } // Compute bsdiff patches for each chunk's data (the uncompressed // data, in the case of deflate chunks). printf("Construct patches for %d chunks...\n", num_tgt_chunks); unsigned char** patch_data = malloc(num_tgt_chunks * sizeof(unsigned char*)); size_t* patch_size = malloc(num_tgt_chunks * sizeof(size_t)); for (i = 0; i < num_tgt_chunks; ++i) { if (zip_mode) { ImageChunk* src; if (tgt_chunks[i].type == CHUNK_DEFLATE && (src = FindChunkByName(tgt_chunks[i].filename, src_chunks, num_src_chunks))) { patch_data[i] = MakePatch(src, tgt_chunks+i, patch_size+i); } else { patch_data[i] = MakePatch(src_chunks, tgt_chunks+i, patch_size+i); } } else { patch_data[i] = MakePatch(src_chunks+i, tgt_chunks+i, patch_size+i); } printf("patch %3d is %d bytes (of %d)\n", i, patch_size[i], tgt_chunks[i].source_len); } // Figure out how big the imgdiff file header is going to be, so // that we can correctly compute the offset of each bsdiff patch // within the file. size_t total_header_size = 12; for (i = 0; i < num_tgt_chunks; ++i) { total_header_size += 4; switch (tgt_chunks[i].type) { case CHUNK_NORMAL: total_header_size += 8*3; break; case CHUNK_DEFLATE: total_header_size += 8*5 + 4*5; break; case CHUNK_RAW: total_header_size += 4 + patch_size[i]; break; } } size_t offset = total_header_size; FILE* f = fopen(argv[3], "wb"); // Write out the headers. fwrite("IMGDIFF2", 1, 8, f); Write4(num_tgt_chunks, f); for (i = 0; i < num_tgt_chunks; ++i) { Write4(tgt_chunks[i].type, f); switch (tgt_chunks[i].type) { case CHUNK_NORMAL: printf("chunk %3d: normal (%10d, %10d) %10d\n", i, tgt_chunks[i].start, tgt_chunks[i].len, patch_size[i]); Write8(tgt_chunks[i].source_start, f); Write8(tgt_chunks[i].source_len, f); Write8(offset, f); offset += patch_size[i]; break; case CHUNK_DEFLATE: printf("chunk %3d: deflate (%10d, %10d) %10d %s\n", i, tgt_chunks[i].start, tgt_chunks[i].deflate_len, patch_size[i], tgt_chunks[i].filename); Write8(tgt_chunks[i].source_start, f); Write8(tgt_chunks[i].source_len, f); Write8(offset, f); Write8(tgt_chunks[i].source_uncompressed_len, f); Write8(tgt_chunks[i].len, f); Write4(tgt_chunks[i].level, f); Write4(tgt_chunks[i].method, f); Write4(tgt_chunks[i].windowBits, f); Write4(tgt_chunks[i].memLevel, f); Write4(tgt_chunks[i].strategy, f); offset += patch_size[i]; break; case CHUNK_RAW: printf("chunk %3d: raw (%10d, %10d)\n", i, tgt_chunks[i].start, tgt_chunks[i].len); Write4(patch_size[i], f); fwrite(patch_data[i], 1, patch_size[i], f); break; } } // Append each chunk's bsdiff patch, in order. for (i = 0; i < num_tgt_chunks; ++i) { if (tgt_chunks[i].type != CHUNK_RAW) { fwrite(patch_data[i], 1, patch_size[i], f); } } fclose(f); return 0; }