/****************************************************************************** * * Copyright (C) 2009-2012 Broadcom Corporation * * This program is the proprietary software of Broadcom Corporation and/or its * licensors, and may only be used, duplicated, modified or distributed * pursuant to the terms and conditions of a separate, written license * agreement executed between you and Broadcom (an "Authorized License"). * Except as set forth in an Authorized License, Broadcom grants no license * (express or implied), right to use, or waiver of any kind with respect to * the Software, and Broadcom expressly reserves all rights in and to the * Software and all intellectual property rights therein. * IF YOU HAVE NO AUTHORIZED LICENSE, THEN YOU HAVE NO RIGHT TO USE THIS * SOFTWARE IN ANY WAY, AND SHOULD IMMEDIATELY NOTIFY BROADCOM AND DISCONTINUE * ALL USE OF THE SOFTWARE. * * Except as expressly set forth in the Authorized License, * * 1. This program, including its structure, sequence and organization, * constitutes the valuable trade secrets of Broadcom, and you shall * use all reasonable efforts to protect the confidentiality thereof, * and to use this information only in connection with your use of * Broadcom integrated circuit products. * * 2. TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED * "AS IS" AND WITH ALL FAULTS AND BROADCOM MAKES NO PROMISES, * REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, * OR OTHERWISE, WITH RESPECT TO THE SOFTWARE. BROADCOM SPECIFICALLY * DISCLAIMS ANY AND ALL IMPLIED WARRANTIES OF TITLE, MERCHANTABILITY, * NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF VIRUSES, * ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR * CORRESPONDENCE TO DESCRIPTION. YOU ASSUME THE ENTIRE RISK ARISING * OUT OF USE OR PERFORMANCE OF THE SOFTWARE. * * 3. TO THE MAXIMUM EXTENT PERMITTED BY LAW, IN NO EVENT SHALL BROADCOM * OR ITS LICENSORS BE LIABLE FOR * (i) CONSEQUENTIAL, INCIDENTAL, SPECIAL, INDIRECT, OR EXEMPLARY * DAMAGES WHATSOEVER ARISING OUT OF OR IN ANY WAY RELATING TO * YOUR USE OF OR INABILITY TO USE THE SOFTWARE EVEN IF BROADCOM * HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES; OR * (ii) ANY AMOUNT IN EXCESS OF THE AMOUNT ACTUALLY PAID FOR THE * SOFTWARE ITSELF OR U.S. $1, WHICHEVER IS GREATER. THESE * LIMITATIONS SHALL APPLY NOTWITHSTANDING ANY FAILURE OF * ESSENTIAL PURPOSE OF ANY LIMITED REMEDY. * *****************************************************************************/ /**************************************************************************** ** ** Name gki_linux_pthreads.c ** ** Function pthreads version of Linux GKI. This version is used for ** settop projects that already use pthreads and not pth. ** *****************************************************************************/ #include #include #include #include #include /* must be 1st header defined */ #include #include "gki_int.h" #define LOG_TAG "GKI_LINUX" #include /***************************************************************************** ** Constants & Macros ******************************************************************************/ #ifndef GKI_TICK_TIMER_DEBUG #define GKI_TICK_TIMER_DEBUG FALSE #endif #define GKI_INFO(fmt, ...) ALOGI ("%s: " fmt, __FUNCTION__, ## __VA_ARGS__) /* always log errors */ #define GKI_ERROR_LOG(fmt, ...) ALOGE ("##### ERROR : %s: " fmt "#####", __FUNCTION__, ## __VA_ARGS__) #if defined (GKI_TICK_TIMER_DEBUG) && (GKI_TICK_TIMER_DEBUG == TRUE) #define GKI_TIMER_TRACE(fmt, ...) ALOGI ("%s: " fmt, __FUNCTION__, ## __VA_ARGS__) #else #define GKI_TIMER_TRACE(fmt, ...) #endif #define SCHED_NORMAL 0 #define SCHED_FIFO 1 #define SCHED_RR 2 #define SCHED_BATCH 3 #define NANOSEC_PER_MILLISEC (1000000) #define NSEC_PER_SEC (1000*NANOSEC_PER_MILLISEC) /* works only for 1ms to 1000ms heart beat ranges */ #define LINUX_SEC (1000/TICKS_PER_SEC) #define LOCK(m) pthread_mutex_lock(&m) #define UNLOCK(m) pthread_mutex_unlock(&m) #define INIT(m) pthread_mutex_init(&m, NULL) #define WAKE_LOCK_ID "brcm_btld" #define PARTIAL_WAKE_LOCK 1 #if GKI_DYNAMIC_MEMORY == FALSE tGKI_CB gki_cb; #endif #ifdef NO_GKI_RUN_RETURN static pthread_t timer_thread_id = 0; static int shutdown_timer = 0; #endif #ifndef GKI_SHUTDOWN_EVT #define GKI_SHUTDOWN_EVT APPL_EVT_7 #endif /***************************************************************************** ** Local type definitions ******************************************************************************/ #define pthread_cond_timedwait_monotonic pthread_cond_timedwait typedef struct { UINT8 task_id; /* GKI task id */ TASKPTR task_entry; /* Task entry function*/ UINT32 params; /* Extra params to pass to task entry function */ } gki_pthread_info_t; /***************************************************************************** ** Static variables ******************************************************************************/ int g_GkiTimerWakeLockOn = 0; gki_pthread_info_t gki_pthread_info[GKI_MAX_TASKS]; /***************************************************************************** ** Static functions ******************************************************************************/ /***************************************************************************** ** Externs ******************************************************************************/ extern int acquire_wake_lock(int lock, const char* id); extern int release_wake_lock(const char* id); /***************************************************************************** ** Functions ******************************************************************************/ /***************************************************************************** ** ** Function gki_task_entry ** ** Description GKI pthread callback ** ** Returns void ** *******************************************************************************/ void gki_task_entry(UINT32 params) { gki_pthread_info_t *p_pthread_info = (gki_pthread_info_t *)params; gki_cb.os.thread_id[p_pthread_info->task_id] = pthread_self(); prctl(PR_SET_NAME, (unsigned long)gki_cb.com.OSTName[p_pthread_info->task_id], 0, 0, 0); GKI_INFO("gki_task_entry task_id=%i [%s] starting\n", p_pthread_info->task_id, gki_cb.com.OSTName[p_pthread_info->task_id]); /* Call the actual thread entry point */ (p_pthread_info->task_entry)(p_pthread_info->params); GKI_INFO("gki_task task_id=%i [%s] terminating\n", p_pthread_info->task_id, gki_cb.com.OSTName[p_pthread_info->task_id]); pthread_exit(0); /* GKI tasks have no return value */ } /* end android */ /******************************************************************************* ** ** Function GKI_init ** ** Description This function is called once at startup to initialize ** all the timer structures. ** ** Returns void ** *******************************************************************************/ void GKI_init(void) { pthread_mutexattr_t attr; tGKI_OS *p_os; memset (&gki_cb, 0, sizeof (gki_cb)); gki_buffer_init(); gki_timers_init(); gki_cb.com.OSTicks = (UINT32) times(0); pthread_mutexattr_init(&attr); #ifndef __CYGWIN__ pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE_NP); #endif p_os = &gki_cb.os; pthread_mutex_init(&p_os->GKI_mutex, &attr); /* pthread_mutex_init(&GKI_sched_mutex, NULL); */ #if (GKI_DEBUG == TRUE) pthread_mutex_init(&p_os->GKI_trace_mutex, NULL); #endif /* pthread_mutex_init(&thread_delay_mutex, NULL); */ /* used in GKI_delay */ /* pthread_cond_init (&thread_delay_cond, NULL); */ /* Initialiase GKI_timer_update suspend variables & mutexes to be in running state. * this works too even if GKI_NO_TICK_STOP is defined in btld.txt */ p_os->no_timer_suspend = GKI_TIMER_TICK_RUN_COND; pthread_mutex_init(&p_os->gki_timer_mutex, NULL); pthread_cond_init(&p_os->gki_timer_cond, NULL); } /******************************************************************************* ** ** Function GKI_get_os_tick_count ** ** Description This function is called to retrieve the native OS system tick. ** ** Returns Tick count of native OS. ** *******************************************************************************/ UINT32 GKI_get_os_tick_count(void) { /* TODO - add any OS specific code here */ return (gki_cb.com.OSTicks); } /******************************************************************************* ** ** Function GKI_create_task ** ** Description This function is called to create a new OSS task. ** ** Parameters: task_entry - (input) pointer to the entry function of the task ** task_id - (input) Task id is mapped to priority ** taskname - (input) name given to the task ** stack - (input) pointer to the top of the stack (highest memory location) ** stacksize - (input) size of the stack allocated for the task ** ** Returns GKI_SUCCESS if all OK, GKI_FAILURE if any problem ** ** NOTE This function take some parameters that may not be needed ** by your particular OS. They are here for compatability ** of the function prototype. ** *******************************************************************************/ UINT8 GKI_create_task (TASKPTR task_entry, UINT8 task_id, INT8 *taskname, UINT16 *stack, UINT16 stacksize) { UINT16 i; UINT8 *p; struct sched_param param; int policy, ret = 0; pthread_attr_t attr1; GKI_TRACE( "GKI_create_task %x %d %s %x %d", (int)task_entry, (int)task_id, (char*) taskname, (int) stack, (int)stacksize); if (task_id >= GKI_MAX_TASKS) { GKI_ERROR_LOG("Error! task ID > max task allowed"); return (GKI_FAILURE); } gki_cb.com.OSRdyTbl[task_id] = TASK_READY; gki_cb.com.OSTName[task_id] = taskname; gki_cb.com.OSWaitTmr[task_id] = 0; gki_cb.com.OSWaitEvt[task_id] = 0; /* Initialize mutex and condition variable objects for events and timeouts */ pthread_mutex_init(&gki_cb.os.thread_evt_mutex[task_id], NULL); pthread_cond_init (&gki_cb.os.thread_evt_cond[task_id], NULL); pthread_mutex_init(&gki_cb.os.thread_timeout_mutex[task_id], NULL); pthread_cond_init (&gki_cb.os.thread_timeout_cond[task_id], NULL); pthread_attr_init(&attr1); /* by default, pthread creates a joinable thread */ #if ( FALSE == GKI_PTHREAD_JOINABLE ) pthread_attr_setdetachstate(&attr1, PTHREAD_CREATE_DETACHED); GKI_TRACE("GKI creating task %i\n", task_id); #else GKI_TRACE("GKI creating JOINABLE task %i\n", task_id); #endif /* On Android, the new tasks starts running before 'gki_cb.os.thread_id[task_id]' is initialized */ /* Pass task_id to new task so it can initialize gki_cb.os.thread_id[task_id] for it calls GKI_wait */ gki_pthread_info[task_id].task_id = task_id; gki_pthread_info[task_id].task_entry = task_entry; gki_pthread_info[task_id].params = 0; ret = pthread_create( &gki_cb.os.thread_id[task_id], &attr1, (void *)gki_task_entry, &gki_pthread_info[task_id]); if (ret != 0) { GKI_ERROR_LOG("pthread_create failed(%d), %s!\n\r", ret, taskname); return GKI_FAILURE; } if(pthread_getschedparam(gki_cb.os.thread_id[task_id], &policy, ¶m)==0) { #if (GKI_LINUX_BASE_POLICY!=GKI_SCHED_NORMAL) #if defined(PBS_SQL_TASK) if (task_id == PBS_SQL_TASK) { GKI_TRACE("PBS SQL lowest priority task"); policy = SCHED_NORMAL; } else #endif #endif { /* check if define in gki_int.h is correct for this compile environment! */ policy = GKI_LINUX_BASE_POLICY; #if (GKI_LINUX_BASE_POLICY!=GKI_SCHED_NORMAL) param.sched_priority = GKI_LINUX_BASE_PRIORITY - task_id - 2; #endif } pthread_setschedparam(gki_cb.os.thread_id[task_id], policy, ¶m); } GKI_TRACE( "Leaving GKI_create_task %x %d %x %s %x %d\n", (int)task_entry, (int)task_id, (int)gki_cb.os.thread_id[task_id], (char*)taskname, (int)stack, (int)stacksize); return (GKI_SUCCESS); } void GKI_destroy_task(UINT8 task_id) { #if ( FALSE == GKI_PTHREAD_JOINABLE ) int i = 0; #else int result; #endif if (gki_cb.com.OSRdyTbl[task_id] != TASK_DEAD) { gki_cb.com.OSRdyTbl[task_id] = TASK_DEAD; /* paranoi settings, make sure that we do not execute any mailbox events */ gki_cb.com.OSWaitEvt[task_id] &= ~(TASK_MBOX_0_EVT_MASK|TASK_MBOX_1_EVT_MASK| TASK_MBOX_2_EVT_MASK|TASK_MBOX_3_EVT_MASK); #if (GKI_NUM_TIMERS > 0) gki_cb.com.OSTaskTmr0R[task_id] = 0; gki_cb.com.OSTaskTmr0 [task_id] = 0; #endif #if (GKI_NUM_TIMERS > 1) gki_cb.com.OSTaskTmr1R[task_id] = 0; gki_cb.com.OSTaskTmr1 [task_id] = 0; #endif #if (GKI_NUM_TIMERS > 2) gki_cb.com.OSTaskTmr2R[task_id] = 0; gki_cb.com.OSTaskTmr2 [task_id] = 0; #endif #if (GKI_NUM_TIMERS > 3) gki_cb.com.OSTaskTmr3R[task_id] = 0; gki_cb.com.OSTaskTmr3 [task_id] = 0; #endif GKI_send_event(task_id, EVENT_MASK(GKI_SHUTDOWN_EVT)); #if ( FALSE == GKI_PTHREAD_JOINABLE ) i = 0; while ((gki_cb.com.OSWaitEvt[task_id] != 0) && (++i < 10)) usleep(100 * 1000); #else result = pthread_join( gki_cb.os.thread_id[task_id], NULL ); if ( result < 0 ) { GKI_ERROR_LOG( "pthread_join() FAILED: result: %d", result ); } #endif GKI_exit_task(task_id); GKI_INFO( "GKI_shutdown(): task [%s] terminated\n", gki_cb.com.OSTName[task_id]); } } /******************************************************************************* ** ** Function GKI_task_self_cleanup ** ** Description This function is used in the case when the calling thread ** is exiting itself. The GKI_destroy_task function can not be ** used in this case due to the pthread_join call. The function ** cleans up GKI control block associated to the terminating ** thread. ** ** Parameters: task_id - (input) Task id is used for sanity check to ** make sure the calling thread is in the right ** context. ** ** Returns None ** *******************************************************************************/ void GKI_task_self_cleanup(UINT8 task_id) { UINT8 my_task_id = GKI_get_taskid(); if (task_id != my_task_id) { GKI_ERROR_LOG("%s: Wrong context - current task %d is not the given task id %d",\ __FUNCTION__, my_task_id, task_id); return; } if (gki_cb.com.OSRdyTbl[task_id] != TASK_DEAD) { /* paranoi settings, make sure that we do not execute any mailbox events */ gki_cb.com.OSWaitEvt[task_id] &= ~(TASK_MBOX_0_EVT_MASK|TASK_MBOX_1_EVT_MASK| TASK_MBOX_2_EVT_MASK|TASK_MBOX_3_EVT_MASK); #if (GKI_NUM_TIMERS > 0) gki_cb.com.OSTaskTmr0R[task_id] = 0; gki_cb.com.OSTaskTmr0 [task_id] = 0; #endif #if (GKI_NUM_TIMERS > 1) gki_cb.com.OSTaskTmr1R[task_id] = 0; gki_cb.com.OSTaskTmr1 [task_id] = 0; #endif #if (GKI_NUM_TIMERS > 2) gki_cb.com.OSTaskTmr2R[task_id] = 0; gki_cb.com.OSTaskTmr2 [task_id] = 0; #endif #if (GKI_NUM_TIMERS > 3) gki_cb.com.OSTaskTmr3R[task_id] = 0; gki_cb.com.OSTaskTmr3 [task_id] = 0; #endif GKI_exit_task(task_id); /* Calling pthread_detach here to mark the thread as detached. Once the thread terminates, the system can reclaim its resources without waiting for another thread to join with. */ pthread_detach(gki_cb.os.thread_id[task_id]); } } /******************************************************************************* ** ** Function