/* ==================================================================== * Copyright (c) 1998-2003 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). */ #include #include #include #include #include #include struct bio_bio_st { BIO *peer; /* NULL if buf == NULL. * If peer != NULL, then peer->ptr is also a bio_bio_st, * and its "peer" member points back to us. * peer != NULL iff init != 0 in the BIO. */ /* This is for what we write (i.e. reading uses peer's struct): */ int closed; /* valid iff peer != NULL */ size_t len; /* valid iff buf != NULL; 0 if peer == NULL */ size_t offset; /* valid iff buf != NULL; 0 if len == 0 */ size_t size; uint8_t *buf; /* "size" elements (if != NULL) */ char buf_externally_allocated; /* true iff buf was externally allocated. */ char zero_copy_read_lock; /* true iff a zero copy read operation * is in progress. */ char zero_copy_write_lock; /* true iff a zero copy write operation * is in progress. */ size_t request; /* valid iff peer != NULL; 0 if len != 0, * otherwise set by peer to number of bytes * it (unsuccessfully) tried to read, * never more than buffer space (size-len) warrants. */ }; static int bio_new(BIO *bio) { struct bio_bio_st *b; b = OPENSSL_malloc(sizeof *b); if (b == NULL) { return 0; } memset(b, 0, sizeof(struct bio_bio_st)); b->size = 17 * 1024; /* enough for one TLS record (just a default) */ bio->ptr = b; return 1; } static void bio_destroy_pair(BIO *bio) { struct bio_bio_st *b = bio->ptr; BIO *peer_bio; struct bio_bio_st *peer_b; if (b == NULL) { return; } peer_bio = b->peer; if (peer_bio == NULL) { return; } peer_b = peer_bio->ptr; assert(peer_b != NULL); assert(peer_b->peer == bio); peer_b->peer = NULL; peer_bio->init = 0; assert(peer_b->buf != NULL); peer_b->len = 0; peer_b->offset = 0; b->peer = NULL; bio->init = 0; assert(b->buf != NULL); b->len = 0; b->offset = 0; } static int bio_free(BIO *bio) { struct bio_bio_st *b; if (bio == NULL) { return 0; } b = bio->ptr; assert(b != NULL); if (b->peer) { bio_destroy_pair(bio); } if (!b->buf_externally_allocated) { OPENSSL_free(b->buf); } OPENSSL_free(b); return 1; } static size_t bio_zero_copy_get_read_buf(struct bio_bio_st* peer_b, uint8_t** out_read_buf, size_t* out_buf_offset) { size_t max_available; if (peer_b->len > peer_b->size - peer_b->offset) { /* Only the first half of the ring buffer can be read. */ max_available = peer_b->size - peer_b->offset; } else { max_available = peer_b->len; } *out_read_buf = peer_b->buf; *out_buf_offset = peer_b->offset; return max_available; } int BIO_zero_copy_get_read_buf(BIO* bio, uint8_t** out_read_buf, size_t* out_buf_offset, size_t* out_available_bytes) { struct bio_bio_st* b; struct bio_bio_st* peer_b; size_t max_available; *out_available_bytes = 0; BIO_clear_retry_flags(bio); if (!bio->init) { OPENSSL_PUT_ERROR(BIO, BIO_zero_copy_get_read_buf, BIO_R_UNINITIALIZED); return 0; } b = bio->ptr; if (!b || !b->peer) { OPENSSL_PUT_ERROR(BIO, BIO_zero_copy_get_read_buf, BIO_R_UNSUPPORTED_METHOD); return 0; } peer_b = b->peer->ptr; if (!peer_b || !peer_b->peer || peer_b->peer->ptr != b) { OPENSSL_PUT_ERROR(BIO, BIO_zero_copy_get_read_buf, BIO_R_UNSUPPORTED_METHOD); return 0; } if (peer_b->zero_copy_read_lock) { OPENSSL_PUT_ERROR(BIO, BIO_zero_copy_get_read_buf, BIO_R_INVALID_ARGUMENT); return 0; } peer_b->request = 0; /* Is not used by zero-copy API. */ max_available = bio_zero_copy_get_read_buf(peer_b, out_read_buf, out_buf_offset); assert(peer_b->buf != NULL); if (max_available > 0) { peer_b->zero_copy_read_lock = 1; } *out_available_bytes = max_available; return 1; } int BIO_zero_copy_get_read_buf_done(BIO* bio, size_t bytes_read) { struct bio_bio_st* b; struct bio_bio_st* peer_b; size_t max_available; size_t dummy_read_offset; uint8_t* dummy_read_buf; assert(BIO_get_retry_flags(bio) == 0); if (!bio->init) { OPENSSL_PUT_ERROR(BIO, BIO_zero_copy_get_read_buf_done, BIO_R_UNINITIALIZED); return 0; } b = bio->ptr; if (!b || !b->peer) { OPENSSL_PUT_ERROR(BIO, BIO_zero_copy_get_read_buf_done, BIO_R_UNSUPPORTED_METHOD); return 0; } peer_b = b->peer->ptr; if (!peer_b || !peer_b->peer || peer_b->peer->ptr != b) { OPENSSL_PUT_ERROR(BIO, BIO_zero_copy_get_read_buf_done, BIO_R_UNSUPPORTED_METHOD); return 0; } if (!peer_b->zero_copy_read_lock) { OPENSSL_PUT_ERROR(BIO, BIO_zero_copy_get_read_buf_done, BIO_R_INVALID_ARGUMENT); return 0; } max_available = bio_zero_copy_get_read_buf(peer_b, &dummy_read_buf, &dummy_read_offset); if (bytes_read > max_available) { OPENSSL_PUT_ERROR(BIO, BIO_zero_copy_get_read_buf_done, BIO_R_INVALID_ARGUMENT); return 0; } peer_b->len -= bytes_read; assert(peer_b->len >= 0); assert(peer_b->offset + bytes_read <= peer_b->size); /* Move read offset. If zero_copy_write_lock == 1 we must advance the * offset even if buffer becomes empty, to make sure * write_offset = (offset + len) mod size does not change. */ if (peer_b->offset + bytes_read == peer_b->size || (!peer_b->zero_copy_write_lock && peer_b->len == 0)) { peer_b->offset = 0; } else { peer_b->offset += bytes_read; } bio->num_read += bytes_read; peer_b->zero_copy_read_lock = 0; return 1; } static size_t bio_zero_copy_get_write_buf(struct bio_bio_st* b, uint8_t** out_write_buf, size_t* out_buf_offset) { size_t write_offset; size_t max_available; assert(b->len <= b->size); write_offset = b->offset + b->len; if (write_offset >= b->size) { /* Only the first half of the ring buffer can be written to. */ write_offset -= b->size; /* write up to the start of the ring buffer. */ max_available = b->offset - write_offset; } else { /* write up to the end the buffer. */ max_available = b->size - write_offset; } *out_write_buf = b->buf; *out_buf_offset = write_offset; return max_available; } int BIO_zero_copy_get_write_buf(BIO* bio, uint8_t** out_write_buf, size_t* out_buf_offset, size_t* out_available_bytes) { struct bio_bio_st* b; struct bio_bio_st* peer_b; size_t max_available; *out_available_bytes = 0; BIO_clear_retry_flags(bio); if (!bio->init) { OPENSSL_PUT_ERROR(BIO, BIO_zero_copy_get_write_buf, BIO_R_UNINITIALIZED); return 0; } b = bio->ptr; if (!b || !b->buf || !b->peer) { OPENSSL_PUT_ERROR(BIO, BIO_zero_copy_get_write_buf, BIO_R_UNSUPPORTED_METHOD); return 0; } peer_b = b->peer->ptr; if (!peer_b || !peer_b->peer || peer_b->peer->ptr != b) { OPENSSL_PUT_ERROR(BIO, BIO_zero_copy_get_write_buf, BIO_R_UNSUPPORTED_METHOD); return 0; } assert(b->buf != NULL); if (b->zero_copy_write_lock) { OPENSSL_PUT_ERROR(BIO, BIO_zero_copy_get_write_buf, BIO_R_INVALID_ARGUMENT); return 0; } b->request = 0; if (b->closed) { /* Bio is already closed. */ OPENSSL_PUT_ERROR(BIO, BIO_zero_copy_get_write_buf, BIO_R_BROKEN_PIPE); return 0; } max_available = bio_zero_copy_get_write_buf(b, out_write_buf, out_buf_offset); if (max_available > 0) { b->zero_copy_write_lock = 1; } *out_available_bytes = max_available; return 1; } int BIO_zero_copy_get_write_buf_done(BIO* bio, size_t bytes_written) { struct bio_bio_st* b; struct bio_bio_st* peer_b; size_t rest; size_t dummy_write_offset; uint8_t* dummy_write_buf; if (!bio->init) { OPENSSL_PUT_ERROR(BIO, BIO_zero_copy_get_write_buf_done, BIO_R_UNINITIALIZED); return 0; } b = bio->ptr; if (!b || !b->buf || !b->peer) { OPENSSL_PUT_ERROR(BIO, BIO_zero_copy_get_write_buf_done, BIO_R_UNSUPPORTED_METHOD); return 0; } peer_b = b->peer->ptr; if (!peer_b || !peer_b->peer || peer_b->peer->ptr != b) { OPENSSL_PUT_ERROR(BIO, BIO_zero_copy_get_write_buf_done, BIO_R_UNSUPPORTED_METHOD); return 0; } b->request = 0; if (b->closed) { /* BIO is already closed. */ OPENSSL_PUT_ERROR(BIO, BIO_zero_copy_get_write_buf_done, BIO_R_BROKEN_PIPE); return 0; } if (!b->zero_copy_write_lock) { OPENSSL_PUT_ERROR(BIO, BIO_zero_copy_get_write_buf_done, BIO_R_INVALID_ARGUMENT); return 0; } rest = bio_zero_copy_get_write_buf(b, &dummy_write_buf, &dummy_write_offset); if (bytes_written > rest) { OPENSSL_PUT_ERROR(BIO, BIO_zero_copy_get_write_buf_done, BIO_R_INVALID_ARGUMENT); return 0; } bio->num_write += bytes_written; /* Move write offset. */ b->len += bytes_written; b->zero_copy_write_lock = 0; return 1; } static int bio_read(BIO *bio, char *buf, int size_) { size_t size = size_; size_t rest; struct bio_bio_st *b, *peer_b; BIO_clear_retry_flags(bio); if (!bio->init) { return 0; } b = bio->ptr; assert(b != NULL); assert(b->peer != NULL); peer_b = b->peer->ptr; assert(peer_b != NULL); assert(peer_b->buf != NULL); peer_b->request = 0; /* will be set in "retry_read" situation */ if (buf == NULL || size == 0 || peer_b->zero_copy_read_lock) { return 0; } if (peer_b->len == 0) { if (peer_b->closed) { return 0; /* writer has closed, and no data is left */ } else { BIO_set_retry_read(bio); /* buffer is empty */ if (size <= peer_b->size) { peer_b->request = size; } else { /* don't ask for more than the peer can * deliver in one write */ peer_b->request = peer_b->size; } return -1; } } /* we can read */ if (peer_b->len < size) { size = peer_b->len; } /* now read "size" bytes */ rest = size; assert(rest > 0); /* one or two iterations */ do { size_t chunk; assert(rest <= peer_b->len); if (peer_b->offset + rest <= peer_b->size) { chunk = rest; } else { /* wrap around ring buffer */ chunk = peer_b->size - peer_b->offset; } assert(peer_b->offset + chunk <= peer_b->size); memcpy(buf, peer_b->buf + peer_b->offset, chunk); peer_b->len -= chunk; /* If zero_copy_write_lock == 1 we must advance the offset even if