/* Originally written by Bodo Moeller for the OpenSSL project. * ==================================================================== * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ /* ==================================================================== * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. * * Portions of the attached software ("Contribution") are developed by * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. * * The Contribution is licensed pursuant to the OpenSSL open source * license provided above. * * The elliptic curve binary polynomial software is originally written by * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems * Laboratories. */ #include #include #include #include #include #include #include "internal.h" #include "../internal.h" /* This file implements the wNAF-based interleaving multi-exponentation method * (); * for multiplication with precomputation, we use wNAF splitting * (). * */ /* structure for precomputed multiples of the generator */ typedef struct ec_pre_comp_st { size_t blocksize; /* block size for wNAF splitting */ size_t numblocks; /* max. number of blocks for which we have precomputation */ size_t w; /* window size */ EC_POINT **points; /* array with pre-calculated multiples of generator: * 'num' pointers to EC_POINT objects followed by a NULL */ size_t num; /* numblocks * 2^(w-1) */ CRYPTO_refcount_t references; } EC_PRE_COMP; static EC_PRE_COMP *ec_pre_comp_new(void) { EC_PRE_COMP *ret = NULL; ret = (EC_PRE_COMP *)OPENSSL_malloc(sizeof(EC_PRE_COMP)); if (!ret) { OPENSSL_PUT_ERROR(EC, ec_pre_comp_new, ERR_R_MALLOC_FAILURE); return ret; } ret->blocksize = 8; /* default */ ret->numblocks = 0; ret->w = 4; /* default */ ret->points = NULL; ret->num = 0; ret->references = 1; return ret; } void *ec_pre_comp_dup(EC_PRE_COMP *pre_comp) { if (pre_comp == NULL) { return NULL; } CRYPTO_refcount_inc(&pre_comp->references); return pre_comp; } void ec_pre_comp_free(EC_PRE_COMP *pre_comp) { if (pre_comp == NULL || !CRYPTO_refcount_dec_and_test_zero(&pre_comp->references)) { return; } if (pre_comp->points) { EC_POINT **p; for (p = pre_comp->points; *p != NULL; p++) { EC_POINT_free(*p); } OPENSSL_free(pre_comp->points); } OPENSSL_free(pre_comp); } /* Determine the modified width-(w+1) Non-Adjacent Form (wNAF) of 'scalar'. * This is an array r[] of values that are either zero or odd with an * absolute value less than 2^w satisfying * scalar = \sum_j r[j]*2^j * where at most one of any w+1 consecutive digits is non-zero * with the exception that the most significant digit may be only * w-1 zeros away from that next non-zero digit. */ static signed char *compute_wNAF(const BIGNUM *scalar, int w, size_t *ret_len) { int window_val; int ok = 0; signed char *r = NULL; int sign = 1; int bit, next_bit, mask; size_t len = 0, j; if (BN_is_zero(scalar)) { r = OPENSSL_malloc(1); if (!r) { OPENSSL_PUT_ERROR(EC, compute_wNAF, ERR_R_MALLOC_FAILURE); goto err; } r[0] = 0; *ret_len = 1; return r; } if (w <= 0 || w > 7) /* 'signed char' can represent integers with absolute values less than 2^7 */ { OPENSSL_PUT_ERROR(EC, compute_wNAF, ERR_R_INTERNAL_ERROR); goto err; } bit = 1 << w; /* at most 128 */ next_bit = bit << 1; /* at most 256 */ mask = next_bit - 1; /* at most 255 */ if (BN_is_negative(scalar)) { sign = -1; } if (scalar->d == NULL || scalar->top == 0) { OPENSSL_PUT_ERROR(EC, compute_wNAF, ERR_R_INTERNAL_ERROR); goto err; } len = BN_num_bits(scalar); r = OPENSSL_malloc( len + 1); /* modified wNAF may be one digit longer than binary representation * (*ret_len will be set to the actual length, i.e. at most * BN_num_bits(scalar) + 