GKI_shutdown ** ** Description shutdowns the GKI tasks/threads in from max task id to 0 and frees ** pthread resources! ** IMPORTANT: in case of join method, GKI_shutdown must be called outside ** a GKI thread context! ** ** Returns void ** *******************************************************************************/ void GKI_shutdown(void) { UINT8 task_id; #if ( FALSE == GKI_PTHREAD_JOINABLE ) int i = 0; #else int result; #endif #ifdef GKI_USE_DEFERED_ALLOC_BUF_POOLS gki_dealloc_free_queue(); #endif /* release threads and set as TASK_DEAD. going from low to high priority fixes * GKI_exception problem due to btu->hci sleep request events */ for (task_id = GKI_MAX_TASKS; task_id > 0; task_id--) { if (gki_cb.com.OSRdyTbl[task_id - 1] != TASK_DEAD) { gki_cb.com.OSRdyTbl[task_id - 1] = TASK_DEAD; /* paranoi settings, make sure that we do not execute any mailbox events */ gki_cb.com.OSWaitEvt[task_id-1] &= ~(TASK_MBOX_0_EVT_MASK|TASK_MBOX_1_EVT_MASK| TASK_MBOX_2_EVT_MASK|TASK_MBOX_3_EVT_MASK); GKI_send_event(task_id - 1, EVENT_MASK(GKI_SHUTDOWN_EVT)); #if ( FALSE == GKI_PTHREAD_JOINABLE ) i = 0; while ((gki_cb.com.OSWaitEvt[task_id - 1] != 0) && (++i < 10)) usleep(100 * 1000); #else result = pthread_join( gki_cb.os.thread_id[task_id-1], NULL ); if ( result < 0 ) { ALOGE( "pthread_join() FAILED: result: %d", result ); } #endif // GKI_ERROR_LOG( "GKI_shutdown(): task %s dead\n", gki_cb.com.OSTName[task_id]); GKI_exit_task(task_id - 1); } } /* Destroy mutex and condition variable objects */ pthread_mutex_destroy(&gki_cb.os.GKI_mutex); /* pthread_mutex_destroy(&GKI_sched_mutex); */ #if (GKI_DEBUG == TRUE) pthread_mutex_destroy(&gki_cb.os.GKI_trace_mutex); #endif /* pthread_mutex_destroy(&thread_delay_mutex); pthread_cond_destroy (&thread_delay_cond); */ #if ( FALSE == GKI_PTHREAD_JOINABLE ) i = 0; #endif #ifdef NO_GKI_RUN_RETURN shutdown_timer = 1; #endif if (g_GkiTimerWakeLockOn) { GKI_TRACE("GKI_shutdown : release_wake_lock(brcm_btld)"); release_wake_lock(WAKE_LOCK_ID); g_GkiTimerWakeLockOn = 0; } } /******************************************************************************* ** ** Function gki_system_tick_start_stop_cback ** ** Description This function runs a task ** ** Parameters: start: TRUE start system tick (again), FALSE stop ** ** Returns void ** *********************************************************************************/ void gki_system_tick_start_stop_cback(BOOLEAN start) { tGKI_OS *p_os = &gki_cb.os; volatile int *p_run_cond = &p_os->no_timer_suspend; static int wake_lock_count; if ( FALSE == start ) { /* this can lead to a race condition. however as we only read this variable in the timer loop * we should be fine with this approach. otherwise uncomment below mutexes. */ /* GKI_disable(); */ *p_run_cond = GKI_TIMER_TICK_STOP_COND; /* GKI_enable(); */ GKI_TIMER_TRACE(">>> STOP GKI_timer_update(), wake_lock_count:%d", --wake_lock_count); release_wake_lock(WAKE_LOCK_ID); g_GkiTimerWakeLockOn = 0; } else { /* restart GKI_timer_update() loop */ acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID); g_GkiTimerWakeLockOn = 1; *p_run_cond = GKI_TIMER_TICK_RUN_COND; pthread_mutex_lock( &p_os->gki_timer_mutex ); pthread_cond_signal( &p_os->gki_timer_cond ); pthread_mutex_unlock( &p_os->gki_timer_mutex ); GKI_TIMER_TRACE(">>> START GKI_timer_update(), wake_lock_count:%d", ++wake_lock_count ); } } /******************************************************************************* ** ** Function GKI_run ** ** Description This function runs a task **** ** Returns void ** ** NOTE This function is only needed for operating systems where ** starting a task is a 2-step process. Most OS's do it in ** one step, If your OS does it in one step, this function ** should be empty. *********************************************************************************/ #ifdef NO_GKI_RUN_RETURN void* timer_thread(void *arg) { struct timespec delay; int err; while(!shutdown_timer) { delay.tv_sec = LINUX_SEC / 1000; delay.tv_nsec = 1000 * 1000 * (LINUX_SEC%1000); /* [u]sleep can't be used because it uses SIGALRM */ do { err = nanosleep(&delay, &delay); } while (err < 0 && errno ==EINTR); GKI_timer_update(1); } GKI_TRACE("gki_ulinux: Exiting timer_thread"); pthread_exit(NULL); return NULL; } #endif /***************************************************************************** ** ** Function gki_set_timer_scheduling ** ** Description helper function to set scheduling policy and priority of btdl ** ** Returns void ** *******************************************************************************/ static void gki_set_timer_scheduling( void ) { pid_t main_pid = getpid(); struct sched_param param; int policy; policy = sched_getscheduler(main_pid); if ( policy != -1 ) { GKI_TRACE("gki_set_timer_scheduling(()::scheduler current policy: %d", policy); /* ensure highest priority in the system + 2 to allow space for read threads */ param.sched_priority = GKI_LINUX_TIMER_TICK_PRIORITY; if ( 0!