# Copyright (C) 2014 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function from collections import deque, OrderedDict from hashlib import sha1 import heapq import itertools import multiprocessing import os import re import subprocess import threading import tempfile from rangelib import RangeSet __all__ = ["EmptyImage", "DataImage", "BlockImageDiff"] def compute_patch(src, tgt, imgdiff=False): srcfd, srcfile = tempfile.mkstemp(prefix="src-") tgtfd, tgtfile = tempfile.mkstemp(prefix="tgt-") patchfd, patchfile = tempfile.mkstemp(prefix="patch-") os.close(patchfd) try: with os.fdopen(srcfd, "wb") as f_src: for p in src: f_src.write(p) with os.fdopen(tgtfd, "wb") as f_tgt: for p in tgt: f_tgt.write(p) try: os.unlink(patchfile) except OSError: pass if imgdiff: p = subprocess.call(["imgdiff", "-z", srcfile, tgtfile, patchfile], stdout=open("/dev/null", "a"), stderr=subprocess.STDOUT) else: p = subprocess.call(["bsdiff", srcfile, tgtfile, patchfile]) if p: raise ValueError("diff failed: " + str(p)) with open(patchfile, "rb") as f: return f.read() finally: try: os.unlink(srcfile) os.unlink(tgtfile) os.unlink(patchfile) except OSError: pass class Image(object): def ReadRangeSet(self, ranges): raise NotImplementedError def TotalSha1(self): raise NotImplementedError class EmptyImage(Image): """A zero-length image.""" blocksize = 4096 care_map = RangeSet() total_blocks = 0 file_map = {} def ReadRangeSet(self, ranges): return () def TotalSha1(self): return sha1().hexdigest() class DataImage(Image): """An image wrapped around a single string of data.""" def __init__(self, data, trim=False, pad=False): self.data = data self.blocksize = 4096 assert not (trim and pad) partial = len(self.data) % self.blocksize if partial > 0: if trim: self.data = self.data[:-partial] elif pad: self.data += '\0' * (self.blocksize - partial) else: raise ValueError(("data for DataImage must be multiple of %d bytes " "unless trim or pad is specified") % (self.blocksize,)) assert len(self.data) % self.blocksize == 0 self.total_blocks = len(self.data) / self.blocksize self.care_map = RangeSet(data=(0, self.total_blocks)) zero_blocks = [] nonzero_blocks = [] reference = '\0' * self.blocksize for i in range(self.total_blocks): d = self.data[i*self.blocksize : (i+1)*self.blocksize] if d == reference: zero_blocks.append(i) zero_blocks.append(i+1) else: nonzero_blocks.append(i) nonzero_blocks.append(i+1) self.file_map = {"__ZERO": RangeSet(zero_blocks), "__NONZERO": RangeSet(nonzero_blocks)} def ReadRangeSet(self, ranges): return [self.data[s*self.blocksize:e*self.blocksize] for (s, e) in ranges] def TotalSha1(self): return sha1(self.data).hexdigest() class Transfer(object): def __init__(self, tgt_name, src_name, tgt_ranges, src_ranges, style, by_id): self.tgt_name = tgt_name self.src_name = src_name self.tgt_ranges = tgt_ranges self.src_ranges = src_ranges self.style = style self.intact = (getattr(tgt_ranges, "monotonic", False) and getattr(src_ranges, "monotonic", False)) # We use OrderedDict rather than dict so that the output is repeatable; # otherwise it would depend on the hash values of the Transfer objects. self.goes_before = OrderedDict() self.goes_after = OrderedDict() self.stash_before = [] self.use_stash = [] self.id = len(by_id) by_id.append(self) def NetStashChange(self): return (sum(sr.size() for (_, sr) in self.stash_before) - sum(sr.size() for (_, sr) in self.use_stash)) def __str__(self): return (str(self.id) + ": <" + str(self.src_ranges) + " " + self.style + " to " + str(self.tgt_ranges) + ">") # BlockImageDiff works on two image objects. An image object is # anything that provides the following attributes: # # blocksize: the size in bytes of a block, currently must be 4096. # # total_blocks: the total size of the partition/image, in blocks. # # care_map: a RangeSet