/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ /* ==================================================================== * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ /* ==================================================================== * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. * ECC cipher suite support in OpenSSL originally developed by * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project. */ /* ==================================================================== * Copyright 2005 Nokia. All rights reserved. * * The portions of the attached software ("Contribution") is developed by * Nokia Corporation and is licensed pursuant to the OpenSSL open source * license. * * The Contribution, originally written by Mika Kousa and Pasi Eronen of * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites * support (see RFC 4279) to OpenSSL. * * No patent licenses or other rights except those expressly stated in * the OpenSSL open source license shall be deemed granted or received * expressly, by implication, estoppel, or otherwise. * * No assurances are provided by Nokia that the Contribution does not * infringe the patent or other intellectual property rights of any third * party or that the license provides you with all the necessary rights * to make use of the Contribution. * * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR * OTHERWISE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "internal.h" #include "../crypto/internal.h" /* |SSL_R_UNKNOWN_PROTOCOL| is no longer emitted, but continue to define it * to avoid downstream churn. */ OPENSSL_DECLARE_ERROR_REASON(SSL, UNKNOWN_PROTOCOL) /* Some error codes are special. Ensure the make_errors.go script never * regresses this. */ OPENSSL_COMPILE_ASSERT(SSL_R_TLSV1_ALERT_NO_RENEGOTIATION == SSL_AD_NO_RENEGOTIATION + SSL_AD_REASON_OFFSET, ssl_alert_reason_code_mismatch); /* kMaxHandshakeSize is the maximum size, in bytes, of a handshake message. */ static const size_t kMaxHandshakeSize = (1u << 24) - 1; static CRYPTO_EX_DATA_CLASS g_ex_data_class_ssl = CRYPTO_EX_DATA_CLASS_INIT_WITH_APP_DATA; static CRYPTO_EX_DATA_CLASS g_ex_data_class_ssl_ctx = CRYPTO_EX_DATA_CLASS_INIT_WITH_APP_DATA; int SSL_library_init(void) { CRYPTO_library_init(); return 1; } static uint32_t ssl_session_hash(const SSL_SESSION *a) { uint32_t hash = ((uint32_t)a->session_id[0]) || ((uint32_t)a->session_id[1] << 8) || ((uint32_t)a->session_id[2] << 16) || ((uint32_t)a->session_id[3] << 24); return hash; } /* NB: If this function (or indeed the hash function which uses a sort of * coarser function than this one) is changed, ensure * SSL_CTX_has_matching_session_id() is checked accordingly. It relies on being * able to construct an SSL_SESSION that will collide with any existing session * with a matching session ID. */ static int ssl_session_cmp(const SSL_SESSION *a, const SSL_SESSION *b) { if (a->ssl_version != b->ssl_version) { return 1; } if (a->session_id_length != b->session_id_length) { return 1; } return memcmp(a->session_id, b->session_id, a->session_id_length); } SSL_CTX *SSL_CTX_new(const SSL_METHOD *method) { SSL_CTX *ret = NULL; if (method == NULL) { OPENSSL_PUT_ERROR(SSL, SSL_R_NULL_SSL_METHOD_PASSED); return NULL; } if (SSL_get_ex_data_X509_STORE_CTX_idx() < 0) { OPENSSL_PUT_ERROR(SSL, SSL_R_X509_VERIFICATION_SETUP_PROBLEMS); goto err; } ret = (SSL_CTX *)OPENSSL_malloc(sizeof(SSL_CTX)); if (ret == NULL) { goto err; } memset(ret, 0, sizeof(SSL_CTX)); ret->method = method->method; CRYPTO_MUTEX_init(&ret->lock); ret->session_cache_mode = SSL_SESS_CACHE_SERVER; ret->session_cache_size = SSL_SESSION_CACHE_MAX_SIZE_DEFAULT; /* We take the system default */ ret->session_timeout = SSL_DEFAULT_SESSION_TIMEOUT; ret->references = 1; ret->max_cert_list = SSL_MAX_CERT_LIST_DEFAULT; ret->verify_mode = SSL_VERIFY_NONE; ret->cert = ssl_cert_new(); if (ret->cert == NULL) { goto err; } ret->sessions = lh_SSL_SESSION_new(ssl_session_hash, ssl_session_cmp); if (ret->sessions == NULL) { goto err; } ret->cert_store = X509_STORE_new(); if (ret->cert_store == NULL) { goto err; } ssl_create_cipher_list(ret->method, &ret->cipher_list, &ret->cipher_list_by_id, SSL_DEFAULT_CIPHER_LIST); if (ret->cipher_list == NULL || sk_SSL_CIPHER_num(ret->cipher_list->ciphers) <= 0) { OPENSSL_PUT_ERROR(SSL, SSL_R_LIBRARY_HAS_NO_CIPHERS); goto err2; } ret->param = X509_VERIFY_PARAM_new(); if (!ret->param) { goto err; } ret->client_CA = sk_X509_NAME_new_null(); if (ret->client_CA == NULL) { goto err; } CRYPTO_new_ex_data(&g_ex_data_class_ssl_ctx, ret, &ret->ex_data); ret->max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH; /* Setup RFC4507 ticket keys */ if (!RAND_bytes(ret->tlsext_tick_key_name, 16) || !RAND_bytes(ret->tlsext_tick_hmac_key, 16) || !RAND_bytes(ret->tlsext_tick_aes_key, 16)) { ret->options |= SSL_OP_NO_TICKET; } /* Default is to connect to non-RI servers. When RI is more widely deployed * might change this. */ ret->options |= SSL_OP_LEGACY_SERVER_CONNECT; /* Lock the SSL_CTX to the specified version, for compatibility with legacy * uses of SSL_METHOD. */ if (method->version != 0) { SSL_CTX_set_max_version(ret, method->version); SSL_CTX_set_min_version(ret, method->version); } return ret; err: OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); err2: SSL_CTX_free(ret); return NULL; } void SSL_CTX_free(SSL_CTX *ctx) { if (ctx == NULL || !CRYPTO_refcount_dec_and_test_zero(&ctx->references)) { return; } X509_VERIFY_PARAM_free(ctx->param); /* Free internal session cache. However: the remove_cb() may reference the * ex_data of SSL_CTX, thus the ex_data store can only be removed after the * sessions were flushed. As the ex_data handling routines might also touch * the session cache, the most secure solution seems to be: empty (flush) the * cache, then free ex_data, then finally free the cache. (See ticket * [openssl.org #212].) */ SSL_CTX_flush_sessions(ctx, 