=sched_setscheduler(main_pid, GKI_LINUX_TIMER_POLICY, ¶m ) ) { GKI_TRACE("sched_setscheduler() failed with error: %d", errno); } } else { GKI_TRACE( "getscheduler failed: %d", errno); } } /***************************************************************************** ** ** Function GKI_freeze ** ** Description Freeze GKI. Relevant only when NO_GKI_RUN_RETURN is defined ** ** Returns ** *******************************************************************************/ void GKI_freeze() { #ifdef NO_GKI_RUN_RETURN shutdown_timer = 1; /* Ensure that the timer thread exits */ pthread_join(timer_thread_id, NULL); #endif } /***************************************************************************** ** ** Function GKI_run ** ** Description Main GKI loop ** ** Returns ** *******************************************************************************/ void GKI_run (void *p_task_id) { struct timespec delay; int err; volatile int * p_run_cond = &gki_cb.os.no_timer_suspend; #ifndef GKI_NO_TICK_STOP /* adjust btld scheduling scheme now */ gki_set_timer_scheduling(); /* register start stop function which disable timer loop in GKI_run() when no timers are * in any GKI/BTA/BTU this should save power when BTLD is idle! */ GKI_timer_queue_register_callback( gki_system_tick_start_stop_cback ); GKI_TRACE( "GKI_run(): Start/Stop GKI_timer_update_registered!" ); #endif #ifdef NO_GKI_RUN_RETURN pthread_attr_t timer_attr; shutdown_timer = 0; pthread_attr_init(&timer_attr); if (pthread_create( &timer_thread_id, &timer_attr, timer_thread, NULL) != 0 ) { GKI_ERROR_LOG("pthread_create failed to create timer_thread!\n\r"); return; } prctl(PR_SET_NAME, (unsigned long)"gki timer", 0, 0, 0); #else GKI_TRACE("GKI_run "); for (;;) { do { /* adjust hear bit tick in btld by changning TICKS_PER_SEC!!!!! this formula works only for * 1-1000ms heart beat units! */ delay.tv_sec = LINUX_SEC / 1000; delay.tv_nsec = 1000 * 1000 * (LINUX_SEC % 1000); /* [u]sleep can't be used because it uses SIGALRM */ do { err = nanosleep(&delay, &delay); } while (err < 0 && errno == EINTR); /* the unit should be alsways 1 (1 tick). only if you vary for some reason heart beat tick * e.g. power saving you may want to provide more ticks */ GKI_timer_update( 1 ); /* BT_TRACE_2( TRACE_LAYER_HCI, TRACE_TYPE_DEBUG, "update: tv_sec: %d, tv_nsec: %d", delay.tv_sec, delay.tv_nsec ); */ } while ( GKI_TIMER_TICK_RUN_COND == *p_run_cond ); /* currently on reason to exit above loop is no_timer_suspend == GKI_TIMER_TICK_STOP_COND * block timer main thread till re-armed by */ GKI_TIMER_TRACE(">>> SUSPENDED GKI_timer_update()" ); pthread_mutex_lock( &gki_cb.os.gki_timer_mutex ); pthread_cond_wait( &gki_cb.os.gki_timer_cond, &gki_cb.os.gki_timer_mutex ); pthread_mutex_unlock( &gki_cb.os.gki_timer_mutex ); /* potentially we need to adjust os gki_cb.com.OSTicks */ GKI_TIMER_TRACE(">>> RESTARTED GKI_timer_update(): run_cond: %d", *p_run_cond ); } #endif return; } /******************************************************************************* ** ** Function GKI_stop ** ** Description This function is called to stop ** the tasks and timers when the system is being stopped ** ** Returns void ** ** NOTE This function is NOT called by the Widcomm stack and ** profiles. If you want to use it in your own implementation, ** put specific code here. ** *******************************************************************************/ void GKI_stop (void) { UINT8 task_id; /* gki_queue_timer_cback(FALSE); */ /* TODO - add code here if needed*/ for(task_id = 0; task_id NSEC_PER_SEC) { abstime.tv_sec += (abstime.tv_nsec / NSEC_PER_SEC); abstime.tv_nsec = abstime.tv_nsec % NSEC_PER_SEC; } abstime.tv_sec += sec; pthread_cond_timedwait_monotonic(&gki_cb.os.thread_evt_cond[rtask], &gki_cb.os.thread_evt_mutex[rtask], &abstime); } else { pthread_cond_wait(&gki_cb.os.thread_evt_cond[rtask], &gki_cb.os.thread_evt_mutex[rtask]); } /* TODO: check, this is probably neither not needed depending on phtread_cond_wait() implmentation, e.g. it looks like it is implemented as a counter in which case multiple cond_signal should NOT be lost! */ /* we are waking up after waiting for some events, so refresh variables no need to call GKI_disable() here as we know that we will have some events as we've been waking up after condition pending or timeout */ if (gki_cb.com.OSTaskQFirst[rtask][0]) gki_cb.com.OSWaitEvt[rtask] |= TASK_MBOX_0_EVT_MASK; if (gki_cb.com.OSTaskQFirst[rtask][1]) gki_cb.com.OSWaitEvt[rtask] |= TASK_MBOX_1_EVT_MASK; if (gki_cb.com.OSTaskQFirst[rtask][2]) gki_cb.com.OSWaitEvt[rtask] |= TASK_MBOX_2_EVT_MASK; if (gki_cb.com.OSTaskQFirst[rtask][3]) gki_cb.com.OSWaitEvt[rtask] |= TASK_MBOX_3_EVT_MASK; if (gki_cb.com.OSRdyTbl[rtask] == TASK_DEAD) { gki_cb.com.OSWaitEvt[rtask] = 0; /* unlock thread_evt_mutex as pthread_cond_wait() does auto lock when cond is met */ pthread_mutex_unlock(&gki_cb.os.thread_evt_mutex[rtask]); return (EVENT_MASK(GKI_SHUTDOWN_EVT)); } } /* Clear the wait for event mask */ gki_cb.com.OSWaitForEvt[rtask] = 0; /* Return only those bits which user wants... */ evt = gki_cb.com.OSWaitEvt[rtask] & flag; /* Clear only those bits which user wants... */ gki_cb.com.OSWaitEvt[rtask] &= ~flag; /* unlock thread_evt_mutex as pthread_cond_wait() does auto lock mutex when cond is met */ pthread_mutex_unlock(&gki_cb.os.thread_evt_mutex[rtask]); GKI_TRACE("GKI_wait %d %x %d %x done", (int)rtask, (int)flag, (int)timeout, (int)evt); return (evt); } /******************************************************************************* ** ** Function GKI_delay ** ** Description This function is called by tasks to sleep unconditionally ** for a specified amount of time. The duration is in milliseconds ** ** Parameters: timeout - (input) the duration in milliseconds ** ** Returns void ** *******************************************************************************/ void GKI_delay (UINT32 timeout) { UINT8 rtask = GKI_get_taskid(); struct timespec delay; int err; GKI_TRACE("GKI_delay %d %d", (int)rtask, (int)timeout); delay.tv_sec = timeout / 1000; delay.tv_nsec = 1000 * 1000 * (timeout%1000); /* [u]sleep can't be used because it uses SIGALRM */ do { err = nanosleep(&delay, &delay); } while (err < 0 && errno ==EINTR); /* Check if task was killed while sleeping */ /* NOTE : if you do not implement task killing, you do not need this check */ if (rtask && gki_cb.com.OSRdyTbl[rtask] == TASK_DEAD) { } GKI_TRACE("GKI_delay %d %d done", (int)rtask, (int)timeout); return; } /******************************************************************************* ** ** Function GKI_send_event ** ** Description This function is called by tasks to send events to other ** tasks. Tasks can also send events to themselves. ** ** Parameters: task_id - (input) The id of the task to which the event has to ** be sent ** event - (input) The event that has to be sent ** ** ** Returns GKI_SUCCESS if all OK, else GKI_FAILURE ** *******************************************************************************/ UINT8 GKI_send_event (UINT8 task_id, UINT16 event) { GKI_TRACE("GKI_send_event %d %x", task_id, event); /* use efficient coding to avoid pipeline stalls */ if (task_id < GKI_MAX_TASKS) { /* protect OSWaitEvt[task_id] from manipulation in GKI_wait() */ pthread_mutex_lock(&gki_cb.os.thread_evt_mutex[task_id]); /* Set the event bit */ gki_cb.com.OSWaitEvt[task_id] |= event; pthread_cond_signal(&gki_cb.os.thread_evt_cond[task_id]); pthread_mutex_unlock(&gki_cb.os.thread_evt_mutex[task_id]); GKI_TRACE("GKI_send_event %d %x done", task_id, event); return ( GKI_SUCCESS ); } GKI_TRACE("############## GKI_send_event FAILED!! ##################"); return (GKI_FAILURE); } /******************************************************************************* ** ** Function GKI_isend_event ** ** Description This function is called from ISRs to send events to other ** tasks. The only difference between this function and GKI_send_event ** is that this function assumes interrupts are already disabled. ** ** Parameters: task_id - (input) The destination task Id for the event. ** event - (input) The event flag ** ** Returns GKI_SUCCESS if all OK, else GKI_FAILURE ** ** NOTE This function is NOT called by the Widcomm stack and ** profiles. If you want to use it in your own implementation, ** put your code here, otherwise you can delete the entire ** body of the function. ** *******************************************************************************/ UINT8 GKI_isend_event (UINT8 task_id, UINT16 event) { GKI_TRACE("GKI_isend_event %d %x", task_id, event); GKI_TRACE("GKI_isend_event %d %x done", task_id, event); return GKI_send_event(task_id, event); } /******************************************************************************* ** ** Function GKI_get_taskid ** ** Description This function gets the currently running task ID. ** ** Returns task ID ** ** NOTE The Widcomm upper stack and profiles may run as a single task. ** If you only have one GKI task, then you can hard-code this ** function to return a '1'. Otherwise, you should have some ** OS-specific method to determine the current task. ** *******************************************************************************/ UINT8 GKI_get_taskid (void) { int i; pthread_t thread_id = pthread_self( ); GKI_TRACE("GKI_get_taskid %x", (int)thread_id); for (i = 0; i < GKI_MAX_TASKS; i++) { if (gki_cb.os.thread_id[i] == thread_id) { //GKI_TRACE("GKI_get_taskid %x %d done", thread_id, i); return(i); } } GKI_TRACE("GKI_get_taskid: task id = -1"); return(-1); } /******************************************************************************* ** ** Function