/* ssl/s3_clnt.c */ /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ /* ==================================================================== * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ /* ==================================================================== * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. * * Portions of the attached software ("Contribution") are developed by * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. * * The Contribution is licensed pursuant to the OpenSSL open source * license provided above. * * ECC cipher suite support in OpenSSL originally written by * Vipul Gupta and Sumit Gupta of Sun Microsystems Laboratories. * */ /* ==================================================================== * Copyright 2005 Nokia. All rights reserved. * * The portions of the attached software ("Contribution") is developed by * Nokia Corporation and is licensed pursuant to the OpenSSL open source * license. * * The Contribution, originally written by Mika Kousa and Pasi Eronen of * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites * support (see RFC 4279) to OpenSSL. * * No patent licenses or other rights except those expressly stated in * the OpenSSL open source license shall be deemed granted or received * expressly, by implication, estoppel, or otherwise. * * No assurances are provided by Nokia that the Contribution does not * infringe the patent or other intellectual property rights of any third * party or that the license provides you with all the necessary rights * to make use of the Contribution. * * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR * OTHERWISE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "internal.h" #include "../crypto/dh/internal.h" int ssl3_connect(SSL *s) { BUF_MEM *buf = NULL; void (*cb)(const SSL *ssl, int type, int val) = NULL; int ret = -1; int new_state, state, skip = 0; assert(s->handshake_func == ssl3_connect); assert(!s->server); assert(!SSL_IS_DTLS(s)); ERR_clear_error(); ERR_clear_system_error(); if (s->info_callback != NULL) { cb = s->info_callback; } else if (s->ctx->info_callback != NULL) { cb = s->ctx->info_callback; } s->in_handshake++; for (;;) { state = s->state; switch (s->state) { case SSL_ST_CONNECT: if (cb != NULL) { cb(s, SSL_CB_HANDSHAKE_START, 1); } if (s->init_buf == NULL) { buf = BUF_MEM_new(); if (buf == NULL || !BUF_MEM_grow(buf, SSL3_RT_MAX_PLAIN_LENGTH)) { ret = -1; goto end; } s->init_buf = buf; buf = NULL; } if (!ssl_init_wbio_buffer(s, 0)) { ret = -1; goto end; } /* don't push the buffering BIO quite yet */ if (!ssl3_init_handshake_buffer(s)) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); ret = -1; goto end; } s->state = SSL3_ST_CW_CLNT_HELLO_A; s->init_num = 0; break; case SSL3_ST_CW_CLNT_HELLO_A: case SSL3_ST_CW_CLNT_HELLO_B: s->shutdown = 0; ret = ssl3_send_client_hello(s); if (ret <= 0) { goto end; } s->state = SSL3_ST_CR_SRVR_HELLO_A; s->init_num = 0; /* turn on buffering for the next lot of output */ if (s->bbio != s->wbio) { s->wbio = BIO_push(s->bbio, s->wbio); } break; case SSL3_ST_CR_SRVR_HELLO_A: case SSL3_ST_CR_SRVR_HELLO_B: ret = ssl3_get_server_hello(s); if (ret <= 0) { goto end; } if (s->hit) { s->state = SSL3_ST_CR_CHANGE; if (s->tlsext_ticket_expected) { /* receive renewed session ticket */ s->state = SSL3_ST_CR_SESSION_TICKET_A; } } else { s->state = SSL3_ST_CR_CERT_A; } s->init_num = 0; break; case SSL3_ST_CR_CERT_A: case SSL3_ST_CR_CERT_B: if (ssl_cipher_has_server_public_key(s->s3->tmp.new_cipher)) { ret = ssl3_get_server_certificate(s); if (ret <= 0) { goto end; } if (s->s3->tmp.certificate_status_expected) { s->state = SSL3_ST_CR_CERT_STATUS_A; } else { s->state = SSL3_ST_VERIFY_SERVER_CERT; } } else { skip = 1; s->state = SSL3_ST_CR_KEY_EXCH_A; } s->init_num = 0; break; case SSL3_ST_VERIFY_SERVER_CERT: ret = ssl3_verify_server_cert(s); if (ret <= 0) { goto end; } s->state = SSL3_ST_CR_KEY_EXCH_A; s->init_num = 0; break; case SSL3_ST_CR_KEY_EXCH_A: case SSL3_ST_CR_KEY_EXCH_B: ret = ssl3_get_server_key_exchange(s); if (ret <= 0) { goto end; } s->state = SSL3_ST_CR_CERT_REQ_A; s->init_num = 0; break; case SSL3_ST_CR_CERT_REQ_A: case SSL3_ST_CR_CERT_REQ_B: ret = ssl3_get_certificate_request(s); if (ret <= 0) { goto end; } s->state = SSL3_ST_CR_SRVR_DONE_A; s->init_num = 0; break; case SSL3_ST_CR_SRVR_DONE_A: case SSL3_ST_CR_SRVR_DONE_B: ret = ssl3_get_server_done(s); if (ret <= 0) { goto end; } if (s->s3->tmp.cert_req) { s->state = SSL3_ST_CW_CERT_A; } else { s->state = SSL3_ST_CW_KEY_EXCH_A; } s->init_num = 0; break; case SSL3_ST_CW_CERT_A: case SSL3_ST_CW_CERT_B: case SSL3_ST_CW_CERT_C: case SSL3_ST_CW_CERT_D: ret = ssl3_send_client_certificate(s); if (ret <= 0) { goto end; } s->state = SSL3_ST_CW_KEY_EXCH_A; s->init_num = 0; break; case SSL3_ST_CW_KEY_EXCH_A: case SSL3_ST_CW_KEY_EXCH_B: ret = ssl3_send_client_key_exchange(s); if (ret <= 0) { goto end; } /* For TLS, cert_req is set to 2, so a cert chain * of nothing is sent, but no verify packet is sent */ if (s->s3->tmp.cert_req == 1) { s->state = SSL3_ST_CW_CERT_VRFY_A; } else { s->state = SSL3_ST_CW_CHANGE_A; s->s3->change_cipher_spec = 0; } s->init_num = 0; break; case SSL3_ST_CW_CERT_VRFY_A: case SSL3_ST_CW_CERT_VRFY_B: case SSL3_ST_CW_CERT_VRFY_C: ret = ssl3_send_cert_verify(s); if (ret <= 0) { goto end; } s->state = SSL3_ST_CW_CHANGE_A; s->init_num = 0; s->s3->change_cipher_spec = 0; break; case SSL3_ST_CW_CHANGE_A: case SSL3_ST_CW_CHANGE_B: ret = ssl3_send_change_cipher_spec(s, SSL3_ST_CW_CHANGE_A, SSL3_ST_CW_CHANGE_B); if (ret <= 0) { goto end; } s->state = SSL3_ST_CW_FINISHED_A; if (s->s3->tlsext_channel_id_valid) { s->state = SSL3_ST_CW_CHANNEL_ID_A; } if (s->s3->next_proto_neg_seen) { s->state = SSL3_ST_CW_NEXT_PROTO_A; } s->init_num = 0; s->session->cipher = s->s3->tmp.new_cipher; if (!s->enc_method->setup_key_block(s) || !s->enc_method->change_cipher_state( s, SSL3_CHANGE_CIPHER_CLIENT_WRITE)) { ret = -1; goto end; } break; case SSL3_ST_CW_NEXT_PROTO_A: case SSL3_ST_CW_NEXT_PROTO_B: ret = ssl3_send_next_proto(s); if (ret <= 0) { goto end; } if (s->s3->tlsext_channel_id_valid) { s->state = SSL3_ST_CW_CHANNEL_ID_A; } else { s->state = SSL3_ST_CW_FINISHED_A; } break; case SSL3_ST_CW_CHANNEL_ID_A: case SSL3_ST_CW_CHANNEL_ID_B: ret = ssl3_send_channel_id(s); if (ret <= 0) { goto end; } s->state = SSL3_ST_CW_FINISHED_A; break; case SSL3_ST_CW_FINISHED_A: case SSL3_ST_CW_FINISHED_B: ret = ssl3_send_finished(s, SSL3_ST_CW_FINISHED_A, SSL3_ST_CW_FINISHED_B, s->enc_method->client_finished_label, s->enc_method->client_finished_label_len); if (ret <= 0) { goto end; } s->state = SSL3_ST_CW_FLUSH; if (s->hit) { s->s3->tmp.next_state = SSL_ST_OK; } else { /* This is a non-resumption handshake. If it involves ChannelID, then * record the handshake hashes at this point in the session so that * any resumption of this session with ChannelID can sign those * hashes. */ ret = tls1_record_handshake_hashes_for_channel_id(s); if (ret <= 0) { goto end; } if ((SSL_get_mode(s) & SSL_MODE_ENABLE_FALSE_START) && ssl3_can_false_start(s) && /* No False Start on renegotiation (would complicate the state * machine). */ !s->s3->initial_handshake_complete) { s->s3->tmp.next_state = SSL3_ST_FALSE_START; } else { /* Allow NewSessionTicket if ticket expected */ if (s->tlsext_ticket_expected) { s->s3->tmp.next_state = SSL3_ST_CR_SESSION_TICKET_A; } else { s->s3->tmp.next_state = SSL3_ST_CR_CHANGE; } } } s->init_num = 0; break; case SSL3_ST_CR_SESSION_TICKET_A: case SSL3_ST_CR_SESSION_TICKET_B: ret = ssl3_get_new_session_ticket(s); if (ret <= 0) { goto end; } s->state = SSL3_ST_CR_CHANGE; s->init_num = 0; break; case SSL3_ST_CR_CERT_STATUS_A: case SSL3_ST_CR_CERT_STATUS_B: ret = ssl3_get_cert_status(s); if (ret <= 0) { goto end; } s->state = SSL3_ST_VERIFY_SERVER_CERT; s->init_num = 0; break; case SSL3_ST_CR_CHANGE: /* At this point, the next message must be entirely behind a * ChangeCipherSpec. */ if (!ssl3_expect_change_cipher_spec(s)) { ret = -1; goto end; } s->state = SSL3_ST_CR_FINISHED_A; break; case SSL3_ST_CR_FINISHED_A: case SSL3_ST_CR_FINISHED_B: ret = ssl3_get_finished(s, SSL3_ST_CR_FINISHED_A, SSL3_ST_CR_FINISHED_B); if (ret <= 0) { goto end; } if (s->hit) { s->state = SSL3_ST_CW_CHANGE_A; } else { s->state = SSL_ST_OK; } s->init_num = 0; break; case SSL3_ST_CW_FLUSH: s->rwstate = SSL_WRITING; if (BIO_flush(s->wbio) <= 0) { ret = -1; goto end; } s->rwstate = SSL_NOTHING; s->state = s->s3->tmp.next_state; break; case SSL3_ST_FALSE_START: /* Allow NewSessionTicket if ticket expected */ if (s->tlsext_ticket_expected) { s->state = SSL3_ST_CR_SESSION_TICKET_A; } else { s->state = SSL3_ST_CR_CHANGE; } s->s3->tmp.in_false_start = 1; ssl_free_wbio_buffer(s); ret = 1; goto end; case SSL_ST_OK: /* clean a few things up */ ssl3_cleanup_key_block(s); BUF_MEM_free(s->init_buf); s->init_buf = NULL; /* Remove write buffering now. */ ssl_free_wbio_buffer(s); const int is_initial_handshake = !s->s3->initial_handshake_complete; s->init_num = 0; s->s3->tmp.in_false_start = 0; s->s3->initial_handshake_complete = 1; if (is_initial_handshake) { /* Renegotiations do not participate in session resumption. */ ssl_update_cache(s, SSL_SESS_CACHE_CLIENT); } ret = 1; /* s->server=0; */ if (cb != NULL) { cb(s, SSL_CB_HANDSHAKE_DONE, 1); } goto end; default: OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_STATE); ret = -1; goto end; } if (!s->s3->tmp.reuse_message && !skip) { if (cb != NULL && s->state != state) { new_state = s->state; s->state = state; cb(s, SSL_CB_CONNECT_LOOP, 1); s->state = new_state; } } skip = 0; } end: s->in_handshake--; BUF_MEM_free(buf); if (cb != NULL) { cb(s, SSL_CB_CONNECT_EXIT, ret); } return ret; } int ssl3_send_client_hello(SSL *s) { uint8_t *buf, *p, *d; int i; unsigned long l; buf = (uint8_t *)s->init_buf->data; if (s->state == SSL3_ST_CW_CLNT_HELLO_A) { if (!s->s3->have_version) { uint16_t max_version = ssl3_get_max_client_version(s); /* Disabling all versions is silly: return an error. */ if (max_version == 0) { OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SSL_VERSION); goto err; } s->version = max_version; s->client_version = max_version; } /* If the configured session was created at a version higher than our * maximum version, drop it. */ if (s->session && (s->session->session_id_length == 0 || s->session->not_resumable || (!SSL_IS_DTLS(s) && s->session->ssl_version > s->version) || (SSL_IS_DTLS(s) && s->session->ssl_version < s->version))) { SSL_set_session(s, NULL); } /* else use the pre-loaded session */ p = s->s3->client_random; /* If resending the ClientHello in DTLS after a HelloVerifyRequest, don't * renegerate the client_random. The random must be reused. */ if ((!SSL_IS_DTLS(s) || !s->d1->send_cookie) && !ssl_fill_hello_random(p, sizeof(s->s3->client_random), 0 /* client */)) { goto err; } /* Do the message type and length last. Note: the final argument to * ssl_add_clienthello_tlsext below depends on the size of this prefix. */ d = p = ssl_handshake_start(s); /* version indicates the negotiated version: for example from an SSLv2/v3 * compatible client hello). The client_version field is the maximum * version we permit and it is also used in RSA encrypted premaster * secrets. Some servers can choke if we initially report a higher version * then renegotiate to a lower one in the premaster secret. This didn't * happen with TLS 1.0 as most servers supported it but it can with TLS 1.1 * or later if the server only supports 1.0. * * Possible scenario with previous logic: * 1. Client hello indicates TLS 1.2 * 2. Server hello says TLS 1.0 * 3. RSA encrypted premaster secret uses 1.2. * 4. Handhaked proceeds using TLS 1.0. * 5. Server sends hello request to renegotiate. * 6. Client hello indicates TLS v1.0 as we now * know that is maximum server supports. * 7. Server chokes on RSA encrypted premaster secret * containing version 1.0. * * For interoperability it should be OK to always use the maximum version * we support in client hello and then rely on the checking of version to * ensure the servers isn't being inconsistent: for example initially * negotiating with TLS 1.0 and renegotiating with TLS 1.2. We do this by * using client_version in client hello and not resetting it to the * negotiated version. */ *(p++) = s->client_version >> 8; *(p++) = s->client_version & 0xff; /* Random stuff */ memcpy(p, s->s3->client_random, SSL3_RANDOM_SIZE); p += SSL3_RANDOM_SIZE; /* Session ID */ if (s->s3->initial_handshake_complete || s->session == NULL) { /* Renegotiations do not participate in session resumption. */ i = 0; } else { i = s->session->session_id_length; } *(p++) = i; if (i != 0) { if (i > (int)sizeof(s->session->session_id)) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); goto err; } memcpy(p, s->session->session_id, i); p += i; } /* cookie stuff for DTLS */ if (SSL_IS_DTLS(s)) { if (s->d1->cookie_len > sizeof(s->d1->cookie)) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); goto err; } *(p++) = s->d1->cookie_len; memcpy(p, s->d1->cookie, s->d1->cookie_len); p += s->d1->cookie_len; } /* Ciphers supported */ i = ssl_cipher_list_to_bytes(s, SSL_get_ciphers(s), &p[2]); if (i == 0) { OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CIPHERS_AVAILABLE); goto err; } s2n(i, p); p += i; /* COMPRESSION */ *(p++) = 1; *(p++) = 0; /* Add the NULL method */ /* TLS extensions*/ p = ssl_add_clienthello_tlsext(s, p, buf + SSL3_RT_MAX_PLAIN_LENGTH, p - buf); if (p == NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); goto err; } l = p - d; if (!ssl_set_handshake_header(s, SSL3_MT_CLIENT_HELLO, l)) { goto err; } s->state = SSL3_ST_CW_CLNT_HELLO_B; } /* SSL3_ST_CW_CLNT_HELLO_B */ return ssl_do_write(s); err: return -1; } int ssl3_get_server_hello(SSL *s) { STACK_OF(SSL_CIPHER) *sk; const SSL_CIPHER *c; CERT *ct = s->cert; int al = SSL_AD_INTERNAL_ERROR, ok; long n; CBS server_hello, server_random, session_id; uint16_t server_version, cipher_suite; uint8_t compression_method; uint32_t mask_ssl; n = s->method->ssl_get_message(s, SSL3_ST_CR_SRVR_HELLO_A, SSL3_ST_CR_SRVR_HELLO_B, SSL3_MT_SERVER_HELLO, 20000, /* ?? */ ssl_hash_message, &ok); if (!ok) { uint32_t err = ERR_peek_error(); if (ERR_GET_LIB(err) == ERR_LIB_SSL && ERR_GET_REASON(err) == SSL_R_SSLV3_ALERT_HANDSHAKE_FAILURE) { /* Add a dedicated error code to the queue for a handshake_failure alert * in response to ClientHello. This matches NSS's client behavior and * gives a better error on a (probable) failure to negotiate initial * parameters. Note: this error code comes after the original one. * * See https://crbug.com/446505. */ OPENSSL_PUT_ERROR(SSL, SSL_R_HANDSHAKE_FAILURE_ON_CLIENT_HELLO); } return n; } CBS_init(&server_hello, s->init_msg, n); if (!CBS_get_u16(&server_hello, &server_version) || !CBS_get_bytes(&server_hello, &server_random, SSL3_RANDOM_SIZE) || !CBS_get_u8_length_prefixed(&server_hello, &session_id) || CBS_len(&session_id) > SSL3_SESSION_ID_SIZE || !CBS_get_u16(&server_hello, &cipher_suite) || !CBS_get_u8(&server_hello, &compression_method)) { al = SSL_AD_DECODE_ERROR; OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); goto f_err; } assert(s->s3->have_version == s->s3->initial_handshake_complete); if (!s->s3->have_version) { if (!ssl3_is_version_enabled(s, server_version)) { OPENSSL_PUT_ERROR(SSL, SSL_R_UNSUPPORTED_PROTOCOL); s->version = server_version; /* Mark the version as fixed so the record-layer version is not clamped * to TLS 1.0. */ s->s3->have_version = 1; al = SSL_AD_PROTOCOL_VERSION; goto f_err; } s->version = server_version; s->enc_method = ssl3_get_enc_method(server_version); assert(s->enc_method != NULL); /* At this point, the connection's version is known and s->version is * fixed. Begin enforcing the record-layer version. */ s->s3->have_version = 1; } else if (server_version != s->version) { OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SSL_VERSION); al = SSL_AD_PROTOCOL_VERSION; goto f_err; } /* Copy over the server random. */ memcpy(s->s3->server_random, CBS_data(&server_random), SSL3_RANDOM_SIZE); assert(s->session == NULL || s->session->session_id_length > 0); if (!s->s3->initial_handshake_complete && s->session != NULL && CBS_mem_equal(&session_id, s->session->session_id, s->session->session_id_length)) { if (s->sid_ctx_length != s->session->sid_ctx_length || memcmp(s->session->sid_ctx, s->sid_ctx, s->sid_ctx_length)) { /* actually a client application bug */ al = SSL_AD_ILLEGAL_PARAMETER; OPENSSL_PUT_ERROR(SSL, SSL_R_ATTEMPT_TO_REUSE_SESSION_IN_DIFFERENT_CONTEXT); goto f_err; } s->hit = 1; } else { /* The session wasn't resumed. Create a fresh SSL_SESSION to * fill out. */ s->hit = 0; if (!ssl_get_new_session(s, 0)) { goto f_err; } /* Note: session_id could be empty. */ s->session->session_id_length = CBS_len(&session_id); memcpy(s->session->session_id, CBS_data(&session_id), CBS_len(&session_id)); } c = SSL_get_cipher_by_value(cipher_suite); if (c == NULL) { /* unknown cipher */ al = SSL_AD_ILLEGAL_PARAMETER; OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_CIPHER_RETURNED); goto f_err; } /* ct->mask_ssl was computed from client capabilities. Now * that the final version is known, compute a new mask_ssl. */ if (!SSL_USE_TLS1_2_CIPHERS(s)) { mask_ssl = SSL_TLSV1_2; } else { mask_ssl = 0; } /* If the cipher is disabled then we didn't sent it in the ClientHello, so if * the server selected it, it's an error. */ if ((c->algorithm_ssl & mask_ssl) || (c->algorithm_mkey & ct->mask_k) || (c->algorithm_auth & ct->mask_a)) { al = SSL_AD_ILLEGAL_PARAMETER; OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_CIPHER_RETURNED); goto f_err; } sk = ssl_get_ciphers_by_id(s); if (!sk_SSL_CIPHER_find(sk, NULL, c)) { /* we did not say we would use this cipher */ al = SSL_AD_ILLEGAL_PARAMETER; OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_CIPHER_RETURNED); goto f_err; } if (s->hit) { if (s->session->cipher != c) { al = SSL_AD_ILLEGAL_PARAMETER; OPENSSL_PUT_ERROR(SSL, SSL_R_OLD_SESSION_CIPHER_NOT_RETURNED); goto f_err; } if (s->session->ssl_version != s->version) { al = SSL_AD_ILLEGAL_PARAMETER; OPENSSL_PUT_ERROR(SSL, SSL_R_OLD_SESSION_VERSION_NOT_RETURNED); goto f_err; } } s->s3->tmp.new_cipher = c; /* Now that the cipher is known, initialize the handshake hash. */ if (!ssl3_init_handshake_hash(s)) { goto f_err; } /* If doing a full handshake with TLS 1.2, the server may request a client * certificate which requires hashing the handshake transcript under a * different hash. Otherwise, the handshake buffer may be released. */ if (!SSL_USE_SIGALGS(s) || s->hit) { ssl3_free_handshake_buffer(s); } /* Only the NULL compression algorithm is supported. */ if (compression_method != 0) { al = SSL_AD_ILLEGAL_PARAMETER; OPENSSL_PUT_ERROR(SSL, SSL_R_UNSUPPORTED_COMPRESSION_ALGORITHM); goto f_err; } /* TLS extensions */ if (!ssl_parse_serverhello_tlsext(s, &server_hello)) { OPENSSL_PUT_ERROR(SSL, SSL_R_PARSE_TLSEXT); goto err; } /* There should be nothing left over in the record. */ if (CBS_len(&server_hello) != 0) { /* wrong packet length */ al = SSL_AD_DECODE_ERROR; OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_PACKET_LENGTH); goto f_err; } if (s->hit && s->s3->tmp.extended_master_secret != s->session->extended_master_secret) { al = SSL_AD_HANDSHAKE_FAILURE; if (s->session->extended_master_secret) { OPENSSL_PUT_ERROR(SSL, SSL_R_RESUMED_EMS_SESSION_WITHOUT_EMS_EXTENSION); } else { OPENSSL_PUT_ERROR(SSL, SSL_R_RESUMED_NON_EMS_SESSION_WITH_EMS_EXTENSION); } goto f_err; } return 1; f_err: ssl3_send_alert(s, SSL3_AL_FATAL, al); err: return -1; } /* ssl3_check_certificate_for_cipher returns one if |leaf| is a suitable server * certificate type for |cipher|. Otherwise, it returns zero and pushes an error * on the error queue. */ static int ssl3_check_certificate_for_cipher(X509 *leaf, const SSL_CIPHER *cipher) { int ret = 0; EVP_PKEY *pkey = X509_get_pubkey(leaf); if (pkey == NULL) { goto err; } /* Check the certificate's type matches the cipher. */ int expected_type = ssl_cipher_get_key_type(cipher); assert(expected_type != EVP_PKEY_NONE); if (pkey->type != expected_type) { OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_CERTIFICATE_TYPE); goto err; } /* TODO(davidben): This behavior is preserved from upstream. Should key usages * be checked in other cases as well? */ if (cipher->algorithm_auth & SSL_aECDSA) { /* This call populates the ex_flags field correctly */ X509_check_purpose(leaf, -1, 0); if ((leaf->ex_flags & EXFLAG_KUSAGE) && !(leaf->ex_kusage & X509v3_KU_DIGITAL_SIGNATURE)) { OPENSSL_PUT_ERROR(SSL, SSL_R_ECC_CERT_NOT_FOR_SIGNING); goto err; } } ret = 1; err: EVP_PKEY_free(pkey); return ret; } int ssl3_get_server_certificate(SSL *s) { int al, ok, ret = -1; unsigned long n; X509 *x = NULL; STACK_OF(X509) *sk = NULL; EVP_PKEY *pkey = NULL; CBS cbs, certificate_list; const uint8_t *data; n = s->method->ssl_get_message(s, SSL3_ST_CR_CERT_A, SSL3_ST_CR_CERT_B, SSL3_MT_CERTIFICATE, (long)s->max_cert_list, ssl_hash_message, &ok); if (!ok) { return n; } CBS_init(&cbs, s->init_msg, n); sk = sk_X509_new_null(); if (sk == NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); goto err; } if (!CBS_get_u24_length_prefixed(&cbs, &certificate_list) || CBS_len(&certificate_list) == 0 || CBS_len(&cbs) != 0) { al = SSL_AD_DECODE_ERROR; OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); goto f_err; } while (CBS_len(&certificate_list) > 0) { CBS certificate; if (!CBS_get_u24_length_prefixed(&certificate_list, &certificate)) { al = SSL_AD_DECODE_ERROR; OPENSSL_PUT_ERROR(SSL, SSL_R_CERT_LENGTH_MISMATCH); goto f_err; } data = CBS_data(&certificate); x = d2i_X509(NULL, &data, CBS_len(&certificate)); if (x == NULL) { al = SSL_AD_BAD_CERTIFICATE; OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB); goto f_err; } if (data != CBS_data(&certificate) + CBS_len(&certificate)) { al = SSL_AD_DECODE_ERROR; OPENSSL_PUT_ERROR(SSL, SSL_R_CERT_LENGTH_MISMATCH); goto f_err; } if (!sk_X509_push(sk, x)) { OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); goto err; } x = NULL; } X509 *leaf = sk_X509_value(sk, 0); if (!ssl3_check_certificate_for_cipher(leaf, s->s3->tmp.new_cipher)) { al = SSL_AD_ILLEGAL_PARAMETER; goto f_err; } /* NOTE: Unlike the server half, the client's copy of |cert_chain| includes * the leaf. */ sk_X509_pop_free(s->session->cert_chain, X509_free); s->session->cert_chain = sk; sk = NULL; X509_free(s->session->peer); s->session->peer = X509_up_ref(leaf); s->session->verify_result = s->verify_result; ret = 1; if (0) { f_err: ssl3_send_alert(s, SSL3_AL_FATAL, al); } err: EVP_PKEY_free(pkey); X509_free(x); sk_X509_pop_free(sk, X509_free); return ret; } int ssl3_get_server_key_exchange(SSL *s) { EVP_MD_CTX md_ctx; int al, ok; long n, alg_k, alg_a; EVP_PKEY *pkey = NULL; const EVP_MD *md = NULL; RSA *rsa = NULL; DH *dh = NULL; EC_KEY *ecdh = NULL; BN_CTX *bn_ctx = NULL; EC_POINT *srvr_ecpoint = NULL; CBS server_key_exchange, server_key_exchange_orig, parameter; /* use same message size as in ssl3_get_certificate_request() as * ServerKeyExchange message may be skipped */ n = s->method->ssl_get_message(s, SSL3_ST_CR_KEY_EXCH_A, SSL3_ST_CR_KEY_EXCH_B, -1, s->max_cert_list, ssl_hash_message, &ok); if (!ok) { return n; } if (s->s3->tmp.message_type != SSL3_MT_SERVER_KEY_EXCHANGE) { if (ssl_cipher_requires_server_key_exchange(s->s3->tmp.new_cipher)) { OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_MESSAGE); ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE); return -1; } /* In plain PSK ciphersuite, ServerKeyExchange may be omitted to send no * identity hint. */ if (s->s3->tmp.new_cipher->algorithm_auth & SSL_aPSK) { /* TODO(davidben): This should be reset in one place with the rest of the * handshake state. */ OPENSSL_free(s->s3->tmp.peer_psk_identity_hint); s->s3->tmp.peer_psk_identity_hint = NULL; } s->s3->tmp.reuse_message = 1; return 1; } /* Retain a copy of the original CBS to compute the signature over. */ CBS_init(&server_key_exchange, s->init_msg, n); server_key_exchange_orig = server_key_exchange; alg_k = s->s3->tmp.new_cipher->algorithm_mkey; alg_a = s->s3->tmp.new_cipher->algorithm_auth; EVP_MD_CTX_init(&md_ctx); if (alg_a & SSL_aPSK) { CBS psk_identity_hint; /* Each of the PSK key exchanges begins with a psk_identity_hint. */ if (!CBS_get_u16_length_prefixed(&server_key_exchange, &psk_identity_hint)) { al = SSL_AD_DECODE_ERROR; OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); goto f_err; } /* Store PSK identity hint for later use, hint is used in * ssl3_send_client_key_exchange. Assume that the maximum length of a PSK * identity hint can be as long as the maximum length of a PSK identity. * Also do not allow NULL characters; identities are saved as C strings. * * TODO(davidben): Should invalid hints be ignored? It's a hint rather than * a specific identity. */ if (CBS_len(&psk_identity_hint) > PSK_MAX_IDENTITY_LEN || CBS_contains_zero_byte(&psk_identity_hint)) { al = SSL_AD_HANDSHAKE_FAILURE; OPENSSL_PUT_ERROR(SSL, SSL_R_DATA_LENGTH_TOO_LONG); goto f_err; } /* Save the identity hint as a C string. */ if (!CBS_strdup(&psk_identity_hint, &s->s3->tmp.peer_psk_identity_hint)) { al = SSL_AD_INTERNAL_ERROR; OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); goto f_err; } } if (alg_k & SSL_kDHE) { CBS dh_p, dh_g, dh_Ys; if (!CBS_get_u16_length_prefixed(&server_key_exchange, &dh_p) || CBS_len(&dh_p) == 0 || !CBS_get_u16_length_prefixed(&server_key_exchange, &dh_g) || CBS_len(&dh_g) == 0 || !CBS_get_u16_length_prefixed(&server_key_exchange, &dh_Ys) || CBS_len(&dh_Ys) == 0) { al = SSL_AD_DECODE_ERROR; OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); goto f_err; } dh = DH_new(); if (dh == NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_DH_LIB); goto err; } if ((dh->p = BN_bin2bn(CBS_data(&dh_p), CBS_len(&dh_p), NULL)) == NULL || (dh->g = BN_bin2bn(CBS_data(&dh_g), CBS_len(&dh_g), NULL)) == NULL || (dh->pub_key = BN_bin2bn(CBS_data(&dh_Ys), CBS_len(&dh_Ys), NULL)) == NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_BN_LIB); goto err; } s->session->key_exchange_info = DH_num_bits(dh); if (s->session->key_exchange_info < 1024) { OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_DH_P_LENGTH); goto err; } DH_free(s->s3->tmp.peer_dh_tmp); s->s3->tmp.peer_dh_tmp = dh; dh = NULL; } else if (alg_k & SSL_kECDHE) { uint16_t curve_id; int curve_nid = 0; const EC_GROUP *group; CBS point; /* Extract elliptic curve parameters and the server's ephemeral ECDH public * key. Check curve is one of our preferences, if not server has sent an * invalid curve. */ if (!tls1_check_curve(s, &server_key_exchange, &curve_id)) { al = SSL_AD_DECODE_ERROR; OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_CURVE); goto f_err; } curve_nid = tls1_ec_curve_id2nid(curve_id); if (curve_nid == 0) { al = SSL_AD_INTERNAL_ERROR; OPENSSL_PUT_ERROR(SSL, SSL_R_UNABLE_TO_FIND_ECDH_PARAMETERS); goto f_err; } ecdh = EC_KEY_new_by_curve_name(curve_nid); s->session->key_exchange_info = curve_id; if (ecdh == NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_EC_LIB); goto err; } group = EC_KEY_get0_group(ecdh); /* Next, get the encoded ECPoint */ if (!CBS_get_u8_length_prefixed(&server_key_exchange, &point)) { al = SSL_AD_DECODE_ERROR; OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); goto f_err; } if (((srvr_ecpoint = EC_POINT_new(group)) == NULL) || ((bn_ctx = BN_CTX_new()) == NULL)) { OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); goto err; } if (!EC_POINT_oct2point(group, srvr_ecpoint, CBS_data(&point), CBS_len(&point), bn_ctx)) { al = SSL_AD_DECODE_ERROR; OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_ECPOINT); goto f_err; } EC_KEY_set_public_key(ecdh, srvr_ecpoint); EC_KEY_free(s->s3->tmp.peer_ecdh_tmp); s->s3->tmp.peer_ecdh_tmp = ecdh; ecdh = NULL; BN_CTX_free(bn_ctx); bn_ctx = NULL; EC_POINT_free(srvr_ecpoint); srvr_ecpoint = NULL; } else if (!(alg_k & SSL_kPSK)) { al = SSL_AD_UNEXPECTED_MESSAGE; OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_MESSAGE); goto f_err; } /* At this point, |server_key_exchange| contains the signature, if any, while * |server_key_exchange_orig| contains the entire message. From that, derive * a CBS containing just the parameter. */ CBS_init(¶meter, CBS_data(&server_key_exchange_orig), CBS_len(&server_key_exchange_orig) - CBS_len(&server_key_exchange)); /* ServerKeyExchange should be signed by the server's public key. */ if (ssl_cipher_has_server_public_key(s->s3->tmp.new_cipher)) { pkey = X509_get_pubkey(s->session->peer); if (pkey == NULL) { goto err; } if (SSL_USE_SIGALGS(s)) { if (!tls12_check_peer_sigalg(&md, &al, s, &server_key_exchange, pkey)) { goto f_err; } } else if (pkey->type == EVP_PKEY_RSA) { md = EVP_md5_sha1(); } else { md = EVP_sha1(); } /* The last field in |server_key_exchange| is the signature. */ CBS signature; if (!CBS_get_u16_length_prefixed(&server_key_exchange, &signature) || CBS_len(&server_key_exchange) != 0) { al = SSL_AD_DECODE_ERROR; OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); goto f_err; } if (!EVP_DigestVerifyInit(&md_ctx, NULL, md, NULL, pkey) || !EVP_DigestVerifyUpdate(&md_ctx, s->s3->client_random, SSL3_RANDOM_SIZE) || !EVP_DigestVerifyUpdate(&md_ctx, s->s3->server_random, SSL3_RANDOM_SIZE) || !EVP_DigestVerifyUpdate(&md_ctx, CBS_data(¶meter), CBS_len(¶meter)) || !EVP_DigestVerifyFinal(&md_ctx, CBS_data(&signature), CBS_len(&signature))) { /* bad signature */ al = SSL_AD_DECRYPT_ERROR; OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_SIGNATURE); goto f_err; } } else { /* PSK ciphers are the only supported certificate-less ciphers. */ assert(alg_a == SSL_aPSK); if (CBS_len(&server_key_exchange) > 0) { al = SSL_AD_DECODE_ERROR; OPENSSL_PUT_ERROR(SSL, SSL_R_EXTRA_DATA_IN_MESSAGE); goto f_err; } } EVP_PKEY_free(pkey); EVP_MD_CTX_cleanup(&md_ctx); return 1; f_err: ssl3_send_alert(s, SSL3_AL_FATAL, al); err: EVP_PKEY_free(pkey); RSA_free(rsa); DH_free(dh); BN_CTX_free(bn_ctx); EC_POINT_free(srvr_ecpoint); EC_KEY_free(ecdh); EVP_MD_CTX_cleanup(&md_ctx); return -1; } static int ca_dn_cmp(const X509_NAME **a, const X509_NAME **b) { return X509_NAME_cmp(*a, *b); } int ssl3_get_certificate_request(SSL *s) { int ok, ret = 0; unsigned long n; X509_NAME *xn = NULL; STACK_OF(X509_NAME) *ca_sk = NULL; CBS cbs; CBS certificate_types; CBS certificate_authorities; const uint8_t *data; n = s->method->ssl_get_message(s, SSL3_ST_CR_CERT_REQ_A, SSL3_ST_CR_CERT_REQ_B, -1, s->max_cert_list, ssl_hash_message, &ok); if (!ok) { return n; } s->s3->tmp.cert_req = 0; if (s->s3->tmp.message_type == SSL3_MT_SERVER_DONE) { s->s3->tmp.reuse_message = 1; /* If we get here we don't need the handshake buffer as we won't be doing * client auth. */ ssl3_free_handshake_buffer(s); return 1; } if (s->s3->tmp.message_type != SSL3_MT_CERTIFICATE_REQUEST) { ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE); OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_MESSAGE_TYPE); goto err; } CBS_init(&cbs, s->init_msg, n); ca_sk = sk_X509_NAME_new(ca_dn_cmp); if (ca_sk == NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); goto err; } /* get the certificate types */ if (!CBS_get_u8_length_prefixed(&cbs, &certificate_types)) { ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); goto err; } if (!CBS_stow(&certificate_types, &s->s3->tmp.certificate_types, &s->s3->tmp.num_certificate_types)) { ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); goto err; } if (SSL_USE_SIGALGS(s)) { CBS supported_signature_algorithms; if (!CBS_get_u16_length_prefixed(&cbs, &supported_signature_algorithms) || !tls1_parse_peer_sigalgs(s, &supported_signature_algorithms)) { ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); goto err; } } /* get the CA RDNs */ if (!CBS_get_u16_length_prefixed(&cbs, &certificate_authorities)) { ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); OPENSSL_PUT_ERROR(SSL, SSL_R_LENGTH_MISMATCH); goto err; } while (CBS_len(&certificate_authorities) > 0) { CBS distinguished_name; if (!CBS_get_u16_length_prefixed(&certificate_authorities, &distinguished_name)) { ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); OPENSSL_PUT_ERROR(SSL, SSL_R_CA_DN_TOO_LONG); goto err; } data = CBS_data(&distinguished_name); xn = d2i_X509_NAME(NULL, &data, CBS_len(&distinguished_name)); if (xn == NULL) { ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB); goto err; } if (!CBS_skip(&distinguished_name, data - CBS_data(&distinguished_name))) { ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); goto err; } if (CBS_len(&distinguished_name) != 0) { ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); OPENSSL_PUT_ERROR(SSL, SSL_R_CA_DN_LENGTH_MISMATCH); goto err; } if (!sk_X509_NAME_push(ca_sk, xn)) { OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); goto err; } } /* we should setup a certificate to return.... */ s->s3->tmp.cert_req = 1; sk_X509_NAME_pop_free(s->s3->tmp.ca_names, X509_NAME_free); s->s3->tmp.ca_names = ca_sk; ca_sk = NULL; ret = 1; err: sk_X509_NAME_pop_free(ca_sk, X509_NAME_free); return ret; } int ssl3_get_new_session_ticket(SSL *s) { int ok, al; long n; CBS new_session_ticket, ticket; n = s->method->ssl_get_message( s, SSL3_ST_CR_SESSION_TICKET_A, SSL3_ST_CR_SESSION_TICKET_B, SSL3_MT_NEWSESSION_TICKET, 16384, ssl_hash_message, &ok); if (!ok) { return n; } if (s->hit) { /* The server is sending a new ticket for an existing session. Sessions are * immutable once established, so duplicate all but the ticket of the * existing session. */ uint8_t *bytes; size_t bytes_len; if (!SSL_SESSION_to_bytes_for_ticket(s->session, &bytes, &bytes_len)) { goto err; } SSL_SESSION *new_session = SSL_SESSION_from_bytes(bytes, bytes_len); OPENSSL_free(bytes); if (new_session == NULL) { /* This should never happen. */ OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); goto err; } SSL_SESSION_free(s->session); s->session = new_session; } CBS_init(&new_session_ticket, s->init_msg, n); if (!CBS_get_u32(&new_session_ticket, &s->session->tlsext_tick_lifetime_hint) || !CBS_get_u16_length_prefixed(&new_session_ticket, &ticket) || CBS_len(&new_session_ticket) != 0) { al = SSL_AD_DECODE_ERROR; OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); goto f_err; } if (!CBS_stow(&ticket, &s->session->tlsext_tick, &s->session->tlsext_ticklen)) { OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); goto err; } /* Generate a session ID for this session based on the session ticket. We use * the session ID mechanism for detecting ticket resumption. This also fits in * with assumptions elsewhere in OpenSSL.*/ if (!EVP_Digest(CBS_data(&ticket), CBS_len(&ticket), s->session->session_id, &s->session->session_id_length, EVP_sha256(), NULL)) { goto err; } return 1; f_err: ssl3_send_alert(s, SSL3_AL_FATAL, al); err: return -1; } int ssl3_get_cert_status(SSL *s) { int ok, al; long n; CBS certificate_status, ocsp_response; uint8_t status_type; n = s->method->ssl_get_message( s, SSL3_ST_CR_CERT_STATUS_A, SSL3_ST_CR_CERT_STATUS_B, -1, 16384, ssl_hash_message, &ok); if (!ok) { return n; } if (s->s3->tmp.message_type != SSL3_MT_CERTIFICATE_STATUS) { /* A server may send status_request in ServerHello and then change * its mind about sending CertificateStatus. */ s->s3->tmp.reuse_message = 1; return 1; } CBS_init(&certificate_status, s->init_msg, n); if (!CBS_get_u8(&certificate_status, &status_type) || status_type != TLSEXT_STATUSTYPE_ocsp || !CBS_get_u24_length_prefixed(&certificate_status, &ocsp_response) || CBS_len(&ocsp_response) == 0 || CBS_len(&certificate_status) != 0) { al = SSL_AD_DECODE_ERROR; OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); goto f_err; } if (!CBS_stow(&ocsp_response, &s->session->ocsp_response, &s->session->ocsp_response_length)) { al = SSL_AD_INTERNAL_ERROR; OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); goto f_err; } return 1; f_err: ssl3_send_alert(s, SSL3_AL_FATAL, al); return -1; } int ssl3_get_server_done(SSL *s) { int ok; long n; n = s->method->ssl_get_message(s, SSL3_ST_CR_SRVR_DONE_A, SSL3_ST_CR_SRVR_DONE_B, SSL3_MT_SERVER_DONE, 30, /* should be very small, like 0 :-) */ ssl_hash_message, &ok); if (!ok) { return n; } if (n > 0) { /* should contain no data */ ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); OPENSSL_PUT_ERROR(SSL, SSL_R_LENGTH_MISMATCH); return -1; } return 1; } int ssl3_send_client_key_exchange(SSL *s) { uint8_t *p; int n = 0; uint32_t alg_k; uint32_t alg_a; uint8_t *q; EVP_PKEY *pkey = NULL; EC_KEY *clnt_ecdh = NULL; const EC_POINT *srvr_ecpoint = NULL; EVP_PKEY *srvr_pub_pkey = NULL; uint8_t *encodedPoint = NULL; int encoded_pt_len = 0; BN_CTX *bn_ctx = NULL; unsigned int psk_len = 0; uint8_t psk[PSK_MAX_PSK_LEN]; uint8_t *pms = NULL; size_t pms_len = 0; if (s->state == SSL3_ST_CW_KEY_EXCH_A) { p = ssl_handshake_start(s); alg_k = s->s3->tmp.new_cipher->algorithm_mkey; alg_a = s->s3->tmp.new_cipher->algorithm_auth; /* If using a PSK key exchange, prepare the pre-shared key. */ if (alg_a & SSL_aPSK) { char identity[PSK_MAX_IDENTITY_LEN + 1]; size_t identity_len; if (s->psk_client_callback == NULL) { OPENSSL_PUT_ERROR(SSL, SSL_R_PSK_NO_CLIENT_CB); goto err; } memset(identity, 0, sizeof(identity)); psk_len = s->psk_client_callback(s, s->s3->tmp.peer_psk_identity_hint, identity, sizeof(identity), psk, sizeof(psk)); if (psk_len > PSK_MAX_PSK_LEN) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); goto err; } else if (psk_len == 0) { OPENSSL_PUT_ERROR(SSL, SSL_R_PSK_IDENTITY_NOT_FOUND); ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE); goto err; } identity_len = OPENSSL_strnlen(identity, sizeof(identity)); if (identity_len > PSK_MAX_IDENTITY_LEN) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); goto err; } OPENSSL_free(s->session->psk_identity); s->session->psk_identity = BUF_strdup(identity); if (s->session->psk_identity == NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); goto err; } /* Write out psk_identity. */ s2n(identity_len, p); memcpy(p, identity, identity_len); p += identity_len; n = 2 + identity_len; } /* Depending on the key exchange method, compute |pms| and |pms_len|. */ if (alg_k & SSL_kRSA) { RSA *rsa; size_t enc_pms_len; pms_len = SSL_MAX_MASTER_KEY_LENGTH; pms = OPENSSL_malloc(pms_len); if (pms == NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); goto err; } pkey = X509_get_pubkey(s->session->peer); if (pkey == NULL || pkey->type != EVP_PKEY_RSA || pkey->pkey.rsa == NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); EVP_PKEY_free(pkey); goto err; } s->session->key_exchange_info = EVP_PKEY_bits(pkey); rsa = pkey->pkey.rsa; EVP_PKEY_free(pkey); pms[0] = s->client_version >> 8; pms[1] = s->client_version & 0xff; if (!RAND_bytes(&pms[2], SSL_MAX_MASTER_KEY_LENGTH - 2)) { goto