buffer * becomes empty, to make sure write_offset = (offset + len) % size * does not change. */ if (peer_b->len || peer_b->zero_copy_write_lock) { peer_b->offset += chunk; assert(peer_b->offset <= peer_b->size); if (peer_b->offset == peer_b->size) { peer_b->offset = 0; } buf += chunk; } else { /* buffer now empty, no need to advance "buf" */ assert(chunk == rest); peer_b->offset = 0; } rest -= chunk; } while (rest); return size; } static int bio_write(BIO *bio, const char *buf, int num_) { size_t num = num_; size_t rest; struct bio_bio_st *b; BIO_clear_retry_flags(bio); if (!bio->init || buf == NULL || num == 0) { return 0; } b = bio->ptr; assert(b != NULL); assert(b->peer != NULL); assert(b->buf != NULL); if (b->zero_copy_write_lock) { return 0; } b->request = 0; if (b->closed) { /* we already closed */ OPENSSL_PUT_ERROR(BIO, bio_write, BIO_R_BROKEN_PIPE); return -1; } assert(b->len <= b->size); if (b->len == b->size) { BIO_set_retry_write(bio); /* buffer is full */ return -1; } /* we can write */ if (num > b->size - b->len) { num = b->size - b->len; } /* now write "num" bytes */ rest = num; assert(rest > 0); /* one or two iterations */ do { size_t write_offset; size_t chunk; assert(b->len + rest <= b->size); write_offset = b->offset + b->len; if (write_offset >= b->size) { write_offset -= b->size; } /* b->buf[write_offset] is the first byte we can write to. */ if (write_offset + rest <= b->size) { chunk = rest; } else { /* wrap around ring buffer */ chunk = b->size - write_offset; } memcpy(b->buf + write_offset, buf, chunk); b->len += chunk; assert(b->len <= b->size); rest -= chunk; buf += chunk; } while (rest); return num; } static int bio_make_pair(BIO* bio1, BIO* bio2, size_t writebuf1_len, uint8_t* ext_writebuf1, size_t writebuf2_len, uint8_t* ext_writebuf2) { struct bio_bio_st *b1, *b2; assert(bio1 != NULL); assert(bio2 != NULL); b1 = bio1->ptr; b2 = bio2->ptr; if (b1->peer != NULL || b2->peer != NULL) { OPENSSL_PUT_ERROR(BIO, bio_make_pair, BIO_R_IN_USE); return 0; } assert(b1->buf_externally_allocated == 0); assert(b2->buf_externally_allocated == 0); if (b1->buf == NULL) { if (writebuf1_len) { b1->size = writebuf1_len; } if (!ext_writebuf1) { b1->buf_externally_allocated = 0; b1->buf = OPENSSL_malloc(b1->size); if (b1->buf == NULL) { OPENSSL_PUT_ERROR(BIO, bio_make_pair, ERR_R_MALLOC_FAILURE); return 0; } } else { b1->buf = ext_writebuf1; b1->buf_externally_allocated = 1; } b1->len = 0; b1->offset = 0; } if (b2->buf == NULL) { if (writebuf2_len) { b2->size = writebuf2_len; } if (!ext_writebuf2) { b2->buf_externally_allocated = 0; b2->buf = OPENSSL_malloc(b2->size); if (b2->buf == NULL) { OPENSSL_PUT_ERROR(BIO, bio_make_pair, ERR_R_MALLOC_FAILURE); return 0; } } else { b2->buf = ext_writebuf2; b2->buf_externally_allocated = 1; } b2->len = 0; b2->offset = 0; } b1->peer = bio2; b1->closed = 0; b1->request = 0; b1->zero_copy_read_lock = 0; b1->zero_copy_write_lock = 0; b2->peer = bio1; b2->closed = 0; b2->request = 0; b2->zero_copy_read_lock = 0; b2->zero_copy_write_lock = 0; bio1->init = 1; bio2->init = 1; return 1; } static long bio_ctrl(BIO *bio, int cmd, long