1) */ if (r == NULL) { OPENSSL_PUT_ERROR(EC, compute_wNAF, ERR_R_MALLOC_FAILURE); goto err; } window_val = scalar->d[0] & mask; j = 0; while ((window_val != 0) || (j + w + 1 < len)) /* if j+w+1 >= len, window_val will not increase */ { int digit = 0; /* 0 <= window_val <= 2^(w+1) */ if (window_val & 1) { /* 0 < window_val < 2^(w+1) */ if (window_val & bit) { digit = window_val - next_bit; /* -2^w < digit < 0 */ #if 1 /* modified wNAF */ if (j + w + 1 >= len) { /* special case for generating modified wNAFs: * no new bits will be added into window_val, * so using a positive digit here will decrease * the total length of the representation */ digit = window_val & (mask >> 1); /* 0 < digit < 2^w */ } #endif } else { digit = window_val; /* 0 < digit < 2^w */ } if (digit <= -bit || digit >= bit || !(digit & 1)) { OPENSSL_PUT_ERROR(EC, compute_wNAF, ERR_R_INTERNAL_ERROR); goto err; } window_val -= digit; /* now window_val is 0 or 2^(w+1) in standard wNAF generation; * for modified window NAFs, it may also be 2^w */ if (window_val != 0 && window_val != next_bit && window_val != bit) { OPENSSL_PUT_ERROR(EC, compute_wNAF, ERR_R_INTERNAL_ERROR); goto err; } } r[j++] = sign * digit; window_val >>= 1; window_val += bit * BN_is_bit_set(scalar, j + w); if (window_val > next_bit) { OPENSSL_PUT_ERROR(EC, compute_wNAF, ERR_R_INTERNAL_ERROR); goto err; } } if (j > len + 1) { OPENSSL_PUT_ERROR(EC, compute_wNAF, ERR_R_INTERNAL_ERROR); goto err; } len = j; ok = 1; err: if (!ok) { OPENSSL_free(r); r = NULL; } if (ok) { *ret_len = len; } return r; } /* TODO: table should be optimised for the wNAF-based implementation, * sometimes smaller windows will give better performance * (thus the boundaries should be increased) */ #define EC_window_bits_for_scalar_size(b) \ ((size_t)((b) >= 2000 ? 6 : (b) >= 800 ? 5 : (b) >= 300 \ ? 4 \ : (b) >= 70 ? 3 : (b) >= 20 \ ? 2 \ : 1)) /* Compute * \sum scalars[i]*points[i], * also including * scalar*generator * in the addition if scalar != NULL */ int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx) { BN_CTX *new_ctx = NULL; const EC_POINT *generator = NULL; EC_POINT *tmp = NULL; size_t totalnum; size_t blocksize = 0, numblocks = 0; /* for wNAF splitting */ size_t pre_points_per_block = 0; size_t i, j; int k; int r_is_inverted = 0; int r_is_at_infinity = 1; size_t *wsize = NULL; /* individual window sizes */ signed char **wNAF = NULL; /* individual wNAFs */ size_t *wNAF_len = NULL; size_t max_len = 0; size_t num_val; EC_POINT **val = NULL; /* precomputation */ EC_POINT **v; EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' or 'pre_comp->points' */ const EC_PRE_COMP *pre_comp = NULL; int num_scalar = 0; /* flag: will be set to 1 if 'scalar' must be treated like * other scalars, * i.e. precomputation is not available */ int ret = 0; if (group->meth != r->meth) { OPENSSL_PUT_ERROR(EC, ec_wNAF_mul, EC_R_INCOMPATIBLE_OBJECTS); return 0; } if ((scalar == NULL) && (num == 0)) { return EC_POINT_set_to_infinity(group, r); } for (i = 0; i < num; i++) { if (group->meth != points[i]->meth) { OPENSSL_PUT_ERROR(EC, ec_wNAF_mul, EC_R_INCOMPATIBLE_OBJECTS); return 0; } } if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) { goto err; } } if (scalar != NULL) { generator = EC_GROUP_get0_generator(group); if (generator == NULL) { OPENSSL_PUT_ERROR(EC, ec_wNAF_mul, EC_R_UNDEFINED_GENERATOR); goto err; } /* look if we can use precomputed multiples of generator */ pre_comp = group->pre_comp; if (pre_comp && pre_comp->numblocks && (EC_POINT_cmp(group, generator, pre_comp->points[0], ctx) == 0)) { blocksize = pre_comp->blocksize; /* determine maximum number of