0); CRYPTO_free_ex_data(&g_ex_data_class_ssl_ctx, ctx, &ctx->ex_data); CRYPTO_MUTEX_cleanup(&ctx->lock); lh_SSL_SESSION_free(ctx->sessions); X509_STORE_free(ctx->cert_store); ssl_cipher_preference_list_free(ctx->cipher_list); sk_SSL_CIPHER_free(ctx->cipher_list_by_id); ssl_cipher_preference_list_free(ctx->cipher_list_tls10); ssl_cipher_preference_list_free(ctx->cipher_list_tls11); ssl_cert_free(ctx->cert); sk_SSL_CUSTOM_EXTENSION_pop_free(ctx->client_custom_extensions, SSL_CUSTOM_EXTENSION_free); sk_SSL_CUSTOM_EXTENSION_pop_free(ctx->server_custom_extensions, SSL_CUSTOM_EXTENSION_free); sk_X509_NAME_pop_free(ctx->client_CA, X509_NAME_free); sk_SRTP_PROTECTION_PROFILE_free(ctx->srtp_profiles); OPENSSL_free(ctx->psk_identity_hint); OPENSSL_free(ctx->tlsext_ellipticcurvelist); OPENSSL_free(ctx->alpn_client_proto_list); OPENSSL_free(ctx->ocsp_response); OPENSSL_free(ctx->signed_cert_timestamp_list); EVP_PKEY_free(ctx->tlsext_channel_id_private); BIO_free(ctx->keylog_bio); OPENSSL_free(ctx); } SSL *SSL_new(SSL_CTX *ctx) { SSL *s; if (ctx == NULL) { OPENSSL_PUT_ERROR(SSL, SSL_R_NULL_SSL_CTX); return NULL; } if (ctx->method == NULL) { OPENSSL_PUT_ERROR(SSL, SSL_R_SSL_CTX_HAS_NO_DEFAULT_SSL_VERSION); return NULL; } s = (SSL *)OPENSSL_malloc(sizeof(SSL)); if (s == NULL) { goto err; } memset(s, 0, sizeof(SSL)); s->min_version = ctx->min_version; s->max_version = ctx->max_version; s->options = ctx->options; s->mode = ctx->mode; s->max_cert_list = ctx->max_cert_list; s->cert = ssl_cert_dup(ctx->cert); if (s->cert == NULL) { goto err; } s->msg_callback = ctx->msg_callback; s->msg_callback_arg = ctx->msg_callback_arg; s->verify_mode = ctx->verify_mode; s->sid_ctx_length = ctx->sid_ctx_length; assert(s->sid_ctx_length <= sizeof s->sid_ctx); memcpy(&s->sid_ctx, &ctx->sid_ctx, sizeof(s->sid_ctx)); s->verify_callback = ctx->default_verify_callback; s->generate_session_id = ctx->generate_session_id; s->param = X509_VERIFY_PARAM_new(); if (!s->param) { goto err; } X509_VERIFY_PARAM_inherit(s->param, ctx->param); s->quiet_shutdown = ctx->quiet_shutdown; s->max_send_fragment = ctx->max_send_fragment; CRYPTO_refcount_inc(&ctx->references); s->ctx = ctx; CRYPTO_refcount_inc(&ctx->references); s->initial_ctx = ctx; if (ctx->tlsext_ellipticcurvelist) { s->tlsext_ellipticcurvelist = BUF_memdup(ctx->tlsext_ellipticcurvelist, ctx->tlsext_ellipticcurvelist_length * 2); if (!s->tlsext_ellipticcurvelist) { goto err; } s->tlsext_ellipticcurvelist_length = ctx->tlsext_ellipticcurvelist_length; } if (s->ctx->alpn_client_proto_list) { s->alpn_client_proto_list = BUF_memdup(s->ctx->alpn_client_proto_list, s->ctx->alpn_client_proto_list_len); if (s->alpn_client_proto_list == NULL) { goto err; } s->alpn_client_proto_list_len = s->ctx->alpn_client_proto_list_len; } s->verify_result = X509_V_OK; s->method = ctx->method; if (!s->method->ssl_new(s)) { goto err; } s->enc_method = ssl3_get_enc_method(s->version); assert(s->enc_method != NULL); s->rwstate = SSL_NOTHING; CRYPTO_new_ex_data(&g_ex_data_class_ssl, s, &s->ex_data); s->psk_identity_hint = NULL; if (ctx->psk_identity_hint) { s->psk_identity_hint = BUF_strdup(ctx->psk_identity_hint); if (s->psk_identity_hint == NULL) { goto err; } } s->psk_client_callback = ctx->psk_client_callback; s->psk_server_callback = ctx->psk_server_callback; s->tlsext_channel_id_enabled = ctx->tlsext_channel_id_enabled; if (ctx->tlsext_channel_id_private) { s->tlsext_channel_id_private = EVP_PKEY_up_ref(ctx->tlsext_channel_id_private); } s->signed_cert_timestamps_enabled = s->ctx->signed_cert_timestamps_enabled; s->ocsp_stapling_enabled = s->ctx->ocsp_stapling_enabled; return s; err: SSL_free(s); OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); return NULL; } void SSL_free(SSL *ssl) { if (ssl == NULL) { return; } X509_VERIFY_PARAM_free(ssl->param); CRYPTO_free_ex_data(&g_ex_data_class_ssl, ssl, &ssl->ex_data); if (ssl->bbio != NULL) { /* If the buffering BIO is in place, pop it off */ if (ssl->bbio == ssl->wbio) { ssl->wbio = BIO_pop(ssl->wbio); } BIO_free(ssl->bbio); ssl->bbio = NULL; } int free_wbio = ssl->wbio != ssl->rbio; BIO_free_all(ssl->rbio); if (free_wbio) { BIO_free_all(ssl->wbio); } BUF_MEM_free(ssl->init_buf); /* add extra stuff */ ssl_cipher_preference_list_free(ssl->cipher_list); sk_SSL_CIPHER_free(ssl->cipher_list_by_id); ssl_clear_bad_session(ssl); SSL_SESSION_free(ssl->session); ssl_clear_cipher_ctx(ssl); ssl_cert_free(ssl->cert); OPENSSL_free(ssl->tlsext_hostname); SSL_CTX_free(ssl->initial_ctx); OPENSSL_free(ssl->tlsext_ellipticcurvelist); OPENSSL_free(ssl->alpn_client_proto_list); EVP_PKEY_free(ssl->tlsext_channel_id_private); OPENSSL_free(ssl->psk_identity_hint); sk_X509_NAME_pop_free(ssl->client_CA, X509_NAME_free); OPENSSL_free(ssl->next_proto_negotiated); sk_SRTP_PROTECTION_PROFILE_free(ssl->srtp_profiles); if (ssl->method != NULL) { ssl->method->ssl_free(ssl); } SSL_CTX_free(ssl->ctx); OPENSSL_free(ssl); } void SSL_set_connect_state(SSL *ssl) { ssl->server = 0; ssl->shutdown = 0; ssl->state = SSL_ST_CONNECT; ssl->handshake_func = ssl->method->ssl_connect; /* clear the current cipher */ ssl_clear_cipher_ctx(ssl); } void SSL_set_accept_state(SSL *ssl) { ssl->server = 1; ssl->shutdown = 0; ssl->state = SSL_ST_ACCEPT; ssl->handshake_func = ssl->method->ssl_accept; /* clear the current cipher */ ssl_clear_cipher_ctx(ssl); } void SSL_set_bio(SSL *ssl, BIO *rbio, BIO *wbio) { /* If the output buffering BIO is still in place, remove it. */ if (ssl->bbio != NULL) { if (ssl->wbio == ssl->bbio) { ssl->wbio = ssl->wbio->next_bio; ssl->bbio->next_bio = NULL; } } if (ssl->rbio != rbio) { BIO_free_all(ssl->rbio); } if (ssl->wbio != wbio && ssl->rbio != ssl->wbio) { BIO_free_all(ssl->wbio); } ssl->rbio = rbio; ssl->wbio = wbio; } BIO *SSL_get_rbio(const SSL *ssl) { return ssl->rbio; } BIO *SSL_get_wbio(const SSL *ssl) { return ssl->wbio; } int SSL_do_handshake(SSL *ssl) { if (ssl->handshake_func == NULL) { OPENSSL_PUT_ERROR(SSL, SSL_R_CONNECTION_TYPE_NOT_SET); return -1; } if (!SSL_in_init(ssl)) { return 1; } return ssl->handshake_func(ssl); } int SSL_connect(SSL *ssl) { if (ssl->handshake_func == 0) { /* Not properly initialized yet */ SSL_set_connect_state(ssl); } if (ssl->handshake_func != ssl->method->ssl_connect) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); return -1; } return ssl->handshake_func(ssl); } int SSL_accept(SSL *ssl) { if (ssl->handshake_func == 0) { /* Not properly initialized yet */ SSL_set_accept_state(ssl); } if (ssl->handshake_func != ssl->method->ssl_accept) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); return -1; } return ssl->handshake_func(ssl); } int SSL_read(SSL *ssl, void *buf, int num) { if (ssl->handshake_func == 0) { OPENSSL_PUT_ERROR(SSL, SSL_R_UNINITIALIZED); return -1; } if (ssl->shutdown & SSL_RECEIVED_SHUTDOWN) { ssl->rwstate = SSL_NOTHING; return 0; } ERR_clear_system_error(); return ssl->method->ssl_read_app_data(ssl, buf, num, 0); } int SSL_peek(SSL *ssl, void *buf, int num) { if (ssl->handshake_func == 0) { OPENSSL_PUT_ERROR(SSL, SSL_R_UNINITIALIZED); return -1; } if (ssl->shutdown & SSL_RECEIVED_SHUTDOWN) { return 0; } ERR_clear_system_error(); return ssl->method->ssl_read_app_data(ssl, buf, num, 1); } int SSL_write(SSL *ssl, const void *buf, int num) { if (ssl->handshake_func == 0) { OPENSSL_PUT_ERROR(SSL, SSL_R_UNINITIALIZED); return -1; } if (ssl->shutdown & SSL_SENT_SHUTDOWN) { ssl->rwstate = SSL_NOTHING; OPENSSL_PUT_ERROR(SSL, SSL_R_PROTOCOL_IS_SHUTDOWN); return -1; } ERR_clear_system_error(); return ssl->method->ssl_write_app_data(ssl, buf, num); } int SSL_shutdown(SSL *ssl) { /* Note that this function behaves differently from what one might expect. * Return values are 0 for no success (yet), 1 for success; but calling it * once is usually not enough, even if blocking I/O is used (see * ssl3_shutdown). */ if (ssl->handshake_func == 0) { OPENSSL_PUT_ERROR(SSL, SSL_R_UNINITIALIZED); return -1; } if (SSL_in_init(ssl)) { return 1; } /* Do nothing if configured not to send a close_notify. */ if (ssl->quiet_shutdown) { ssl->shutdown = SSL_SENT_SHUTDOWN | SSL_RECEIVED_SHUTDOWN; return 1; } if (!(ssl->shutdown & SSL_SENT_SHUTDOWN)) { ssl->shutdown |= SSL_SENT_SHUTDOWN; ssl3_send_alert(ssl, SSL3_AL_WARNING, SSL_AD_CLOSE_NOTIFY); /* our shutdown alert has been sent now, and if it still needs to be * written, ssl->s3->alert_dispatch will be true */ if (ssl->s3->alert_dispatch) { return -1; /* return WANT_WRITE */ } } else if (ssl->s3->alert_dispatch) { /* resend it if not sent */ int ret = ssl->method->ssl_dispatch_alert(ssl); if (ret == -1) { /* we only get to return -1 here the 2nd/Nth invocation, we must have * already signalled return 0 upon a previous invoation, return * WANT_WRITE */ return ret; } } else if (!(ssl->shutdown & SSL_RECEIVED_SHUTDOWN)) { /* If we are waiting for a close from our peer, we are closed */ ssl->method->ssl_read_close_notify(ssl); if (!(ssl->shutdown & SSL_RECEIVED_SHUTDOWN)) { return -1; /* return WANT_READ */ } } if (ssl->shutdown == (SSL_SENT_SHUTDOWN | SSL_RECEIVED_SHUTDOWN) && !ssl->s3->alert_dispatch) { return 1; } else { return 0; } } int SSL_get_error(const SSL *ssl, int ret_code) { int reason; uint32_t err; BIO *bio; if (ret_code > 0) { return SSL_ERROR_NONE; } /* Make things return SSL_ERROR_SYSCALL when doing SSL_do_handshake etc, * where we do encode the error */ err = ERR_peek_error(); if (err != 0) { if (ERR_GET_LIB(err) == ERR_LIB_SYS) { return SSL_ERROR_SYSCALL; } return SSL_ERROR_SSL; } if (ret_code == 0) { if ((ssl->shutdown & SSL_RECEIVED_SHUTDOWN) && (ssl->s3->warn_alert == SSL_AD_CLOSE_NOTIFY)) { /* The socket was cleanly shut down with a close_notify. */ return SSL_ERROR_ZERO_RETURN; } /* An EOF was observed which violates the protocol, and the underlying * transport does not participate in the error queue. Bubble up to the * caller. */ return SSL_ERROR_SYSCALL; } if (SSL_want_session(ssl)) { return SSL_ERROR_PENDING_SESSION; } if (SSL_want_certificate(ssl)) { return SSL_ERROR_PENDING_CERTIFICATE; } if (SSL_want_read(ssl)) { bio = SSL_get_rbio(ssl); if (BIO_should_read(bio)) { return SSL_ERROR_WANT_READ; } if (BIO_should_write(bio)) { /* This one doesn't make too much sense ... We never try to write to the * rbio, and an application program where rbio and wbio are separate * couldn't even know what it should wait for. However if we ever set * s->rwstate incorrectly (so that we have SSL_want_read(s) instead of * SSL_want_write(s)) and rbio and wbio *are* the same, this test works * around that bug; so it might be safer to keep it. */ return SSL_ERROR_WANT_WRITE; } if (BIO_should_io_special(bio)) { reason = BIO_get_retry_reason(bio); if (reason == BIO_RR_CONNECT) { return SSL_ERROR_WANT_CONNECT; } if (reason == BIO_RR_ACCEPT) { return SSL_ERROR_WANT_ACCEPT; } return SSL_ERROR_SYSCALL; /* unknown */ } } if (SSL_want_write(ssl)) { bio = SSL_get_wbio(ssl); if (BIO_should_write(bio)) { return SSL_ERROR_WANT_WRITE; } if (BIO_should_read(bio)) { /* See above (SSL_want_read(ssl) with BIO_should_write(bio)) */ return SSL_ERROR_WANT_READ; } if (BIO_should_io_special(bio)) { reason = BIO_get_retry_reason(bio); if (reason == BIO_RR_CONNECT) { return SSL_ERROR_WANT_CONNECT; } if (reason == BIO_RR_ACCEPT) { return SSL_ERROR_WANT_ACCEPT; } return SSL_ERROR_SYSCALL; } } if (SSL_want_x509_lookup(ssl)) { return SSL_ERROR_WANT_X509_LOOKUP; } if (SSL_want_channel_id_lookup(ssl)) { return SSL_ERROR_WANT_CHANNEL_ID_LOOKUP; } if (SSL_want_private_key_operation(ssl)) { return SSL_ERROR_WANT_PRIVATE_KEY_OPERATION; } return SSL_ERROR_SYSCALL; } void SSL_CTX_set_min_version(SSL_CTX *ctx, uint16_t version) { ctx->min_version = version; } void SSL_CTX_set_max_version(SSL_CTX *ctx, uint16_t version) { ctx->max_version = version; } void SSL_set_min_version(SSL *ssl, uint16_t version) { ssl->min_version = version; } void SSL_set_max_version(SSL *ssl, uint16_t version) { ssl->max_version = version; } uint32_t SSL_CTX_set_options(SSL_CTX *ctx, uint32_t options) { ctx->options |= options; return ctx->options; } uint32_t SSL_CTX_clear_options(SSL_CTX *ctx, uint32_t options) { ctx->options &= ~options; return ctx->options; } uint32_t SSL_CTX_get_options(const SSL_CTX *ctx) { return ctx->options; } uint32_t SSL_set_options(SSL *ssl, uint32_t options) { ssl->options |= options; return ssl->options; } uint32_t SSL_clear_options(SSL *ssl, uint32_t options) { ssl->options &= ~options; return ssl->options; } uint32_t SSL_get_options(const SSL *ssl) { return ssl->options; } uint32_t SSL_CTX_set_mode(SSL_CTX *ctx, uint32_t mode) { ctx->mode |= mode; return ctx->mode; } uint32_t SSL_CTX_clear_mode(SSL_CTX *ctx, uint32_t mode) { ctx->mode &= ~mode; return ctx->mode; } uint32_t SSL_CTX_get_mode(const SSL_CTX *ctx) { return ctx->mode; } uint32_t SSL_set_mode(SSL *ssl, uint32_t mode) { ssl->mode |= mode; return ssl->mode; } uint32_t SSL_clear_mode(SSL *ssl, uint32_t mode) { ssl->mode &= ~mode; return ssl->mode; } uint32_t SSL_get_mode(const SSL *ssl) { return ssl->mode; } X509 *SSL_get_peer_certificate(const SSL *ssl) { if (ssl == NULL || ssl->session == NULL || ssl->session->peer == NULL) { return