/* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL * project 2000. */ /* ==================================================================== * Copyright (c) 2000-2005 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * licensing@OpenSSL.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). */ #include #include #include #include #include #include #include #include #include #include #include "internal.h" static int parse_integer_buggy(CBS *cbs, BIGNUM **out, int buggy) { assert(*out == NULL); *out = BN_new(); if (*out == NULL) { return 0; } if (buggy) { return BN_cbs2unsigned_buggy(cbs, *out); } return BN_cbs2unsigned(cbs, *out); } static int parse_integer(CBS *cbs, BIGNUM **out) { return parse_integer_buggy(cbs, out, 0 /* not buggy */); } static int marshal_integer(CBB *cbb, BIGNUM *bn) { if (bn == NULL) { /* An RSA object may be missing some components. */ OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING); return 0; } return BN_bn2cbb(cbb, bn); } static RSA *parse_public_key(CBS *cbs, int buggy) { RSA *ret = RSA_new(); if (ret == NULL) { return NULL; } CBS child; if (!CBS_get_asn1(cbs, &child, CBS_ASN1_SEQUENCE) || !parse_integer_buggy(&child, &ret->n, buggy) || !parse_integer(&child, &ret->e) || CBS_len(&child) != 0) { OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_ENCODING); RSA_free(ret); return NULL; } return ret; } RSA *RSA_parse_public_key(CBS *cbs) { return parse_public_key(cbs, 0 /* not buggy */); } RSA *RSA_parse_public_key_buggy(CBS *cbs) { /* Estonian IDs issued between September 2014 to September 2015 are * broken. See https://crbug.com/532048 and https://crbug.com/534766. * * TODO(davidben): Remove this code and callers in March 2016. */ return parse_public_key(cbs, 1 /* buggy */); } RSA *RSA_public_key_from_bytes(const uint8_t *in, size_t in_len) { CBS cbs; CBS_init(&cbs, in, in_len); RSA *ret = RSA_parse_public_key(&cbs); if (ret == NULL || CBS_len(&cbs) != 0) { OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_ENCODING); RSA_free(ret); return NULL; } return ret; } int RSA_marshal_public_key(CBB *cbb, const RSA *rsa) { CBB child; if (!CBB_add_asn1(cbb, &child, CBS_ASN1_SEQUENCE) || !marshal_integer(&child, rsa->n) || !marshal_integer(&child, rsa->e) || !CBB_flush(cbb)) { OPENSSL_PUT_ERROR(RSA, RSA_R_ENCODE_ERROR); return 0; } return 1; } int RSA_public_key_to_bytes(uint8_t **out_bytes, size_t *out_len, const RSA *rsa) { CBB cbb; CBB_zero(&cbb); if (!CBB_init(&cbb, 0) || !RSA_marshal_public_key(&cbb, rsa) || !CBB_finish(&cbb, out_bytes, out_len)) { OPENSSL_PUT_ERROR(RSA, RSA_R_ENCODE_ERROR); CBB_cleanup(&cbb); return 0; } return 1; } /* kVersionTwoPrime and kVersionMulti are the supported values of the version * field of an RSAPrivateKey structure (RFC 3447). */ static const uint64_t kVersionTwoPrime = 0; static const uint64_t kVersionMulti = 1; /* rsa_parse_additional_prime parses a DER-encoded OtherPrimeInfo from |cbs| and * advances |cbs|. It returns a newly-allocated |RSA_additional_prime| on * success or NULL on error. The |r| and |method_mod| fields of the result are * set to NULL. */ static RSA_additional_prime *rsa_parse_additional_prime(CBS *cbs) { RSA_additional_prime *ret = OPENSSL_malloc(sizeof(RSA_additional_prime)); if (ret == NULL) { OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); return 0; } memset(ret, 0, sizeof(RSA_additional_prime)); CBS