containing which blocks (in the range [0, # total_blocks) we actually care about; i.e. which blocks contain # data. # # file_map: a dict that partitions the blocks contained in care_map # into smaller domains that are useful for doing diffs on. # (Typically a domain is a file, and the key in file_map is the # pathname.) # # ReadRangeSet(): a function that takes a RangeSet and returns the # data contained in the image blocks of that RangeSet. The data # is returned as a list or tuple of strings; concatenating the # elements together should produce the requested data. # Implementations are free to break up the data into list/tuple # elements in any way that is convenient. # # TotalSha1(): a function that returns (as a hex string) the SHA-1 # hash of all the data in the image (ie, all the blocks in the # care_map) # # When creating a BlockImageDiff, the src image may be None, in which # case the list of transfers produced will never read from the # original image. class BlockImageDiff(object): def __init__(self, tgt, src=None, threads=None, version=2): if threads is None: threads = multiprocessing.cpu_count() // 2 if threads == 0: threads = 1 self.threads = threads self.version = version self.transfers = [] self.src_basenames = {} self.src_numpatterns = {} assert version in (1, 2) self.tgt = tgt if src is None: src = EmptyImage() self.src = src # The updater code that installs the patch always uses 4k blocks. assert tgt.blocksize == 4096 assert src.blocksize == 4096 # The range sets in each filemap should comprise a partition of # the care map. self.AssertPartition(src.care_map, src.file_map.values()) self.AssertPartition(tgt.care_map, tgt.file_map.values()) def Compute(self, prefix): # When looking for a source file to use as the diff input for a # target file, we try: # 1) an exact path match if available, otherwise # 2) a exact basename match if available, otherwise # 3) a basename match after all runs of digits are replaced by # "#" if available, otherwise # 4) we have no source for this target. self.AbbreviateSourceNames() self.FindTransfers() # Find the ordering dependencies among transfers (this is O(n^2) # in the number of transfers). self.GenerateDigraph() # Find a sequence of transfers that satisfies as many ordering # dependencies as possible (heuristically). self.FindVertexSequence() # Fix up the ordering dependencies that the sequence didn't # satisfy. if self.version == 1: self.RemoveBackwardEdges() else: self.ReverseBackwardEdges() self.ImproveVertexSequence() # Double-check our work. self.AssertSequenceGood() self.ComputePatches(prefix) self.WriteTransfers(prefix) def HashBlocks(self, source, ranges): # pylint: disable=no-self-use data = source.ReadRangeSet(ranges) ctx = sha1() for p in data: ctx.update(p) return ctx.hexdigest() def WriteTransfers(self, prefix): out = [] total = 0 performs_read = False stashes = {} stashed_blocks = 0 max_stashed_blocks = 0 free_stash_ids = [] next_stash_id = 0 for xf in self.transfers: if self.version < 2: assert not xf.stash_before assert not xf.use_stash for s, sr in xf.stash_before: assert s not in stashes if free_stash_ids: sid = heapq.heappop(free_stash_ids) else: sid = next_stash_id next_stash_id += 1 stashes[s] = sid stashed_blocks += sr.size() out.append("stash %d %s\n" % (sid, sr.to_string_raw())) if stashed_blocks > max_stashed_blocks: max_stashed_blocks = stashed_blocks free_string = [] if self.version == 1: src_str = xf.src_ranges.to_string_raw() elif self.version >= 2: # <# blocks> # OR # <# blocks> # OR # <# blocks> - size = xf.src_ranges.size() src_str = [str(size)] unstashed_src_ranges = xf.src_ranges mapped_stashes = [] for s, sr in xf.use_stash: sid = stashes.pop(s) stashed_blocks -= sr.size() unstashed_src_ranges = unstashed_src_ranges.subtract(sr) sr = xf.src_ranges.map_within(sr) mapped_stashes.append(sr) if