GKI_map_taskname ** ** Description This function gets the task name of the taskid passed as arg. ** If GKI_MAX_TASKS is passed as arg the currently running task ** name is returned ** ** Parameters: task_id - (input) The id of the task whose name is being ** sought. GKI_MAX_TASKS is passed to get the name of the ** currently running task. ** ** Returns pointer to task name ** ** NOTE this function needs no customization ** *******************************************************************************/ INT8 *GKI_map_taskname (UINT8 task_id) { GKI_TRACE("GKI_map_taskname %d", task_id); if (task_id < GKI_MAX_TASKS) { GKI_TRACE("GKI_map_taskname %d %s done", task_id, gki_cb.com.OSTName[task_id]); return (gki_cb.com.OSTName[task_id]); } else if (task_id == GKI_MAX_TASKS ) { return (gki_cb.com.OSTName[GKI_get_taskid()]); } else { return (INT8*)"BAD"; } } /******************************************************************************* ** ** Function GKI_enable ** ** Description This function enables interrupts. ** ** Returns void ** *******************************************************************************/ void GKI_enable (void) { //GKI_TRACE("GKI_enable"); pthread_mutex_unlock(&gki_cb.os.GKI_mutex); //GKI_TRACE("Leaving GKI_enable"); return; } /******************************************************************************* ** ** Function GKI_disable ** ** Description This function disables interrupts. ** ** Returns void ** *******************************************************************************/ void GKI_disable (void) { //GKI_TRACE("GKI_disable"); pthread_mutex_lock(&gki_cb.os.GKI_mutex); //GKI_TRACE("Leaving GKI_disable"); return; } /******************************************************************************* ** ** Function GKI_exception ** ** Description This function throws an exception. ** This is normally only called for a nonrecoverable error. ** ** Parameters: code - (input) The code for the error ** msg - (input) The message that has to be logged ** ** Returns void ** *******************************************************************************/ void GKI_exception (UINT16 code, char *msg) { UINT8 task_id; int i = 0; GKI_ERROR_LOG( "GKI_exception(): Task State Table\n"); for(task_id = 0; task_id < GKI_MAX_TASKS; task_id++) { GKI_ERROR_LOG( "TASK ID [%d] task name [%s] state [%d]\n", task_id, gki_cb.com.OSTName[task_id], gki_cb.com.OSRdyTbl[task_id]); } GKI_ERROR_LOG("GKI_exception %d %s", code, msg); GKI_ERROR_LOG( "\n********************************************************************\n"); GKI_ERROR_LOG( "* GKI_exception(): %d %s\n", code, msg); GKI_ERROR_LOG( "********************************************************************\n"); #if 0//(GKI_DEBUG == TRUE) GKI_disable(); if (gki_cb.com.ExceptionCnt < GKI_MAX_EXCEPTION) { EXCEPTION_T *pExp; pExp = &gki_cb.com.Exception[gki_cb.com.ExceptionCnt++]; pExp->type = code; pExp->taskid = GKI_get_taskid(); strncpy((char *)pExp->msg, msg, GKI_MAX_EXCEPTION_MSGLEN - 1); } GKI_enable(); #endif GKI_TRACE("GKI_exception %d %s done", code, msg); return; } /******************************************************************************* ** ** Function GKI_get_time_stamp ** ** Description This function formats the time into a user area ** ** Parameters: tbuf - (output) the address to the memory containing the ** formatted time ** ** Returns the address of the user area containing the formatted time ** The format of the time is ???? ** ** NOTE This function is only called by OBEX. ** *******************************************************************************/ INT8 *GKI_get_time_stamp (INT8 *tbuf) { UINT32 ms_time; UINT32 s_time; UINT32 m_time; UINT32 h_time; INT8 *p_out = tbuf; gki_cb.com.OSTicks = times(0); ms_time = GKI_TICKS_TO_MS(gki_cb.com.OSTicks); s_time = ms_time/100; /* 100 Ticks per second */ m_time = s_time/60; h_time = m_time/60; ms_time -= s_time*100; s_time -= m_time*60; m_time -= h_time*60; *p_out++ = (INT8)((h_time / 10) + '0'); *p_out++ = (INT8)((h_time % 10) + '0'); *p_out++ = ':'; *p_out++ = (INT8)((m_time / 10) + '0'); *p_out++ = (INT8)((m_time % 10) + '0'); *p_out++ = ':'; *p_out++ = (INT8)((s_time / 10) + '0'); *p_out++ = (INT8)((s_time % 10) + '0'); *p_out++ = ':'; *p_out++ = (INT8)((ms_time / 10) + '0'); *p_out++ = (INT8)((ms_time % 10) + '0'); *p_out++ = ':'; *p_out = 0; return (tbuf); } /******************************************************************************* ** ** Function GKI_register_mempool ** ** Description This function registers a specific memory pool. ** ** Parameters: p_mem - (input) pointer to the memory pool ** ** Returns void ** ** NOTE This function is NOT called by the Widcomm stack and ** profiles. If your OS has different memory pools, you ** can tell GKI the pool to use by calling this