child; if (!CBS_get_asn1(cbs, &child, CBS_ASN1_SEQUENCE) || !parse_integer(&child, &ret->prime) || !parse_integer(&child, &ret->exp) || !parse_integer(&child, &ret->coeff) || CBS_len(&child) != 0) { OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_ENCODING); RSA_additional_prime_free(ret); return NULL; } return ret; } RSA *RSA_parse_private_key(CBS *cbs) { BN_CTX *ctx = NULL; BIGNUM *product_of_primes_so_far = NULL; RSA *ret = RSA_new(); if (ret == NULL) { return NULL; } CBS child; uint64_t version; if (!CBS_get_asn1(cbs, &child, CBS_ASN1_SEQUENCE) || !CBS_get_asn1_uint64(&child, &version) || (version != kVersionTwoPrime && version != kVersionMulti) || !parse_integer(&child, &ret->n) || !parse_integer(&child, &ret->e) || !parse_integer(&child, &ret->d) || !parse_integer(&child, &ret->p) || !parse_integer(&child, &ret->q) || !parse_integer(&child, &ret->dmp1) || !parse_integer(&child, &ret->dmq1) || !parse_integer(&child, &ret->iqmp)) { OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_VERSION); goto err; } /* Multi-prime RSA requires a newer version. */ if (version == kVersionMulti && CBS_peek_asn1_tag(&child, CBS_ASN1_SEQUENCE)) { CBS other_prime_infos; if (!CBS_get_asn1(&child, &other_prime_infos, CBS_ASN1_SEQUENCE) || CBS_len(&other_prime_infos) == 0) { OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_ENCODING); goto err; } ret->additional_primes = sk_RSA_additional_prime_new_null(); if (ret->additional_primes == NULL) { OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); goto err; } ctx = BN_CTX_new(); product_of_primes_so_far = BN_new(); if (ctx == NULL || product_of_primes_so_far == NULL || !BN_mul(product_of_primes_so_far, ret->p, ret->q, ctx)) { goto err; } while (CBS_len(&other_prime_infos) > 0) { RSA_additional_prime *ap = rsa_parse_additional_prime(&other_prime_infos); if (ap == NULL) { goto err; } if (!sk_RSA_additional_prime_push(ret->additional_primes, ap)) { OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); RSA_additional_prime_free(ap); goto err; } ap->r = BN_dup(product_of_primes_so_far); if (ap->r == NULL || !BN_mul(product_of_primes_so_far, product_of_primes_so_far, ap->prime, ctx)) { goto err; } } } if (CBS_len(&child) != 0) { OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_ENCODING); goto err; } BN_CTX_free(ctx); BN_free(product_of_primes_so_far); return ret; err: BN_CTX_free(ctx); BN_free(product_of_primes_so_far); RSA_free(ret); return NULL; } RSA *RSA_private_key_from_bytes(const uint8_t *in, size_t in_len) { CBS cbs; CBS_init(&cbs, in, in_len); RSA *ret = RSA_parse_private_key(&cbs); if (ret == NULL || CBS_len(&cbs) != 0) { OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_ENCODING); RSA_free(ret); return NULL; } return ret; } int RSA_marshal_private_key(CBB *cbb, const RSA *rsa) { const int is_multiprime = sk_RSA_additional_prime_num(rsa->additional_primes) > 0; CBB child; if (!CBB_add_asn1(cbb, &child, CBS_ASN1_SEQUENCE) || !CBB_add_asn1_uint64(&child, is_multiprime ? kVersionMulti : kVersionTwoPrime) || !marshal_integer(&child, rsa->n) || !marshal_integer(&child, rsa->e) || !marshal_integer(&child, rsa->d) || !marshal_integer(&child, rsa->p) || !marshal_integer(&child, rsa->q) || !marshal_integer(&child, rsa->dmp1) || !marshal_integer(&child, rsa->dmq1) || !marshal_integer(&child, rsa->iqmp)) { OPENSSL_PUT_ERROR(RSA, RSA_R_ENCODE_ERROR); return 