/* Copyright (c) 2014, Google Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include static int cbb_init(CBB *cbb, uint8_t *buf, size_t cap) { struct cbb_buffer_st *base; base = OPENSSL_malloc(sizeof(struct cbb_buffer_st)); if (base == NULL) { return 0; } base->buf = buf; base->len = 0; base->cap = cap; base->can_resize = 1; memset(cbb, 0, sizeof(CBB)); cbb->base = base; cbb->is_top_level = 1; return 1; } int CBB_init(CBB *cbb, size_t initial_capacity) { uint8_t *buf; buf = OPENSSL_malloc(initial_capacity); if (initial_capacity > 0 && buf == NULL) { return 0; } if (!cbb_init(cbb, buf, initial_capacity)) { OPENSSL_free(buf); return 0; } return 1; } int CBB_init_fixed(CBB *cbb, uint8_t *buf, size_t len) { if (!cbb_init(cbb, buf, len)) { return 0; } cbb->base->can_resize = 0; return 1; } void CBB_cleanup(CBB *cbb) { if (cbb->base) { if (cbb->base->can_resize) { OPENSSL_free(cbb->base->buf); } OPENSSL_free(cbb->base); } cbb->base = NULL; } static int cbb_buffer_add(struct cbb_buffer_st *base, uint8_t **out, size_t len) { size_t newlen; if (base == NULL) { return 0; } newlen = base->len + len; if (newlen < base->len) { /* Overflow */ return 0; } if (newlen > base->cap) { size_t newcap = base->cap * 2; uint8_t *newbuf; if (!base->can_resize) { return 0; } if (newcap < base->cap || newcap < newlen) { newcap = newlen; } newbuf = OPENSSL_realloc(base->buf, newcap); if (newbuf == NULL) { return 0; } base->buf = newbuf; base->cap = newcap; } if (out) { *out = base->buf + base->len; } base->len = newlen; return 1; } static int cbb_buffer_add_u(struct cbb_buffer_st *base, uint32_t v, size_t len_len) { uint8_t *buf; size_t i; if (len_len == 0) { return 1; } if (!cbb_buffer_add(base, &buf, len_len)) { return 0; } for (i = len_len - 1; i < len_len; i--) { buf[i] = v; v >>= 8; } return 1; } int CBB_finish(CBB *cbb, uint8_t **out_data, size_t *out_len) { if (!cbb->is_top_level) { return 0; } if (!CBB_flush(cbb)) { return 0; } if (cbb->base->can_resize && (out_data == NULL || out_len == NULL)) { /* |out_data| and |out_len| can only be NULL if the CBB is fixed. */ return 0; } if (out_data != NULL) { *out_data = cbb->base->buf; } if (out_len != NULL) { *out_len = cbb->base->len; } cbb->base->buf = NULL; CBB_cleanup(cbb); return 1; } /* CBB_flush recurses and then writes out any pending length prefix. The * current length of the underlying base is taken to be the length of the * length-prefixed data. */ int CBB_flush(CBB *cbb) { size_t child_start, i, len; if (cbb->base == NULL) { return 0; } if (cbb->child == NULL || cbb->pending_len_len == 0) { return 1; } child_start = cbb->offset + cbb->pending_len_len; if (!CBB_flush(cbb->child) || child_start < cbb->offset || cbb->base->len < child_start) { return 0; } len = cbb->base->len - child_start; if (cbb->pending_is_asn1) { /* For ASN.1 we assume that we'll only need a single byte for the length. * If that turned out to be incorrect, we have to move the contents along * in order to make space. */ size_t len_len; uint8_t initial_length_byte; assert (cbb->pending_len_len == 1); if (len > 0xfffffffe) { /* Too large. */ return 0; } else if (len > 0xffffff) { len_len = 5; initial_length_byte = 0x80 | 4; } else if (len > 0xffff) { len_len = 4; initial_length_byte = 0x80 | 3; } else if (len > 0xff) { len_len = 3; initial_length_byte = 0x80 | 2; } else if (len > 