err; } s->session->master_key_length = SSL_MAX_MASTER_KEY_LENGTH; q = p; /* In TLS and beyond, reserve space for the length prefix. */ if (s->version > SSL3_VERSION) { p += 2; n += 2; } if (!RSA_encrypt(rsa, &enc_pms_len, p, RSA_size(rsa), pms, pms_len, RSA_PKCS1_PADDING)) { OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_RSA_ENCRYPT); goto err; } n += enc_pms_len; /* Log the premaster secret, if logging is enabled. */ if (!ssl_ctx_log_rsa_client_key_exchange(s->ctx, p, enc_pms_len, pms, pms_len)) { goto err; } /* Fill in the length prefix. */ if (s->version > SSL3_VERSION) { s2n(enc_pms_len, q); } } else if (alg_k & SSL_kDHE) { DH *dh_srvr, *dh_clnt; int dh_len; size_t pub_len; if (s->s3->tmp.peer_dh_tmp == NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); goto err; } dh_srvr = s->s3->tmp.peer_dh_tmp; /* generate a new random key */ dh_clnt = DHparams_dup(dh_srvr); if (dh_clnt == NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_DH_LIB); goto err; } if (!DH_generate_key(dh_clnt)) { OPENSSL_PUT_ERROR(SSL, ERR_R_DH_LIB); DH_free(dh_clnt); goto err; } pms_len = DH_size(dh_clnt); pms = OPENSSL_malloc(pms_len); if (pms == NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); DH_free(dh_clnt); goto err; } dh_len = DH_compute_key(pms, dh_srvr->pub_key, dh_clnt); if (dh_len <= 0) { OPENSSL_PUT_ERROR(SSL, ERR_R_DH_LIB); DH_free(dh_clnt); goto err; } pms_len = dh_len; /* send off the data */ pub_len = BN_num_bytes(dh_clnt->pub_key); s2n(pub_len, p); BN_bn2bin(dh_clnt->pub_key, p); n += 2 + pub_len; DH_free(dh_clnt); } else if (alg_k & SSL_kECDHE) { const EC_GROUP *srvr_group = NULL; EC_KEY *tkey; int field_size = 0, ecdh_len; if (s->s3->tmp.peer_ecdh_tmp == NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); goto err; } tkey = s->s3->tmp.peer_ecdh_tmp; srvr_group = EC_KEY_get0_group(tkey); srvr_ecpoint = EC_KEY_get0_public_key(tkey); if (srvr_group == NULL || srvr_ecpoint == NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); goto err; } clnt_ecdh = EC_KEY_new(); if (clnt_ecdh == NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); goto err; } if (!EC_KEY_set_group(clnt_ecdh, srvr_group)) { OPENSSL_PUT_ERROR(SSL, ERR_R_EC_LIB); goto err; } /* Generate a new ECDH key pair */ if (!EC_KEY_generate_key(clnt_ecdh)) { OPENSSL_PUT_ERROR(SSL, ERR_R_ECDH_LIB); goto err; } field_size = EC_GROUP_get_degree(srvr_group); if (field_size <= 0) { OPENSSL_PUT_ERROR(SSL, ERR_R_ECDH_LIB); goto err; } pms_len = (field_size + 7) / 8; pms = OPENSSL_malloc(pms_len); if (pms == NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); goto err; } ecdh_len = ECDH_compute_key(pms, pms_len, srvr_ecpoint, clnt_ecdh, NULL); if (ecdh_len <= 0) { OPENSSL_PUT_ERROR(SSL, ERR_R_ECDH_LIB); goto err; } pms_len = ecdh_len; /* First check the size of encoding and allocate memory accordingly. */ encoded_pt_len = EC_POINT_point2oct(srvr_group, EC_KEY_get0_public_key(clnt_ecdh), POINT_CONVERSION_UNCOMPRESSED, NULL, 0, NULL); encodedPoint = (uint8_t *)OPENSSL_malloc(encoded_pt_len * sizeof(uint8_t)); bn_ctx = BN_CTX_new(); if (encodedPoint == NULL || bn_ctx == NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); goto err; } /* Encode the public key */ encoded_pt_len = EC_POINT_point2oct( srvr_group, EC_KEY_get0_public_key(clnt_ecdh), POINT_CONVERSION_UNCOMPRESSED, encodedPoint, encoded_pt_len, bn_ctx); *p = encoded_pt_len; /* length of encoded point */ /* Encoded point will be copied here */ p += 1; n += 1; /* copy the point */ memcpy(p, encodedPoint, encoded_pt_len); /* increment n to account for length field */ n += encoded_pt_len; /* Free allocated memory */ BN_CTX_free(bn_ctx); bn_ctx = NULL; OPENSSL_free(encodedPoint); encodedPoint = NULL; EC_KEY_free(clnt_ecdh); clnt_ecdh = NULL; EVP_PKEY_free(srvr_pub_pkey); srvr_pub_pkey = NULL; } else if (alg_k & SSL_kPSK) { /* For plain PSK, other_secret is a block of 0s with the same length as * the pre-shared key. */ pms_len = psk_len; pms = OPENSSL_malloc(pms_len); if (pms == NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); goto err; } memset(pms, 0, pms_len); } else { ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE); OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); goto err; } /* For a PSK cipher suite, other_secret is combined with the pre-shared * key. */ if (alg_a & SSL_aPSK) { CBB cbb, child; uint8_t *new_pms; size_t new_pms_len; CBB_zero(&cbb); if (!CBB_init(&cbb, 2 + psk_len + 2 + pms_len) || !CBB_add_u16_length_prefixed(&cbb, &child) || !CBB_add_bytes(&child, pms, pms_len) || !CBB_add_u16_length_prefixed(&cbb, &child) || !CBB_add_bytes(&child, psk, psk_len) || !CBB_finish(&cbb, &new_pms, &new_pms_len)) { CBB_cleanup(&cbb); OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); goto err; } OPENSSL_cleanse(pms, pms_len); OPENSSL_free(pms); pms = new_pms; pms_len = new_pms_len; } /* The message must be added to the finished hash before calculating the * master secret. */ if (!ssl_set_handshake_header(s, SSL3_MT_CLIENT_KEY_EXCHANGE, n)) { goto err; } s->state = SSL3_ST_CW_KEY_EXCH_B; s->session->master_key_length = s->enc_method->generate_master_secret( s, s->session->master_key, pms, pms_len); if (s->session->master_key_length == 0) { goto err; } s->session->extended_master_secret = s->s3->tmp.extended_master_secret; OPENSSL_cleanse(pms, pms_len); OPENSSL_free(pms); } /* SSL3_ST_CW_KEY_EXCH_B */ return s->method->do_write(s); err: BN_CTX_free(bn_ctx); OPENSSL_free(encodedPoint); EC_KEY_free(clnt_ecdh); EVP_PKEY_free(srvr_pub_pkey); if (pms) { OPENSSL_cleanse(pms, pms_len); OPENSSL_free(pms); } return -1; } int ssl3_send_cert_verify(SSL *s) { if (s->state == SSL3_ST_CW_CERT_VRFY_A || s->state == SSL3_ST_CW_CERT_VRFY_B) { enum ssl_private_key_result_t sign_result; uint8_t *p = ssl_handshake_start(s); size_t signature_length = 0; unsigned long n = 0; assert(ssl_has_private_key(s)); if (s->state == SSL3_ST_CW_CERT_VRFY_A) { uint8_t *buf = (uint8_t *)s->init_buf->data; const EVP_MD *md = NULL; uint8_t digest[EVP_MAX_MD_SIZE]; size_t digest_length; /* Write out the digest type if need be. */ if (SSL_USE_SIGALGS(s)) { md = tls1_choose_signing_digest(s); if (!tls12_get_sigandhash(s, p, md)) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); return -1; } p += 2; n += 2; } /* Compute the digest. */ const int pkey_type = ssl_private_key_type(s); if (!ssl3_cert_verify_hash(s, digest, &digest_length, &md, pkey_type)) { return -1; } /* The handshake buffer is no longer necessary. */ ssl3_free_handshake_buffer(s); /* Sign the digest. */ signature_length = ssl_private_key_max_signature_len(s); if (p + 2 + signature_length > buf + SSL3_RT_MAX_PLAIN_LENGTH) { OPENSSL_PUT_ERROR(SSL, SSL_R_DATA_LENGTH_TOO_LONG); return -1; } s->rwstate = SSL_PRIVATE_KEY_OPERATION; sign_result = ssl_private_key_sign(s, &p[2], &signature_length, signature_length, md, digest, digest_length); } else { if (SSL_USE_SIGALGS(s)) { /* The digest has already been selected and written. */ p += 2; n += 2; } signature_length = ssl_private_key_max_signature_len(s); s->rwstate = SSL_PRIVATE_KEY_OPERATION; sign_result = ssl_private_key_sign_complete(s, &p[2], &signature_length, signature_length); } if (sign_result == ssl_private_key_retry) { s->state = SSL3_ST_CW_CERT_VRFY_B; return -1; } s->rwstate = SSL_NOTHING; if (sign_result != ssl_private_key_success) { return -1; } s2n(signature_length, p); n += signature_length + 2; if (!ssl_set_handshake_header(s, SSL3_MT_CERTIFICATE_VERIFY, n)) { return -1; } s->state = SSL3_ST_CW_CERT_VRFY_C; } return ssl_do_write(s); } /* ssl3_has_client_certificate returns true if a client certificate is * configured. */ static int ssl3_has_client_certificate(SSL *ssl) { return ssl->cert && ssl->cert->x509 && ssl_has_private_key(ssl); } int ssl3_send_client_certificate(SSL *s) { X509 *x509 = NULL; EVP_PKEY *pkey = NULL; int i; if (s->state == SSL3_ST_CW_CERT_A) { /* Let cert callback update client certificates if required */ if (s->cert->cert_cb) { i = s->cert->cert_cb(s, s->cert->cert_cb_arg); if (i < 0) { s->rwstate = SSL_X509_LOOKUP; return -1; } if (i == 0) { ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); return 0; } s->rwstate = SSL_NOTHING; } if (ssl3_has_client_certificate(s)) { s->state = SSL3_ST_CW_CERT_C; } else { s->state = SSL3_ST_CW_CERT_B; } } /* We need to get a client cert */ if (s->state == SSL3_ST_CW_CERT_B) { /* If we get an error, we need to: * ssl->rwstate=SSL_X509_LOOKUP; return(-1); * We then get retried later */ i = ssl_do_client_cert_cb(s, &x509, &pkey); if (i < 0) { s->rwstate = SSL_X509_LOOKUP; return -1; } s->rwstate = SSL_NOTHING; if (i == 1 && pkey != NULL && x509 != NULL) { s->state = SSL3_ST_CW_CERT_B; if (!SSL_use_certificate(s, x509) || !SSL_use_PrivateKey(s, pkey)) { i = 0; } } else if (i == 1) { i = 0; OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_DATA_RETURNED_BY_CALLBACK); } X509_free(x509); EVP_PKEY_free(pkey); if (i && !ssl3_has_client_certificate(s)) { i = 0; } if (i == 0) { if (s->version == SSL3_VERSION) { s->s3->tmp.cert_req = 0; ssl3_send_alert(s, SSL3_AL_WARNING, SSL_AD_NO_CERTIFICATE); return 1; } else { s->s3->tmp.cert_req = 2; /* There is no client certificate, so the handshake buffer may be * released. */ ssl3_free_handshake_buffer(s); } } /* Ok, we have a cert */ s->state = SSL3_ST_CW_CERT_C; } if (s->state == SSL3_ST_CW_CERT_C) { if (s->s3->tmp.cert_req == 2) { /* Send an empty Certificate message. */ uint8_t *p = ssl_handshake_start(s); l2n3(0, p); if (!ssl_set_handshake_header(s, SSL3_MT_CERTIFICATE, 3)) { return -1; } } else if (!ssl3_output_cert_chain(s)) { return -1; } s->state = SSL3_ST_CW_CERT_D; } /* SSL3_ST_CW_CERT_D */ return ssl_do_write(s); } int ssl3_send_next_proto(SSL *s) { unsigned int len, padding_len; uint8_t *d, *p; if (s->state == SSL3_ST_CW_NEXT_PROTO_A) { len = s->next_proto_negotiated_len; padding_len = 32 - ((len + 2) % 32); d = p = ssl_handshake_start(s); *(p++) = len; memcpy(p, s->next_proto_negotiated, len); p += len; *(p++) = padding_len; memset(p, 0, padding_len); p += padding_len; if (!ssl_set_handshake_header(s, SSL3_MT_NEXT_PROTO, p - d)) { return -1; } s->state = SSL3_ST_CW_NEXT_PROTO_B; } return ssl_do_write(s); } int ssl3_send_channel_id(SSL *s) { uint8_t *d; int ret = -1, public_key_len; EVP_MD_CTX md_ctx; ECDSA_SIG *sig = NULL; uint8_t *public_key = NULL, *derp, *der_sig = NULL; if (s->state != SSL3_ST_CW_CHANNEL_ID_A) { return ssl_do_write(s); } if (!s->tlsext_channel_id_private && s->ctx->channel_id_cb) { EVP_PKEY *key = NULL; s->ctx->channel_id_cb(s, &key); if (key != NULL) { s->tlsext_channel_id_private = key; } } if (!s->tlsext_channel_id_private) { s->rwstate = SSL_CHANNEL_ID_LOOKUP; return -1; } s->rwstate = SSL_NOTHING; if (EVP_PKEY_id(s->tlsext_channel_id_private) != EVP_PKEY_EC) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); return -1; } EC_KEY *ec_key = s->tlsext_channel_id_private->pkey.ec; d = ssl_handshake_start(s); s2n(TLSEXT_TYPE_channel_id, d); s2n(TLSEXT_CHANNEL_ID_SIZE, d); EVP_MD_CTX_init(&md_ctx); public_key_len = i2o_ECPublicKey(ec_key, NULL); if (public_key_len <= 0) { OPENSSL_PUT_ERROR(SSL, SSL_R_CANNOT_SERIALIZE_PUBLIC_KEY); goto err; } /* i2o_ECPublicKey will produce an ANSI X9.62 public key which, for a * P-256 key, is 0x04 (meaning uncompressed) followed by the x and y * field elements as 32-byte, big-endian numbers. */ if (public_key_len != 65) { OPENSSL_PUT_ERROR(SSL, SSL_R_CHANNEL_ID_NOT_P256); goto err; } public_key = OPENSSL_malloc(public_key_len); if (!public_key) { OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); goto err; } derp = public_key; i2o_ECPublicKey(ec_key, &derp); uint8_t digest[EVP_MAX_MD_SIZE]; size_t digest_len; if (!tls1_channel_id_hash(s, digest, &digest_len)) { goto err; } sig = ECDSA_do_sign(digest, digest_len, ec_key); if (sig == NULL) { goto err; } /* The first byte of public_key will be 0x4, denoting an uncompressed key. */ memcpy(d, public_key + 1, 64); d += 64; if (!BN_bn2bin_padded(d, 32, sig->r) || !BN_bn2bin_padded(d + 32, 32, sig->s)) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); goto err; } if (!ssl_set_handshake_header(s, SSL3_MT_ENCRYPTED_EXTENSIONS, 2 + 2 + TLSEXT_CHANNEL_ID_SIZE)) { goto err; } s->state = SSL3_ST_CW_CHANNEL_ID_B; ret = ssl_do_write(s); err: EVP_MD_CTX_cleanup(&md_ctx); OPENSSL_free(public_key); OPENSSL_free(der_sig); ECDSA_SIG_free(sig); return ret; } int ssl_do_client_cert_cb(SSL *s, X509 **px509, EVP_PKEY **ppkey) { int i = 0; if (s->ctx->client_cert_cb) { i = s->ctx->client_cert_cb(s, px509, ppkey); } return i; } int ssl3_verify_server_cert(SSL *s) { int ret = ssl_verify_cert_chain(s, s->session->cert_chain); if (s->verify_mode != SSL_VERIFY_NONE && ret <= 0) { int al = ssl_verify_alarm_type(s->verify_result); ssl3_send_alert(s, SSL3_AL_FATAL, al); OPENSSL_PUT_ERROR(SSL, SSL_R_CERTIFICATE_VERIFY_FAILED); } else { ret = 1; ERR_clear_error(); /* but we keep s->verify_result */ } return ret; }