0; } if (is_multiprime) { CBB other_prime_infos; if (!CBB_add_asn1(&child, &other_prime_infos, CBS_ASN1_SEQUENCE)) { OPENSSL_PUT_ERROR(RSA, RSA_R_ENCODE_ERROR); return 0; } size_t i; for (i = 0; i < sk_RSA_additional_prime_num(rsa->additional_primes); i++) { RSA_additional_prime *ap = sk_RSA_additional_prime_value(rsa->additional_primes, i); CBB other_prime_info; if (!CBB_add_asn1(&other_prime_infos, &other_prime_info, CBS_ASN1_SEQUENCE) || !marshal_integer(&other_prime_info, ap->prime) || !marshal_integer(&other_prime_info, ap->exp) || !marshal_integer(&other_prime_info, ap->coeff)) { OPENSSL_PUT_ERROR(RSA, RSA_R_ENCODE_ERROR); return 0; } } } if (!CBB_flush(cbb)) { OPENSSL_PUT_ERROR(RSA, RSA_R_ENCODE_ERROR); return 0; } return 1; } int RSA_private_key_to_bytes(uint8_t **out_bytes, size_t *out_len, const RSA *rsa) { CBB cbb; CBB_zero(&cbb); if (!CBB_init(&cbb, 0) || !RSA_marshal_private_key(&cbb, rsa) || !CBB_finish(&cbb, out_bytes, out_len)) { OPENSSL_PUT_ERROR(RSA, RSA_R_ENCODE_ERROR); CBB_cleanup(&cbb); return 0; } return 1; } RSA *d2i_RSAPublicKey(RSA **out, const uint8_t **inp, long len) { if (len < 0) { return NULL; } CBS cbs; CBS_init(&cbs, *inp, (size_t)len); RSA *ret = RSA_parse_public_key(&cbs); if (ret == NULL) { return NULL; } if (out != NULL) { RSA_free(*out); *out = ret; } *inp += (size_t)len - CBS_len(&cbs); return ret; } int i2d_RSAPublicKey(const RSA *in, uint8_t **outp) { uint8_t *der; size_t der_len; if (!RSA_public_key_to_bytes(&der, &der_len, in)) { return -1; } if (der_len > INT_MAX) { OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW); OPENSSL_free(der); return -1; } if (outp != NULL) { if (*outp == NULL) { *outp = der; der = NULL; } else { memcpy(*outp, der, der_len); *outp += der_len; } } OPENSSL_free(der); return (int)der_len; } RSA *d2i_RSAPrivateKey(RSA **out, const uint8_t **inp, long len) { if (len < 0) { return NULL; } CBS cbs; CBS_init(&cbs, *inp, (size_t)len); RSA *ret = RSA_parse_private_key(&cbs); if (ret == NULL) { return NULL; } if (out != NULL) { RSA_free(*out); *out = ret; } *inp += (size_t)len - CBS_len(&cbs); return ret; } int i2d_RSAPrivateKey(const RSA *in, uint8_t **outp) { uint8_t *der; size_t der_len; if (!RSA_private_key_to_bytes(&der, &der_len, in)) { return -1; } if (der_len > INT_MAX) { OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW); OPENSSL_free(der); return -1; } if (outp != NULL) { if (*outp == NULL) { *outp = der; der = NULL; } else { memcpy(*outp, der, der_len); *outp += der_len; } } OPENSSL_free(der); return (int)der_len; } ASN1_SEQUENCE(RSA_PSS_PARAMS) = { ASN1_EXP_OPT(RSA_PSS_PARAMS, hashAlgorithm, X509_ALGOR,0), ASN1_EXP_OPT(RSA_PSS_PARAMS, maskGenAlgorithm, X509_ALGOR,1), ASN1_EXP_OPT(RSA_PSS_PARAMS, saltLength, ASN1_INTEGER,2), ASN1_EXP_OPT(RSA_PSS_PARAMS, trailerField, ASN1_INTEGER,3), } ASN1_SEQUENCE_END(RSA_PSS_PARAMS); IMPLEMENT_ASN1_FUNCTIONS(RSA_PSS_PARAMS); RSA *RSAPublicKey_dup(const RSA *rsa) { uint8_t *der; size_t der_len; if (!RSA_public_key_to_bytes(&der, &der_len, rsa)) { return NULL; } RSA *ret = RSA_public_key_from_bytes(der, der_len); OPENSSL_free(der); return ret; } RSA *RSAPrivateKey_dup(const RSA *rsa) { uint8_t *der; size_t der_len; if (!RSA_private_key_to_bytes(&der, &der_len, rsa)) { return NULL; } RSA *ret = RSA_private_key_from_bytes(der, der_len); OPENSSL_free(der); return ret; }