/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #include #include #include #include #include #include #include #include "internal.h" BIGNUM *BN_bin2bn(const uint8_t *in, size_t len, BIGNUM *ret) { unsigned num_words, m; BN_ULONG word = 0; BIGNUM *bn = NULL; if (ret == NULL) { ret = bn = BN_new(); } if (ret == NULL) { return NULL; } if (len == 0) { ret->top = 0; return ret; } num_words = ((len - 1) / BN_BYTES) + 1; m = (len - 1) % BN_BYTES; if (bn_wexpand(ret, num_words) == NULL) { if (bn) { BN_free(bn); } return NULL; } ret->top = num_words; ret->neg = 0; while (len--) { word = (word << 8) | *(in++); if (m-- == 0) { ret->d[--num_words] = word; word = 0; m = BN_BYTES - 1; } } /* need to call this due to clear byte at top if avoiding having the top bit * set (-ve number) */ bn_correct_top(ret); return ret; } size_t BN_bn2bin(const BIGNUM *in, uint8_t *out) { size_t n, i; BN_ULONG l; n = i = BN_num_bytes(in); while (i--) { l = in->d[i / BN_BYTES]; *(out++) = (unsigned char)(l >> (8 * (i % BN_BYTES))) & 0xff; } return n; } /* constant_time_select_ulong returns |x| if |v| is 1 and |y| if |v| is 0. Its * behavior is undefined if |v| takes any other value. */ static BN_ULONG constant_time_select_ulong(int v, BN_ULONG x, BN_ULONG y) { BN_ULONG mask = v; mask--; return (~mask & x) | (mask & y); } /* constant_time_le_size_t returns 1 if |x| <= |y| and 0 otherwise. |x| and |y| * must not have their MSBs set. */ static int constant_time_le_size_t(size_t x, size_t y) { return ((x - y - 1) >> (sizeof(size_t) * 8 - 1)) & 1; } /* read_word_padded returns the |i|'th word of |in|, if it is not out of * bounds. Otherwise, it returns 0. It does so without branches on the size of * |in|, however it necessarily does not have the same memory access pattern. If * the access would be out of bounds, it reads the last word of |in|. |in| must * not be zero. */ static BN_ULONG read_word_padded(const BIGNUM *in, size_t i) { /* Read |in->d[i]| if valid. Otherwise, read the last word. */ BN_ULONG l = in->d[constant_time_select_ulong( constant_time_le_size_t(in->dmax, i), in->dmax - 1, i)]; /* Clamp to zero if above |d->top|. */ return constant_time_select_ulong(constant_time_le_size_t(in->top, i), 0, l); } int BN_bn2bin_padded(uint8_t *out, size_t len, const BIGNUM *in) { size_t i; BN_ULONG l; /* Special case for |in| = 0. Just branch as the probability is negligible. */ if (BN_is_zero(in)) { memset(out, 0, len); return 1; } /* Check if the integer is too big. This case can exit early in non-constant * time. */ if ((size_t)in->top > (len + (BN_BYTES - 1)) / BN_BYTES) { return 0; } if ((len % BN_BYTES) != 0) { l = read_word_padded(in, len / BN_BYTES); if (l >> (8 * (len % BN_BYTES)) != 0) { return 0; } } /* Write the bytes out one by one. Serialization is done without branching on * the bits of |in| or on |in->top|, but if the routine would otherwise read * out of bounds, the memory access pattern can't be fixed. However, for an * RSA key of size a multiple of the word size, the probability of BN_BYTES * leading zero octets is low. * * See Falko Stenzke, "Manger's Attack revisited", ICICS 2010. */ i = len; while (i--) { l = read_word_padded(in, i / BN_BYTES); *(out++) = (uint8_t)(l >> (8 * (i % BN_BYTES))) & 0xff; } return 1; } static const char hextable[] = "0123456789abcdef"; char *BN_bn2hex(const BIGNUM *bn) { int i, j, v, z = 0; char *buf; char *p; buf = (char *)OPENSSL_malloc(bn->top * BN_BYTES * 2 + 2); if (buf == NULL) { OPENSSL_PUT_ERROR(BN, BN_bn2hex, ERR_R_MALLOC_FAILURE); return NULL; } p = buf; if (bn->neg) { *(p++) = '-'; } if (BN_is_zero(bn)) { *(p++) = '0'; } for (i = bn->top - 1; i >= 0; i--) { for (j = BN_BITS2 - 8; j >= 0; j -= 8) { /* strip leading zeros */ v = ((int)(bn->d[i] >> (long)j)) & 0xff; if (z || v != 0) { *(p++) = hextable[v >> 4]; *(p++) = hextable[v & 0x0f]; z = 1; } } } *p = '\0'; return buf; } /* decode_hex decodes |i| bytes of hex data from |in| and updates |bn|. */ static void decode_hex(BIGNUM *bn, const char *in, int i) { int h, m, j, k, c; BN_ULONG l=0; j = i; /* least significant 'hex' */ h = 0; while (j > 0) { m = ((BN_BYTES * 2) <= j) ? (BN_BYTES * 2) : j; l = 0; for (;;) { c = in[j - m]; if ((c >= '0') && (c <= '9')) { k = c - '0'; } else if ((c >= 'a') && (c <= 'f')) { k = c - 'a' + 10; } else if ((c >= 'A') && (c <= 'F')) { k = c - 'A' + 10; } else { k = 0; /* paranoia */ } l = (l << 4) | k; if (--m <= 0) { bn->d[h++] = l; break; } } j -= (BN_BYTES * 2); } bn->top = h; } /* decode_dec decodes |in_len| bytes of decimal data from |in| and updates |bn|. */ static void decode_dec(BIGNUM *bn, const char *in, int in_len) { int i, j; BN_ULONG l = 0; j = BN_DEC_NUM - (in_len % BN_DEC_NUM); if (j == BN_DEC_NUM) { j = 0; } l = 0; for (i = 0; i < in_len; i++) { l *= 10; l += in[i] - '0'; if (++j == BN_DEC_NUM) { BN_mul_word(bn, BN_DEC_CONV); BN_add_word(bn, l); l = 0; j = 0; } } } typedef void (*decode_func) (BIGNUM *bn, const char *in, int i); typedef int (*char_test_func) (int c); static int bn_x2bn(BIGNUM **outp, const char *in, decode_func decode, char_test_func want_char) { BIGNUM *ret = NULL; int neg = 0, i; int num; if (in == NULL || *in == 0) { return 0; } if (*in == '-') { neg = 1; in++; } for (i = 0; want_char((unsigned char)in[i]); i++) {} num = i + neg; if (outp == NULL) { return num; } /* in is the start of the hex digits, and it is 'i' long */ if (*outp == NULL) { ret = BN_new(); if (ret == NULL) { return 0; } } else { ret = *outp; BN_zero(ret); } /* i is the number of hex digests; */ if (bn_expand(ret, i * 4) == NULL) { goto err; } decode(ret, in, i); bn_correct_top(ret); if (!BN_is_zero(ret)) { ret->neg = neg; } *outp = ret; return num; err: if (*outp == NULL) { BN_free(ret); } return 0; } int BN_hex2bn(BIGNUM **outp, const char *in) { return bn_x2bn(outp, in, decode_hex, isxdigit); } char *BN_bn2dec(const BIGNUM *a) { int i = 0, num, ok = 0; char *buf = NULL; char *p; BIGNUM *t = NULL; BN_ULONG *bn_data = NULL, *lp; /* get an upper bound for the length of the decimal integer * num <= (BN_num_bits(a) + 1) * log(2) * <= 3 * BN_num_bits(a) * 0.1001 + log(2) + 1 (rounding error) * <= BN_num_bits(a)/10 + BN_num_bits/1000 + 1 + 1 */ i = BN_num_bits(a) * 3; num = i / 10 + i / 1000 + 1 + 1; bn_data = (BN_ULONG *)OPENSSL_malloc((num / BN_DEC_NUM + 1) * sizeof(BN_ULONG)); buf = (char *)OPENSSL_malloc(num + 3); if ((buf == NULL) || (bn_data == NULL)) { OPENSSL_PUT_ERROR(BN, BN_bn2dec, ERR_R_MALLOC_FAILURE); goto err; } t = BN_dup(a); if (t == NULL) { goto err; } #define BUF_REMAIN (num + 3 - (size_t)(p - buf)) p = buf; lp = bn_data; if (BN_is_zero(t)) { *(p++) = '0'; *(p++) = '\0'; } else { if (BN_is_negative(t)) { *p++ = '-'; } while (!BN_is_zero(t)) { *lp = BN_div_word(t, BN_DEC_CONV); lp++; } lp--; /* We now have a series of blocks, BN_DEC_NUM chars * in length, where the last one needs truncation. * The blocks need to be reversed in order. */ BIO_snprintf(p, BUF_REMAIN, BN_DEC_FMT1, *lp); while (*p) { p++; } while (lp != bn_data) { lp--; BIO_snprintf(p, BUF_REMAIN, BN_DEC_FMT2, *lp); while (*p) { p++; } } } ok = 1; err: OPENSSL_free(bn_data); BN_free(t); if (!ok) { OPENSSL_free(buf); buf = NULL; } return buf; } int BN_dec2bn(BIGNUM **outp, const char *in) { return bn_x2bn(outp, in, decode_dec, isdigit); } int BN_asc2bn(BIGNUM **outp, const char *in) { const char *const orig_in = in; if (*in == '-') { in++; } if (in[0] == '0' && (in[1] == 'X' || in[1] == 'x')) { if (!BN_hex2bn(outp, in+2)) { return 0; } } else { if (!BN_dec2bn(outp, in)) { return 0; } } if (*orig_in == '-' && !BN_is_zero(*outp)) { (*outp)->neg = 1; } return 1; } int BN_print(BIO *bp, const BIGNUM *a) { int i, j, v, z = 0; int ret = 0; if (a->neg && BIO_write(bp, "-", 1) != 1) { goto end; } if (BN_is_zero(a) && BIO_write(bp, "0", 1) != 1) { goto end; } for (i = a->top - 1; i >= 0; i--) { for (j = BN_BITS2 - 4; j >= 0; j -= 4) { /* strip leading zeros */ v = ((int)(a->d[i] >> (long)j)) & 0x0f; if (z || v != 0) { if (BIO_write(bp, &hextable[v], 1) != 1) { goto end; } z = 1; } } } ret = 1; end: return ret; } int BN_print_fp(FILE *fp, const BIGNUM *a) { BIO *b; int ret; b = BIO_new(BIO_s_file()); if (b == NULL) { return 0; } BIO_set_fp(b, fp, BIO_NOCLOSE); ret = BN_print(b, a); BIO_free(b); return ret; } BN_ULONG BN_get_word(const BIGNUM *bn) { switch (bn->top) { case 0: return 0; case 1: return bn->d[0]; default: return BN_MASK2; } }