function. ** *******************************************************************************/ void GKI_register_mempool (void *p_mem) { gki_cb.com.p_user_mempool = p_mem; return; } /******************************************************************************* ** ** Function GKI_os_malloc ** ** Description This function allocates memory ** ** Parameters: size - (input) The size of the memory that has to be ** allocated ** ** Returns the address of the memory allocated, or NULL if failed ** ** NOTE This function is called by the Widcomm stack when ** dynamic memory allocation is used. (see dyn_mem.h) ** *******************************************************************************/ void *GKI_os_malloc (UINT32 size) { return (malloc(size)); } /******************************************************************************* ** ** Function GKI_os_free ** ** Description This function frees memory ** ** Parameters: size - (input) The address of the memory that has to be ** freed ** ** Returns void ** ** NOTE This function is NOT called by the Widcomm stack and ** profiles. It is only called from within GKI if dynamic ** *******************************************************************************/ void GKI_os_free (void *p_mem) { if(p_mem != NULL) free(p_mem); return; } /******************************************************************************* ** ** Function GKI_suspend_task() ** ** Description This function suspends the task specified in the argument. ** ** Parameters: task_id - (input) the id of the task that has to suspended ** ** Returns GKI_SUCCESS if all OK, else GKI_FAILURE ** ** NOTE This function is NOT called by the Widcomm stack and ** profiles. If you want to implement task suspension capability, ** put specific code here. ** *******************************************************************************/ UINT8 GKI_suspend_task (UINT8 task_id) { GKI_TRACE("GKI_suspend_task %d - NOT implemented", task_id); GKI_TRACE("GKI_suspend_task %d done", task_id); return (GKI_SUCCESS); } /******************************************************************************* ** ** Function GKI_resume_task() ** ** Description This function resumes the task specified in the argument. ** ** Parameters: task_id - (input) the id of the task that has to resumed ** ** Returns GKI_SUCCESS if all OK ** ** NOTE This function is NOT called by the Widcomm stack and ** profiles. If you want to implement task suspension capability, ** put specific code here. ** *******************************************************************************/ UINT8 GKI_resume_task (UINT8 task_id) { GKI_TRACE("GKI_resume_task %d - NOT implemented", task_id); GKI_TRACE("GKI_resume_task %d done", task_id); return (GKI_SUCCESS); } /******************************************************************************* ** ** Function GKI_exit_task ** ** Description This function is called to stop a GKI task. ** ** Parameters: task_id - (input) the id of the task that has to be stopped ** ** Returns void ** ** NOTE This function is NOT called by the Widcomm stack and ** profiles. If you want to use it in your own implementation, ** put specific code here to kill a task. ** *******************************************************************************/ void GKI_exit_task (UINT8 task_id) { GKI_disable(); gki_cb.com.OSRdyTbl[task_id] = TASK_DEAD; /* Destroy mutex and condition variable objects */ pthread_mutex_destroy(&gki_cb.os.thread_evt_mutex[task_id]); pthread_cond_destroy (&gki_cb.os.thread_evt_cond[task_id]); pthread_mutex_destroy(&gki_cb.os.thread_timeout_mutex[task_id]); pthread_cond_destroy (&gki_cb.os.thread_timeout_cond[task_id]); GKI_enable(); //GKI_send_event(task_id, EVENT_MASK(GKI_SHUTDOWN_EVT)); GKI_INFO("GKI_exit_task %d done", task_id); return; } /******************************************************************************* ** ** Function GKI_sched_lock ** ** Description This function is called by tasks to disable scheduler ** task context switching. ** ** Returns void ** ** NOTE This function is NOT called by the Widcomm stack and ** profiles. If you want to use it in your own implementation, ** put code here to tell the OS to disable context switching. ** *******************************************************************************/ void GKI_sched_lock(void) { GKI_TRACE("GKI_sched_lock"); return; } /******************************************************************************* ** ** Function GKI_sched_unlock ** ** Description This function is called by tasks to enable scheduler switching. ** ** Returns void ** ** NOTE This function is NOT called by the Widcomm stack and ** profiles. If you want to use it in your own implementation, ** put code here to tell the OS to re-enable context switching. ** *******************************************************************************/ void GKI_sched_unlock(void) { GKI_TRACE("GKI_sched_unlock"); }