self.version == 2: src_str.append("%d:%s" % (sid, sr.to_string_raw())) else: assert sh in stashes src_str.append("%s:%s" % (sh, sr.to_string_raw())) stashes[sh] -= 1 if stashes[sh] == 0: free_string.append("free %s\n" % (sh)) stashes.pop(sh) heapq.heappush(free_stash_ids, sid) if unstashed_src_ranges: src_str.insert(1, unstashed_src_ranges.to_string_raw()) if xf.use_stash: mapped_unstashed = xf.src_ranges.map_within(unstashed_src_ranges) src_str.insert(2, mapped_unstashed.to_string_raw()) mapped_stashes.append(mapped_unstashed) self.AssertPartition(RangeSet(data=(0, size)), mapped_stashes) else: src_str.insert(1, "-") self.AssertPartition(RangeSet(data=(0, size)), mapped_stashes) src_str = " ".join(src_str) # both versions: # zero # new # erase # # version 1: # bsdiff patchstart patchlen # imgdiff patchstart patchlen # move # # version 2: # bsdiff patchstart patchlen # imgdiff patchstart patchlen # move # # version 3: # bsdiff patchstart patchlen srchash tgthash # imgdiff patchstart patchlen srchash tgthash # move hash tgt_size = xf.tgt_ranges.size() if xf.style == "new": assert xf.tgt_ranges out.append("%s %s\n" % (xf.style, xf.tgt_ranges.to_string_raw())) total += tgt_size elif xf.style == "move": performs_read = True assert xf.tgt_ranges assert xf.src_ranges.size() == tgt_size if xf.src_ranges != xf.tgt_ranges: if self.version == 1: out.append("%s %s %s\n" % ( xf.style, xf.src_ranges.to_string_raw(), xf.tgt_ranges.to_string_raw())) elif self.version == 2: out.append("%s %s %s\n" % ( xf.style, xf.tgt_ranges.to_string_raw(), src_str)) elif self.version >= 3: out.append("%s %s %s %s\n" % ( xf.style, self.HashBlocks(self.tgt, xf.tgt_ranges), xf.tgt_ranges.to_string_raw(), src_str)) total += tgt_size elif xf.style in ("bsdiff", "imgdiff"): performs_read = True assert xf.tgt_ranges assert xf.src_ranges if self.version == 1: out.append("%s %d %d %s %s\n" % ( xf.style, xf.patch_start, xf.patch_len, xf.src_ranges.to_string_raw(), xf.tgt_ranges.to_string_raw())) elif self.version == 2: out.append("%s %d %d %s %s\n" % ( xf.style, xf.patch_start, xf.patch_len, xf.tgt_ranges.to_string_raw(), src_str)) elif self.version >= 3: out.append("%s %d %d %s %s %s %s\n" % ( xf.style, xf.patch_start, xf.patch_len, self.HashBlocks(self.src, xf.src_ranges), self.HashBlocks(self.tgt, xf.tgt_ranges), xf.tgt_ranges.to_string_raw(), src_str)) total += tgt_size elif xf.style == "zero": assert xf.tgt_ranges to_zero = xf.tgt_ranges.subtract(xf.src_ranges) if to_zero: out.append("%s %s\n" % (xf.style, to_zero.to_string_raw())) total += to_zero.size() else: raise ValueError("unknown transfer style '%s'\n" % xf.style) if free_string: out.append("".join(free_string)) # sanity check: abort if we're going to need more than 512 MB if # stash space assert max_stashed_blocks * self.tgt.blocksize < (512 << 20) all_tgt = RangeSet(data=(0, self.tgt.total_blocks)) if performs_read: # if some of the original data is used, then at the end we'll # erase all the blocks on the partition that don't contain data # in the new image. new_dontcare = all_tgt.subtract(self.tgt.care_map) if new_dontcare: out.append("erase %s\n" % (new_dontcare.to_string_raw(),)) else: # if nothing is read (ie, this is a full OTA), then we can start # by erasing the entire partition. out.insert(0, "erase %s\n" % (all_tgt.to_string_raw(),)) out.insert(0, "%d\n" % (self.version,)) # format version number out.insert(1, str(total) + "\n") if self.version >= 2: # version 2 only: after the total block count, we give the number # of stash slots needed, and the maximum size needed (in blocks) out.insert(2, str(next_stash_id) + "\n") out.insert(3, str(max_stashed_blocks) + "\n") with open(prefix + ".transfer.list", "wb") as f: for i in out: f.write(i) if self.version >= 2: print("max stashed blocks: %d (%d