blocks that wNAF splitting may yield * (NB: maximum wNAF length is bit length plus one) */ numblocks = (BN_num_bits(scalar) / blocksize) + 1; /* we cannot use more blocks than we have precomputation for */ if (numblocks > pre_comp->numblocks) { numblocks = pre_comp->numblocks; } pre_points_per_block = (size_t)1 << (pre_comp->w - 1); /* check that pre_comp looks sane */ if (pre_comp->num != (pre_comp->numblocks * pre_points_per_block)) { OPENSSL_PUT_ERROR(EC, ec_wNAF_mul, ERR_R_INTERNAL_ERROR); goto err; } } else { /* can't use precomputation */ pre_comp = NULL; numblocks = 1; num_scalar = 1; /* treat 'scalar' like 'num'-th element of 'scalars' */ } } totalnum = num + numblocks; wsize = OPENSSL_malloc(totalnum * sizeof wsize[0]); wNAF_len = OPENSSL_malloc(totalnum * sizeof wNAF_len[0]); wNAF = OPENSSL_malloc((totalnum + 1) * sizeof wNAF[0]); /* includes space for pivot */ val_sub = OPENSSL_malloc(totalnum * sizeof val_sub[0]); /* Ensure wNAF is initialised in case we end up going to err. */ if (wNAF) { wNAF[0] = NULL; /* preliminary pivot */ } if (!wsize || !wNAF_len || !wNAF || !val_sub) { OPENSSL_PUT_ERROR(EC, ec_wNAF_mul, ERR_R_MALLOC_FAILURE); goto err; } /* num_val will be the total number of temporarily precomputed points */ num_val = 0; for (i = 0; i < num + num_scalar; i++) { size_t bits; bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar); wsize[i] = EC_window_bits_for_scalar_size(bits); num_val += (size_t)1 << (wsize[i] - 1); wNAF[i + 1] = NULL; /* make sure we always have a pivot */ wNAF[i] = compute_wNAF((i < num ? scalars[i] : scalar), wsize[i], &wNAF_len[i]); if (wNAF[i] == NULL) { goto err; } if (wNAF_len[i] > max_len) { max_len = wNAF_len[i]; } } if (numblocks) { /* we go here iff scalar != NULL */ if (pre_comp == NULL) { if (num_scalar != 1) { OPENSSL_PUT_ERROR(EC, ec_wNAF_mul, ERR_R_INTERNAL_ERROR); goto err; } /* we have already generated a wNAF for 'scalar' */ } else { signed char *tmp_wNAF = NULL; size_t tmp_len = 0; if (num_scalar != 0) { OPENSSL_PUT_ERROR(EC, ec_wNAF_mul, ERR_R_INTERNAL_ERROR); goto err; } /* use the window size for which we have precomputation */ wsize[num] = pre_comp->w; tmp_wNAF = compute_wNAF(scalar, wsize[num], &tmp_len); if (!tmp_wNAF) { goto err; } if (tmp_len <= max_len) { /* One of the other wNAFs is at least as long * as the wNAF belonging to the generator, * so wNAF splitting will not buy us anything. */ numblocks = 1; /* don't use wNAF splitting */ totalnum = num + numblocks; wNAF[num] = tmp_wNAF; wNAF[num + 1] = NULL; wNAF_len[num] = tmp_len; /* pre_comp->points starts with the points that we need here: */ val_sub[num] = pre_comp->points; } else { /* don't include tmp_wNAF directly into wNAF array * - use wNAF splitting and include the blocks */ signed char *pp; EC_POINT **tmp_points; if (tmp_len < numblocks * blocksize) { /* possibly we can do with fewer blocks than estimated */ numblocks = (tmp_len + blocksize - 1) / blocksize; if (numblocks > pre_comp->numblocks) { OPENSSL_PUT_ERROR(EC, ec_wNAF_mul, ERR_R_INTERNAL_ERROR); goto err; } totalnum = num + numblocks; } /* split wNAF in 'numblocks' parts */ pp = tmp_wNAF; tmp_points = pre_comp->points; for (i = num; i < totalnum; i++) { if (i < totalnum - 1) { wNAF_len[i] = blocksize; if (tmp_len < blocksize) { OPENSSL_PUT_ERROR(EC, ec_wNAF_mul, ERR_R_INTERNAL_ERROR); goto err; } tmp_len -= blocksize; } else { /* last block gets whatever is left * (this could be more or less than 'blocksize'!) */ wNAF_len[i] = tmp_len; } wNAF[i + 1] = NULL; wNAF[i] = OPENSSL_malloc(wNAF_len[i]); if (wNAF[i] == NULL) { OPENSSL_PUT_ERROR(EC, ec_wNAF_mul, ERR_R_MALLOC_FAILURE); OPENSSL_free(tmp_wNAF); goto