0x7f) { len_len = 2; initial_length_byte = 0x80 | 1; } else { len_len = 1; initial_length_byte = len; len = 0; } if (len_len != 1) { /* We need to move the contents along in order to make space. */ size_t extra_bytes = len_len - 1; if (!cbb_buffer_add(cbb->base, NULL, extra_bytes)) { return 0; } memmove(cbb->base->buf + child_start + extra_bytes, cbb->base->buf + child_start, len); } cbb->base->buf[cbb->offset++] = initial_length_byte; cbb->pending_len_len = len_len - 1; } for (i = cbb->pending_len_len - 1; i < cbb->pending_len_len; i--) { cbb->base->buf[cbb->offset + i] = len; len >>= 8; } if (len != 0) { return 0; } cbb->child->base = NULL; cbb->child = NULL; cbb->pending_len_len = 0; cbb->pending_is_asn1 = 0; cbb->offset = 0; return 1; } static int cbb_add_length_prefixed(CBB *cbb, CBB *out_contents, size_t len_len) { uint8_t *prefix_bytes; if (!CBB_flush(cbb)) { return 0; } cbb->offset = cbb->base->len; if (!cbb_buffer_add(cbb->base, &prefix_bytes, len_len)) { return 0; } memset(prefix_bytes, 0, len_len); memset(out_contents, 0, sizeof(CBB)); out_contents->base = cbb->base; cbb->child = out_contents; cbb->pending_len_len = len_len; cbb->pending_is_asn1 = 0; return 1; } int CBB_add_u8_length_prefixed(CBB *cbb, CBB *out_contents) { return cbb_add_length_prefixed(cbb, out_contents, 1); } int CBB_add_u16_length_prefixed(CBB *cbb, CBB *out_contents) { return cbb_add_length_prefixed(cbb, out_contents, 2); } int CBB_add_u24_length_prefixed(CBB *cbb, CBB *out_contents) { return cbb_add_length_prefixed(cbb, out_contents, 3); } int CBB_add_asn1(CBB *cbb, CBB *out_contents, uint8_t tag) { if ((tag & 0x1f) == 0x1f) { /* Long form identifier octets are not supported. */ return 0; } if (!CBB_flush(cbb) || !CBB_add_u8(cbb, tag)) { return 0; } cbb->offset = cbb->base->len; if (!CBB_add_u8(cbb, 0)) { return 0; } memset(out_contents, 0, sizeof(CBB)); out_contents->base = cbb->base; cbb->child = out_contents; cbb->pending_len_len = 1; cbb->pending_is_asn1 = 1; return 1; } int CBB_add_bytes(CBB *cbb, const uint8_t *data, size_t len) { uint8_t *dest; if (!CBB_flush(cbb) || !cbb_buffer_add(cbb->base, &dest, len)) { return 0; } memcpy(dest, data, len); return 1; } int CBB_add_space(CBB *cbb, uint8_t **out_data, size_t len) { if (!CBB_flush(cbb) || !cbb_buffer_add(cbb->base, out_data, len)) { return 0; } return 1; } int CBB_add_u8(CBB *cbb, uint8_t value) { if (!CBB_flush(cbb)) { return 0; } return cbb_buffer_add_u(cbb->base, value, 1); } int CBB_add_u16(CBB *cbb, uint16_t value) { if (!CBB_flush(cbb)) { return 0; } return cbb_buffer_add_u(cbb->base, value, 2); } int CBB_add_u24(CBB *cbb, uint32_t value) { if (!CBB_flush(cbb)) { return 0; } return cbb_buffer_add_u(cbb->base, value, 3); } int CBB_add_asn1_uint64(CBB *cbb, uint64_t value) { CBB child; size_t i; int started = 0; if (!CBB_add_asn1(cbb, &child, CBS_ASN1_INTEGER)) { return 0; } for (i = 0; i < 8; i++) { uint8_t byte = (value >> 8*(7-i)) & 0xff; if (!started) { if (byte == 0) { /* Don't encode leading zeros. */ continue; } /* If the high bit is set, add a padding byte to make it * unsigned. */ if ((byte & 0x80) && !CBB_add_u8(&child, 0)) { return 0; } started = 1; } if (!CBB_add_u8(&child, byte)) { return 0; } } /* 0 is encoded as a single 0, not the empty string. */ if (!started && !CBB_add_u8(&child, 0)) { return 0; } return CBB_flush(cbb); }