bytes)\n" % ( max_stashed_blocks, max_stashed_blocks * self.tgt.blocksize)) def ComputePatches(self, prefix): print("Reticulating splines...") diff_q = [] patch_num = 0 with open(prefix + ".new.dat", "wb") as new_f: for xf in self.transfers: if xf.style == "zero": pass elif xf.style == "new": for piece in self.tgt.ReadRangeSet(xf.tgt_ranges): new_f.write(piece) elif xf.style == "diff": src = self.src.ReadRangeSet(xf.src_ranges) tgt = self.tgt.ReadRangeSet(xf.tgt_ranges) # We can't compare src and tgt directly because they may have # the same content but be broken up into blocks differently, eg: # # ["he", "llo"] vs ["h", "ello"] # # We want those to compare equal, ideally without having to # actually concatenate the strings (these may be tens of # megabytes). src_sha1 = sha1() for p in src: src_sha1.update(p) tgt_sha1 = sha1() tgt_size = 0 for p in tgt: tgt_sha1.update(p) tgt_size += len(p) if src_sha1.digest() == tgt_sha1.digest(): # These are identical; we don't need to generate a patch, # just issue copy commands on the device. xf.style = "move" else: # For files in zip format (eg, APKs, JARs, etc.) we would # like to use imgdiff -z if possible (because it usually # produces significantly smaller patches than bsdiff). # This is permissible if: # # - the source and target files are monotonic (ie, the # data is stored with blocks in increasing order), and # - we haven't removed any blocks from the source set. # # If these conditions are satisfied then appending all the # blocks in the set together in order will produce a valid # zip file (plus possibly extra zeros in the last block), # which is what imgdiff needs to operate. (imgdiff is # fine with extra zeros at the end of the file.) imgdiff = (xf.intact and xf.tgt_name.split(".")[-1].lower() in ("apk", "jar", "zip")) xf.style = "imgdiff" if imgdiff else "bsdiff" diff_q.append((tgt_size, src, tgt, xf, patch_num)) patch_num += 1 else: assert False, "unknown style " + xf.style if diff_q: if self.threads > 1: print("Computing patches (using %d threads)..." % (self.threads,)) else: print("Computing patches...") diff_q.sort() patches = [None] * patch_num # TODO: Rewrite with multiprocessing.ThreadPool? lock = threading.Lock() def diff_worker(): while True: with lock: if not diff_q: return tgt_size, src, tgt, xf, patchnum = diff_q.pop() patch = compute_patch(src, tgt, imgdiff=(xf.style == "imgdiff")) size = len(patch) with lock: patches[patchnum] = (patch, xf) print("%10d %10d (%6.2f%%) %7s %s" % ( size, tgt_size, size * 100.0 / tgt_size, xf.style, xf.tgt_name if xf.tgt_name == xf.src_name else ( xf.tgt_name + " (from " + xf.src_name + ")"))) threads = [threading.Thread(target=diff_worker) for _ in range(self.threads)] for th in threads: th.start() while threads: threads.pop().join() else: patches = [] p = 0 with open(prefix + ".patch.dat", "wb") as patch_f: for patch, xf in patches: xf.patch_start = p xf.patch_len = len(patch) patch_f.write(patch) p += len(patch) def AssertSequenceGood(self): # Simulate the sequences of transfers we will output, and check that: # - we never read a block after writing it, and # - we write every block we care about exactly once. # Start with no blocks having been touched yet. touched = RangeSet() # Imagine processing the transfers in order. for xf in self.transfers: # Check that the input blocks for this transfer haven't yet been touched. x = xf.src_ranges if self.version >= 2: for _, sr in xf.use_stash: x = x.subtract(sr) assert not touched.overlaps(x) # Check that the output blocks for this transfer haven't yet been touched. assert not touched.overlaps(xf.tgt_ranges) # Touch all the blocks written by this transfer. touched = touched.union(xf.tgt_ranges) # Check that we've written every target block. assert touched == self.tgt.care_map def ImproveVertexSequence(self): print("Improving