/* Copyright (c) 2015, Google Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include #include #include "internal.h" OPENSSL_COMPILE_ASSERT(EVP_AEAD_MAX_NONCE_LENGTH < 256, variable_nonce_len_doesnt_fit_in_uint8_t); SSL_AEAD_CTX *SSL_AEAD_CTX_new(enum evp_aead_direction_t direction, uint16_t version, const SSL_CIPHER *cipher, const uint8_t *enc_key, size_t enc_key_len, const uint8_t *mac_key, size_t mac_key_len, const uint8_t *fixed_iv, size_t fixed_iv_len) { const EVP_AEAD *aead; size_t discard; if (!ssl_cipher_get_evp_aead(&aead, &discard, &discard, cipher, version)) { OPENSSL_PUT_ERROR(SSL, SSL_AEAD_CTX_new, ERR_R_INTERNAL_ERROR); return 0; } uint8_t merged_key[EVP_AEAD_MAX_KEY_LENGTH]; if (mac_key_len > 0) { /* This is a "stateful" AEAD (for compatibility with pre-AEAD cipher * suites). */ if (mac_key_len + enc_key_len + fixed_iv_len > sizeof(merged_key)) { OPENSSL_PUT_ERROR(SSL, SSL_AEAD_CTX_new, ERR_R_INTERNAL_ERROR); return 0; } memcpy(merged_key, mac_key, mac_key_len); memcpy(merged_key + mac_key_len, enc_key, enc_key_len); memcpy(merged_key + mac_key_len + enc_key_len, fixed_iv, fixed_iv_len); enc_key = merged_key; enc_key_len += mac_key_len; enc_key_len += fixed_iv_len; } SSL_AEAD_CTX *aead_ctx = (SSL_AEAD_CTX *)OPENSSL_malloc(sizeof(SSL_AEAD_CTX)); if (aead_ctx == NULL) { OPENSSL_PUT_ERROR(SSL, SSL_AEAD_CTX_new, ERR_R_MALLOC_FAILURE); return NULL; } memset(aead_ctx, 0, sizeof(SSL_AEAD_CTX)); aead_ctx->cipher = cipher; if (!EVP_AEAD_CTX_init_with_direction( &aead_ctx->ctx, aead, enc_key, enc_key_len, EVP_AEAD_DEFAULT_TAG_LENGTH, direction)) { OPENSSL_free(aead_ctx); return NULL; } assert(EVP_AEAD_nonce_length(aead) <= EVP_AEAD_MAX_NONCE_LENGTH); aead_ctx->variable_nonce_len = (uint8_t)EVP_AEAD_nonce_length(aead); if (mac_key_len == 0) { /* For a real AEAD, the IV is the fixed part of the nonce. */ if (fixed_iv_len > sizeof(aead_ctx->fixed_nonce) || fixed_iv_len > aead_ctx->variable_nonce_len) { SSL_AEAD_CTX_free(aead_ctx); OPENSSL_PUT_ERROR(SSL, SSL_AEAD_CTX_new, ERR_R_INTERNAL_ERROR); return 0; } aead_ctx->variable_nonce_len -= fixed_iv_len; memcpy(aead_ctx->fixed_nonce, fixed_iv, fixed_iv_len); aead_ctx->fixed_nonce_len = fixed_iv_len; aead_ctx->variable_nonce_included_in_record = (cipher->algorithm2 & SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_INCLUDED_IN_RECORD) != 0; } else { aead_ctx->variable_nonce_included_in_record = 1; aead_ctx->random_variable_nonce = 1; aead_ctx->omit_length_in_ad = 1; aead_ctx->omit_version_in_ad = (version == SSL3_VERSION); } return aead_ctx; } void SSL_AEAD_CTX_free(SSL_AEAD_CTX *aead) { if (aead == NULL) { return; } EVP_AEAD_CTX_cleanup(&aead->ctx); OPENSSL_free(aead); } size_t SSL_AEAD_CTX_explicit_nonce_len(SSL_AEAD_CTX *aead) { if (aead != NULL && aead->variable_nonce_included_in_record) { return aead->variable_nonce_len; } return 0; } size_t SSL_AEAD_CTX_max_overhead(SSL_AEAD_CTX *aead) { if (aead == NULL) { return 0; } return EVP_AEAD_max_overhead(aead->ctx.aead) + SSL_AEAD_CTX_explicit_nonce_len(aead); } /* ssl_aead_ctx_get_ad writes the additional data for |aead| into |out| and * returns the number of bytes written. */ static size_t ssl_aead_ctx_get_ad(SSL_AEAD_CTX *aead, uint8_t out[13], uint8_t type, uint16_t wire_version, const uint8_t seqnum[8], size_t plaintext_len) { memcpy(out, seqnum, 8); size_t len = 8; out[len++] = type; if (!aead->omit_version_in_ad) { out[len++] = (uint8_t)(wire_version >> 8); out[len++] = (uint8_t)wire_version; } if (!aead->omit_length_in_ad) { out[len++] = (uint8_t)(plaintext_len >> 8); out[len++] = (uint8_t)plaintext_len; } return len; } int SSL_AEAD_CTX_open(SSL_AEAD_CTX *aead, uint8_t *out, size_t *out_len, size_t max_out, uint8_t type, uint16_t wire_version, const uint8_t seqnum[8], const uint8_t *in, size_t in_len) { if (aead == NULL) { /* Handle the initial NULL cipher. */ if (in_len > max_out) { OPENSSL_PUT_ERROR(SSL, SSL_AEAD_CTX_open, SSL_R_BUFFER_TOO_SMALL); return 0; } memmove(out, in, in_len); *out_len = in_len; return 1; } /* TLS 1.2 AEADs include the length in the AD and are assumed to have fixed * overhead. Otherwise the parameter is unused. */ size_t plaintext_len = 0; if (!aead->omit_length_in_ad) { size_t overhead = SSL_AEAD_CTX_max_overhead(aead); if (in_len < overhead) { /* Publicly invalid. */ OPENSSL_PUT_ERROR(SSL, SSL_AEAD_CTX_open, SSL_R_BAD_PACKET_LENGTH); return 0; } plaintext_len = in_len - overhead; } uint8_t ad[13]; size_t ad_len = ssl_aead_ctx_get_ad(aead, ad, type, wire_version, seqnum, plaintext_len); /* Assemble the nonce. */ uint8_t nonce[EVP_AEAD_MAX_NONCE_LENGTH]; size_t nonce_len = 0; memcpy(nonce, aead->fixed_nonce, aead->fixed_nonce_len); nonce_len += aead->fixed_nonce_len; if (aead->variable_nonce_included_in_record) { if (in_len < aead->variable_nonce_len) { /* Publicly invalid. */ OPENSSL_PUT_ERROR(SSL, SSL_AEAD_CTX_open, SSL_R_BAD_PACKET_LENGTH); return 0; } memcpy(nonce + nonce_len, in, aead->variable_nonce_len); in += aead->variable_nonce_len; in_len -= aead->variable_nonce_len; } else { assert(aead->variable_nonce_len == 8); memcpy(nonce + nonce_len, seqnum, aead->variable_nonce_len); } nonce_len += aead->variable_nonce_len; return EVP_AEAD_CTX_open(&aead->ctx, out, out_len, max_out, nonce, nonce_len, in, in_len, ad, ad_len); } int SSL_AEAD_CTX_seal(SSL_AEAD_CTX *aead, uint8_t *out, size_t *out_len, size_t max_out, uint8_t type, uint16_t wire_version, const uint8_t seqnum[8], const uint8_t *in, size_t in_len) { if (aead == NULL) { /* Handle the initial NULL cipher. */ if (in_len > max_out) { OPENSSL_PUT_ERROR(SSL, SSL_AEAD_CTX_seal, SSL_R_BUFFER_TOO_SMALL); return 0; } memmove(out, in, in_len); *out_len = in_len; return 1; } uint8_t ad[13]; size_t ad_len = ssl_aead_ctx_get_ad(aead, ad, type, wire_version, seqnum, in_len); /* Assemble the nonce. */ uint8_t nonce[EVP_AEAD_MAX_NONCE_LENGTH]; size_t nonce_len = 0; memcpy(nonce, aead->fixed_nonce, aead->fixed_nonce_len); nonce_len += aead->fixed_nonce_len; if (aead->random_variable_nonce) { assert(aead->variable_nonce_included_in_record); if (!RAND_bytes(nonce + nonce_len, aead->variable_nonce_len)) { return 0; } } else { /* When sending we use the sequence number as the variable part of the * nonce. */ assert(aead->variable_nonce_len == 8); memcpy(nonce + nonce_len, ad, aead->variable_nonce_len); } nonce_len += aead->variable_nonce_len; /* Emit the variable nonce if included in the record. */ size_t extra_len = 0; if (aead->variable_nonce_included_in_record) { if (max_out < aead->variable_nonce_len) { OPENSSL_PUT_ERROR(SSL, SSL_AEAD_CTX_seal, SSL_R_BUFFER_TOO_SMALL); return 0; } if (out < in + in_len && in < out + aead->variable_nonce_len) { OPENSSL_PUT_ERROR(SSL, SSL_AEAD_CTX_seal, SSL_R_OUTPUT_ALIASES_INPUT); return 0; } memcpy(out, nonce + aead->fixed_nonce_len, aead->variable_nonce_len); extra_len = aead->variable_nonce_len; out += aead->variable_nonce_len; max_out -= aead->variable_nonce_len; } if (!EVP_AEAD_CTX_seal(&aead->ctx, out, out_len, max_out, nonce, nonce_len, in, in_len, ad, ad_len)) { return 0; } *out_len += extra_len; return 1; }