err; } memcpy(wNAF[i], pp, wNAF_len[i]); if (wNAF_len[i] > max_len) { max_len = wNAF_len[i]; } if (*tmp_points == NULL) { OPENSSL_PUT_ERROR(EC, ec_wNAF_mul, ERR_R_INTERNAL_ERROR); OPENSSL_free(tmp_wNAF); goto err; } val_sub[i] = tmp_points; tmp_points += pre_points_per_block; pp += blocksize; } OPENSSL_free(tmp_wNAF); } } } /* All points we precompute now go into a single array 'val'. * 'val_sub[i]' is a pointer to the subarray for the i-th point, * or to a subarray of 'pre_comp->points' if we already have precomputation. */ val = OPENSSL_malloc((num_val + 1) * sizeof val[0]); if (val == NULL) { OPENSSL_PUT_ERROR(EC, ec_wNAF_mul, ERR_R_MALLOC_FAILURE); goto err; } val[num_val] = NULL; /* pivot element */ /* allocate points for precomputation */ v = val; for (i = 0; i < num + num_scalar; i++) { val_sub[i] = v; for (j = 0; j < ((size_t)1 << (wsize[i] - 1)); j++) { *v = EC_POINT_new(group); if (*v == NULL) { goto err; } v++; } } if (!(v == val + num_val)) { OPENSSL_PUT_ERROR(EC, ec_wNAF_mul, ERR_R_INTERNAL_ERROR); goto err; } if (!(tmp = EC_POINT_new(group))) { goto err; } /* prepare precomputed values: * val_sub[i][0] := points[i] * val_sub[i][1] := 3 * points[i] * val_sub[i][2] := 5 * points[i] * ... */ for (i = 0; i < num + num_scalar; i++) { if (i < num) { if (!EC_POINT_copy(val_sub[i][0], points[i])) { goto err; } } else if (!EC_POINT_copy(val_sub[i][0], generator)) { goto err; } if (wsize[i] > 1) { if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx)) { goto err; } for (j = 1; j < ((size_t)1 << (wsize[i] - 1)); j++) { if (!EC_POINT_add(group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx)) { goto err; } } } } #if 1 /* optional; EC_window_bits_for_scalar_size assumes we do this step */ if (!EC_POINTs_make_affine(group, num_val, val, ctx)) { goto err; } #endif r_is_at_infinity = 1; for (k = max_len - 1; k >= 0; k--) { if (!r_is_at_infinity && !EC_POINT_dbl(group, r, r, ctx)) { goto err; } for (i = 0; i < totalnum; i++) { if (wNAF_len[i] > (size_t)k) { int digit = wNAF[i][k]; int is_neg; if (digit) { is_neg = digit < 0; if (is_neg) { digit = -digit; } if (is_neg != r_is_inverted) { if (!r_is_at_infinity && !EC_POINT_invert(group, r, ctx)) { goto err; } r_is_inverted = !r_is_inverted; } /* digit > 0 */ if (r_is_at_infinity) { if (!EC_POINT_copy(r, val_sub[i][digit >> 1])) { goto err; } r_is_at_infinity = 0; } else { if (!EC_POINT_add(group, r, r, val_sub[i][digit >> 1], ctx)) { goto err; } } } } } } if (r_is_at_infinity) { if (!EC_POINT_set_to_infinity(group, r)) { goto err; } } else if (r_is_inverted && !EC_POINT_invert(group, r, ctx)) { goto err; } ret = 1; err: BN_CTX_free(new_ctx); EC_POINT_free(tmp); OPENSSL_free(wsize); OPENSSL_free(wNAF_len); if (wNAF != NULL) { signed char **w; for (w = wNAF; *w != NULL; w++) { OPENSSL_free(*w); } OPENSSL_free(wNAF); } if (val != NULL) { for (v = val; *v != NULL; v++) { EC_POINT_clear_free(*v); } OPENSSL_free(val); } OPENSSL_free(val_sub); return ret; } /* ec_wNAF_precompute_mult() * creates an EC_PRE_COMP object with preprecomputed multiples of the generator * for use with wNAF splitting as implemented in ec_wNAF_mul(). * * 'pre_comp->points' is an array of multiples of the generator * of the following form: * points[0] = generator; * points[1] = 3 * generator; * ... * points[2^(w-1)-1] = (2^(w-1)-1) * generator; * points[2^(w-1)] = 2^blocksize * generator; * points[2^(w-1)+1] = 3 * 2^blocksize * generator; * ... * points[2^(w-1)*(numblocks-1)-1] = (2^(w-1)) * 2^(blocksize*(numblocks-2)) * *generator * points[2^(w-1)*(numblocks-1)] = 2^(blocksize*(numblocks-1)) * *generator * ... * points[2^(w-1)*numblocks-1] = (2^(w-1)) * 2^(blocksize*(numblocks-1)) * *generator * points[2^(w-1)*numblocks] = NULL */ int ec_wNAF_precompute_mult(EC_GROUP *group, BN_CTX *ctx) { const EC_POINT *generator; EC_POINT *tmp_point = NULL, *base = NULL, **var; BN_CTX *new_ctx = NULL; BIGNUM *order; size_t i, bits, w, pre_points_per_block, blocksize, numblocks, num; EC_POINT **points = NULL; EC_PRE_COMP *pre_comp; int ret = 0; /* if there is an old EC_PRE_COMP object, throw it away */ ec_pre_comp_free(group->pre_comp); group->pre_comp = NULL; generator = EC_GROUP_get0_generator(group); if (generator == NULL) { OPENSSL_PUT_ERROR(EC, ec_wNAF_precompute_mult, EC_R_UNDEFINED_GENERATOR); return 0; } pre_comp = ec_pre_comp_new(); if (pre_comp == NULL) { return 0; } if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) { goto err; } } BN_CTX_start(ctx); order = BN_CTX_get(ctx); if (order == NULL) { goto err; } if (!EC_GROUP_get_order(group, order, ctx)) { goto err; } if (BN_is_zero(order)) { OPENSSL_PUT_ERROR(EC, ec_wNAF_precompute_mult, EC_R_UNKNOWN_ORDER); goto err; } bits = BN_num_bits(order); /* The following parameters mean we precompute (approximately) * one point per bit. * * TBD: The combination 8, 4 is perfect for 160 bits; for other * bit lengths, other parameter combinations might provide better * efficiency. */ blocksize = 8; w = 4; if (EC_window_bits_for_scalar_size(bits) > w) { /* let's not make the window too small ... */ w = EC_window_bits_for_scalar_size(bits); } numblocks = (bits + blocksize - 1) / blocksize; /* max. number of blocks to use for wNAF splitting */ pre_points_per_block = (size_t)1 << (w - 1); num = pre_points_per_block * numblocks; /* number of points to compute and store */ points = OPENSSL_malloc(sizeof(EC_POINT *) * (num + 1)); if (!points) { OPENSSL_PUT_ERROR(EC, ec_wNAF_precompute_mult, ERR_R_MALLOC_FAILURE); goto err; } var = points; var[num] = NULL; /* pivot */ for (i = 0; i < num; i++) { if ((var[i] = EC_POINT_new(group)) == NULL) { OPENSSL_PUT_ERROR(EC, ec_wNAF_precompute_mult, ERR_R_MALLOC_FAILURE); goto err; } } if (!(tmp_point = EC_POINT_new(group)) || !(base = EC_POINT_new(group))) { OPENSSL_PUT_ERROR(EC, ec_wNAF_precompute_mult, ERR_R_MALLOC_FAILURE); goto err; } if (!EC_POINT_copy(base, generator)) { goto err; } /* do the precomputation */ for (i = 0; i < numblocks; i++) { size_t j; if (!EC_POINT_dbl(group, tmp_point, base, ctx)) { goto err; } if (!EC_POINT_copy(*var++, base)) { goto err; } for (j = 1; j < pre_points_per_block; j++, var++) { /* calculate odd multiples of the current base point */ if (!EC_POINT_add(group, *var, tmp_point, *(var - 1), ctx)) { goto err; } } if (i < numblocks - 1) { /* get the next base (multiply current one by 2^blocksize) */ size_t k; if (blocksize <= 2) { OPENSSL_PUT_ERROR(EC, ec_wNAF_precompute_mult, ERR_R_INTERNAL_ERROR); goto err; } if (!EC_POINT_dbl(group, base, tmp_point, ctx)) { goto err; } for (k = 2; k < blocksize; k++) { if (!EC_POINT_dbl(group, base, base, ctx)) { goto err; } } } } if (!EC_POINTs_make_affine(group, num, points, ctx)) { goto err; } pre_comp->blocksize = blocksize; pre_comp->numblocks = numblocks; pre_comp->w = w; pre_comp->points = points; points = NULL; pre_comp->num = num; group->pre_comp = pre_comp; pre_comp = NULL; ret = 1; err: if (ctx != NULL) { BN_CTX_end(ctx); } BN_CTX_free(new_ctx); ec_pre_comp_free(pre_comp); if (points) { EC_POINT **p; for (p = points; *p != NULL; p++) { EC_POINT_free(*p); } OPENSSL_free(points); } EC_POINT_free(tmp_point); EC_POINT_free(base); return ret; } int ec_wNAF_have_precompute_mult(const EC_GROUP *group) { return group->pre_comp != NULL; }