vertex order...") # At this point our digraph is acyclic; we reversed any edges that # were backwards in the heuristically-generated sequence. The # previously-generated order is still acceptable, but we hope to # find a better order that needs less memory for stashed data. # Now we do a topological sort to generate a new vertex order, # using a greedy algorithm to choose which vertex goes next # whenever we have a choice. # Make a copy of the edge set; this copy will get destroyed by the # algorithm. for xf in self.transfers: xf.incoming = xf.goes_after.copy() xf.outgoing = xf.goes_before.copy() L = [] # the new vertex order # S is the set of sources in the remaining graph; we always choose # the one that leaves the least amount of stashed data after it's # executed. S = [(u.NetStashChange(), u.order, u) for u in self.transfers if not u.incoming] heapq.heapify(S) while S: _, _, xf = heapq.heappop(S) L.append(xf) for u in xf.outgoing: del u.incoming[xf] if not u.incoming: heapq.heappush(S, (u.NetStashChange(), u.order, u)) # if this fails then our graph had a cycle. assert len(L) == len(self.transfers) self.transfers = L for i, xf in enumerate(L): xf.order = i def RemoveBackwardEdges(self): print("Removing backward edges...") in_order = 0 out_of_order = 0 lost_source = 0 for xf in self.transfers: lost = 0 size = xf.src_ranges.size() for u in xf.goes_before: # xf should go before u if xf.order < u.order: # it does, hurray! in_order += 1 else: # it doesn't, boo. trim the blocks that u writes from xf's # source, so that xf can go after u. out_of_order += 1 assert xf.src_ranges.overlaps(u.tgt_ranges) xf.src_ranges = xf.src_ranges.subtract(u.tgt_ranges) xf.intact = False if xf.style == "diff" and not xf.src_ranges: # nothing left to diff from; treat as new data xf.style = "new" lost = size - xf.src_ranges.size() lost_source += lost print((" %d/%d dependencies (%.2f%%) were violated; " "%d source blocks removed.") % (out_of_order, in_order + out_of_order, (out_of_order * 100.0 / (in_order + out_of_order)) if (in_order + out_of_order) else 0.0, lost_source)) def ReverseBackwardEdges(self): print("Reversing backward edges...") in_order = 0 out_of_order = 0 stashes = 0 stash_size = 0 for xf in self.transfers: for u in xf.goes_before.copy(): # xf should go before u if xf.order < u.order: # it does, hurray! in_order += 1 else: # it doesn't, boo. modify u to stash the blocks that it # writes that xf wants to read, and then require u to go # before xf. out_of_order += 1 overlap = xf.src_ranges.intersect(u.tgt_ranges) assert overlap u.stash_before.append((stashes, overlap)) xf.use_stash.append((stashes, overlap)) stashes += 1 stash_size += overlap.size() # reverse the edge direction; now xf must go after u del xf.goes_before[u] del u.goes_after[xf] xf.goes_after[u] = None # value doesn't matter u.goes_before[xf] = None print((" %d/%d dependencies (%.2f%%) were violated; " "%d source blocks stashed.") % (out_of_order, in_order + out_of_order, (out_of_order * 100.0 / (in_order + out_of_order)) if (in_order + out_of_order) else 0.0, stash_size)) def FindVertexSequence(self): print("Finding vertex sequence...") # This is based on "A Fast & Effective Heuristic for the Feedback # Arc Set Problem" by P. Eades, X. Lin, and W.F. Smyth. Think of # it as starting with the digraph G and moving all the vertices to # be on a horizontal line in some order, trying to minimize the # number of edges that end up pointing to the left. Left-pointing # edges will get removed to turn the digraph into a DAG. In this # case each edge has a weight which is the number of source blocks # we'll lose if that edge is removed; we try to minimize the total # weight rather than just the number of edges. # Make a copy of the edge set; this copy will get destroyed by the # algorithm. for