num, void *ptr) { long ret; struct bio_bio_st *b = bio->ptr; assert(b != NULL); switch (cmd) { /* specific CTRL codes */ case BIO_C_GET_WRITE_BUF_SIZE: ret = (long)b->size; break; case BIO_C_GET_WRITE_GUARANTEE: /* How many bytes can the caller feed to the next write * without having to keep any? */ if (b->peer == NULL || b->closed) { ret = 0; } else { ret = (long)b->size - b->len; } break; case BIO_C_GET_READ_REQUEST: /* If the peer unsuccessfully tried to read, how many bytes * were requested? (As with BIO_CTRL_PENDING, that number * can usually be treated as boolean.) */ ret = (long)b->request; break; case BIO_C_RESET_READ_REQUEST: /* Reset request. (Can be useful after read attempts * at the other side that are meant to be non-blocking, * e.g. when probing SSL_read to see if any data is * available.) */ b->request = 0; ret = 1; break; case BIO_C_SHUTDOWN_WR: /* similar to shutdown(..., SHUT_WR) */ b->closed = 1; ret = 1; break; /* standard CTRL codes follow */ case BIO_CTRL_GET_CLOSE: ret = bio->shutdown; break; case BIO_CTRL_SET_CLOSE: bio->shutdown = (int)num; ret = 1; break; case BIO_CTRL_PENDING: if (b->peer != NULL) { struct bio_bio_st *peer_b = b->peer->ptr; ret = (long)peer_b->len; } else { ret = 0; } break; case BIO_CTRL_WPENDING: ret = 0; if (b->buf != NULL) { ret = (long)b->len; } break; case BIO_CTRL_FLUSH: ret = 1; break; case BIO_CTRL_EOF: { BIO *other_bio = ptr; if (other_bio) { struct bio_bio_st *other_b = other_bio->ptr; assert(other_b != NULL); ret = other_b->len == 0 && other_b->closed; } else { ret = 1; } } break; default: ret = 0; } return ret; } static int bio_puts(BIO *bio, const char *str) { return bio_write(bio, str, strlen(str)); } static const BIO_METHOD methods_biop = { BIO_TYPE_BIO, "BIO pair", bio_write, bio_read, bio_puts, NULL /* no bio_gets */, bio_ctrl, bio_new, bio_free, NULL /* no bio_callback_ctrl */ }; const BIO_METHOD *bio_s_bio(void) { return &methods_biop; } int BIO_new_bio_pair(BIO** bio1_p, size_t writebuf1, BIO** bio2_p, size_t writebuf2) { return BIO_new_bio_pair_external_buf(bio1_p, writebuf1, NULL, bio2_p, writebuf2, NULL); } int BIO_new_bio_pair_external_buf(BIO** bio1_p, size_t writebuf1_len, uint8_t* ext_writebuf1, BIO** bio2_p, size_t writebuf2_len, uint8_t* ext_writebuf2) { BIO *bio1 = NULL, *bio2 = NULL; int ret = 0; /* External buffers must have sizes greater than 0. */ if ((ext_writebuf1 && !writebuf1_len) || (ext_writebuf2 && !writebuf2_len)) { goto err; } bio1 = BIO_new(bio_s_bio()); if (bio1 == NULL) { goto err; } bio2 = BIO_new(bio_s_bio()); if (bio2 == NULL) { goto err; } if (!bio_make_pair(bio1, bio2, writebuf1_len, ext_writebuf1, writebuf2_len, ext_writebuf2)) { goto err; } ret = 1; err: if (ret == 0) { BIO_free(bio1); bio1 = NULL; BIO_free(bio2); bio2 = NULL; } *bio1_p = bio1; *bio2_p = bio2; return ret; } size_t BIO_ctrl_get_read_request(BIO *bio) { return BIO_ctrl(bio, BIO_C_GET_READ_REQUEST, 0, NULL); } size_t BIO_ctrl_get_write_guarantee(BIO *bio) { return BIO_ctrl(bio, BIO_C_GET_WRITE_GUARANTEE, 0, NULL); } int BIO_shutdown_wr(BIO *bio) { return BIO_ctrl(bio, BIO_C_SHUTDOWN_WR, 0, NULL); }