xf in self.transfers: xf.incoming = xf.goes_after.copy() xf.outgoing = xf.goes_before.copy() # We use an OrderedDict instead of just a set so that the output # is repeatable; otherwise it would depend on the hash values of # the transfer objects. G = OrderedDict() for xf in self.transfers: G[xf] = None s1 = deque() # the left side of the sequence, built from left to right s2 = deque() # the right side of the sequence, built from right to left while G: # Put all sinks at the end of the sequence. while True: sinks = [u for u in G if not u.outgoing] if not sinks: break for u in sinks: s2.appendleft(u) del G[u] for iu in u.incoming: del iu.outgoing[u] # Put all the sources at the beginning of the sequence. while True: sources = [u for u in G if not u.incoming] if not sources: break for u in sources: s1.append(u) del G[u] for iu in u.outgoing: del iu.incoming[u] if not G: break # Find the "best" vertex to put next. "Best" is the one that # maximizes the net difference in source blocks saved we get by # pretending it's a source rather than a sink. max_d = None best_u = None for u in G: d = sum(u.outgoing.values()) - sum(u.incoming.values()) if best_u is None or d > max_d: max_d = d best_u = u u = best_u s1.append(u) del G[u] for iu in u.outgoing: del iu.incoming[u] for iu in u.incoming: del iu.outgoing[u] # Now record the sequence in the 'order' field of each transfer, # and by rearranging self.transfers to be in the chosen sequence. new_transfers = [] for x in itertools.chain(s1, s2): x.order = len(new_transfers) new_transfers.append(x) del x.incoming del x.outgoing self.transfers = new_transfers def GenerateDigraph(self): print("Generating digraph...") for a in self.transfers: for b in self.transfers: if a is b: continue # If the blocks written by A are read by B, then B needs to go before A. i = a.tgt_ranges.intersect(b.src_ranges) if i: if b.src_name == "__ZERO": # the cost of removing source blocks for the __ZERO domain # is (nearly) zero. size = 0 else: size = i.size() b.goes_before[a] = size a.goes_after[b] = size def FindTransfers(self): empty = RangeSet() for tgt_fn, tgt_ranges in self.tgt.file_map.items(): if tgt_fn == "__ZERO": # the special "__ZERO" domain is all the blocks not contained # in any file and that are filled with zeros. We have a # special transfer style for zero blocks. src_ranges = self.src.file_map.get("__ZERO", empty) Transfer(tgt_fn, "__ZERO", tgt_ranges, src_ranges, "zero", self.transfers) continue elif tgt_fn in self.src.file_map: # Look for an exact pathname match in the source. Transfer(tgt_fn, tgt_fn, tgt_ranges, self.src.file_map[tgt_fn], "diff", self.transfers) continue b = os.path.basename(tgt_fn) if b in self.src_basenames: # Look for an exact basename match in the source. src_fn = self.src_basenames[b] Transfer(tgt_fn, src_fn, tgt_ranges, self.src.file_map[src_fn], "diff", self.transfers) continue b = re.sub("[0-9]+", "#", b) if b in self.src_numpatterns: # Look for a 'number pattern' match (a basename match after # all runs of digits are replaced by "#"). (This is useful # for .so files that contain version numbers in the filename # that get bumped.) src_fn = self.src_numpatterns[b] Transfer(tgt_fn, src_fn, tgt_ranges, self.src.file_map[src_fn], "diff", self.transfers) continue Transfer(tgt_fn, None, tgt_ranges, empty, "new", self.transfers) def AbbreviateSourceNames(self): for k in self.src.file_map.keys(): b = os.path.basename(k) self.src_basenames[b] = k b = re.sub("[0-9]+", "#", b) self.src_numpatterns[b] = k @staticmethod def AssertPartition(total, seq): """Assert that all the RangeSets in 'seq' form a partition of the 'total' RangeSet (ie, they are nonintersecting and their union equals 'total').""" so_far = RangeSet() for i in seq: assert not so_far.overlaps(i) so_far = so_far.union(i) assert so_far == total