NULL; } return X509_up_ref(ssl->session->peer); } STACK_OF(X509) *SSL_get_peer_cert_chain(const SSL *ssl) { if (ssl == NULL || ssl->session == NULL) { return NULL; } return ssl->session->cert_chain; } int SSL_get_tls_unique(const SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out) { /* The tls-unique value is the first Finished message in the handshake, which * is the client's in a full handshake and the server's for a resumption. See * https://tools.ietf.org/html/rfc5929#section-3.1. */ const uint8_t *finished = ssl->s3->previous_client_finished; size_t finished_len = ssl->s3->previous_client_finished_len; if (ssl->hit) { /* tls-unique is broken for resumed sessions unless EMS is used. */ if (!ssl->session->extended_master_secret) { goto err; } finished = ssl->s3->previous_server_finished; finished_len = ssl->s3->previous_server_finished_len; } if (!ssl->s3->initial_handshake_complete || ssl->version < TLS1_VERSION) { goto err; } *out_len = finished_len; if (finished_len > max_out) { *out_len = max_out; } memcpy(out, finished, *out_len); return 1; err: *out_len = 0; memset(out, 0, max_out); return 0; } int SSL_CTX_set_session_id_context(SSL_CTX *ctx, const uint8_t *sid_ctx, unsigned sid_ctx_len) { if (sid_ctx_len > sizeof(ctx->sid_ctx)) { OPENSSL_PUT_ERROR(SSL, SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG); return 0; } ctx->sid_ctx_length = sid_ctx_len; memcpy(ctx->sid_ctx, sid_ctx, sid_ctx_len); return 1; } int SSL_set_session_id_context(SSL *ssl, const uint8_t *sid_ctx, unsigned sid_ctx_len) { if (sid_ctx_len > SSL_MAX_SID_CTX_LENGTH) { OPENSSL_PUT_ERROR(SSL, SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG); return 0; } ssl->sid_ctx_length = sid_ctx_len; memcpy(ssl->sid_ctx, sid_ctx, sid_ctx_len); return 1; } int SSL_CTX_set_generate_session_id(SSL_CTX *ctx, GEN_SESSION_CB cb) { ctx->generate_session_id = cb; return 1; } int SSL_set_generate_session_id(SSL *ssl, GEN_SESSION_CB cb) { ssl->generate_session_id = cb; return 1; } int SSL_has_matching_session_id(const SSL *ssl, const uint8_t *id, unsigned id_len) { /* A quick examination of SSL_SESSION_hash and SSL_SESSION_cmp shows how we * can "construct" a session to give us the desired check - ie. to find if * there's a session in the hash table that would conflict with any new * session built out of this id/id_len and the ssl_version in use by this * SSL. */ SSL_SESSION r, *p; if (id_len > sizeof r.session_id) { return 0; } r.ssl_version = ssl->version; r.session_id_length = id_len; memcpy(r.session_id, id, id_len); CRYPTO_MUTEX_lock_read(&ssl->ctx->lock); p = lh_SSL_SESSION_retrieve(ssl->ctx->sessions, &r); CRYPTO_MUTEX_unlock(&ssl->ctx->lock); return p != NULL; } int SSL_CTX_set_purpose(SSL_CTX *ctx, int purpose) { return X509_VERIFY_PARAM_set_purpose(ctx->param, purpose); } int SSL_set_purpose(SSL *ssl, int purpose) { return X509_VERIFY_PARAM_set_purpose(ssl->param, purpose); } int SSL_CTX_set_trust(SSL_CTX *ctx, int trust) { return X509_VERIFY_PARAM_set_trust(ctx->param, trust); } int SSL_set_trust(SSL *ssl, int trust) { return X509_VERIFY_PARAM_set_trust(ssl->param, trust); } int SSL_CTX_set1_param(SSL_CTX *ctx, const X509_VERIFY_PARAM *param) { return X509_VERIFY_PARAM_set1(ctx->param, param); } int SSL_set1_param(SSL *ssl, const X509_VERIFY_PARAM *param) { return X509_VERIFY_PARAM_set1(ssl->param, param); } void ssl_cipher_preference_list_free( struct ssl_cipher_preference_list_st *cipher_list) { if (cipher_list == NULL) { return; } sk_SSL_CIPHER_free(cipher_list->ciphers); OPENSSL_free(cipher_list->in_group_flags); OPENSSL_free(cipher_list); } struct ssl_cipher_preference_list_st *ssl_cipher_preference_list_dup( struct ssl_cipher_preference_list_st *cipher_list) { struct ssl_cipher_preference_list_st *ret = NULL; size_t n = sk_SSL_CIPHER_num(cipher_list->ciphers); ret = OPENSSL_malloc(sizeof(struct ssl_cipher_preference_list_st)); if (!ret) { goto err; } ret->ciphers = NULL; ret->in_group_flags = NULL; ret->ciphers = sk_SSL_CIPHER_dup(cipher_list->ciphers); if (!ret->ciphers) { goto err; } ret->in_group_flags = BUF_memdup(cipher_list->in_group_flags, n); if (!ret->in_group_flags) { goto err; } return ret; err: ssl_cipher_preference_list_free(ret); return NULL; } struct ssl_cipher_preference_list_st *ssl_cipher_preference_list_from_ciphers( STACK_OF(SSL_CIPHER) *ciphers) { struct ssl_cipher_preference_list_st *ret = NULL; size_t n = sk_SSL_CIPHER_num(ciphers); ret = OPENSSL_malloc(sizeof(struct ssl_cipher_preference_list_st)); if (!ret) { goto err; } ret->ciphers = NULL; ret->in_group_flags = NULL; ret->ciphers = sk_SSL_CIPHER_dup(ciphers); if (!ret->ciphers) { goto err; } ret->in_group_flags = OPENSSL_malloc(n); if (!ret->in_group_flags) { goto err; } memset(ret->in_group_flags, 0, n); return ret; err: ssl_cipher_preference_list_free(ret); return NULL; } X509_VERIFY_PARAM *SSL_CTX_get0_param(SSL_CTX *ctx) { return ctx->param; } X509_VERIFY_PARAM *SSL_get0_param(SSL *ssl) { return ssl->param; } void SSL_certs_clear(SSL *ssl) { ssl_cert_clear_certs(ssl->cert); } int SSL_get_fd(const SSL *s) { return SSL_get_rfd(s); } int SSL_get_rfd(const SSL *s) { int ret = -1; BIO *b, *r; b = SSL_get_rbio(s); r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR); if (r != NULL) { BIO_get_fd(r, &ret); } return ret; } int SSL_get_wfd(const SSL *s) { int ret = -1; BIO *b, *r; b = SSL_get_wbio(s); r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR); if (r != NULL) { BIO_get_fd(r, &ret); } return ret; } int SSL_set_fd(SSL *s, int fd) { int ret = 0; BIO *bio = NULL; bio = BIO_new(BIO_s_fd()); if (bio == NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_BUF_LIB); goto err; } BIO_set_fd(bio, fd, BIO_NOCLOSE); SSL_set_bio(s, bio, bio); ret = 1; err: return ret; } int SSL_set_wfd(SSL *s, int fd) { int ret = 0; BIO *bio = NULL; if (s->rbio == NULL || BIO_method_type(s->rbio) != BIO_TYPE_FD || (int)BIO_get_fd(s->rbio, NULL) != fd) { bio = BIO_new(BIO_s_fd()); if (bio == NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_BUF_LIB); goto err; } BIO_set_fd(bio, fd, BIO_NOCLOSE); SSL_set_bio(s, SSL_get_rbio(s), bio); } else { SSL_set_bio(s, SSL_get_rbio(s), SSL_get_rbio(s)); } ret = 1; err: return ret; } int SSL_set_rfd(SSL *s, int fd) { int ret = 0; BIO *bio = NULL; if (s->wbio == NULL || BIO_method_type(s->wbio) != BIO_TYPE_FD || (int)BIO_get_fd(s->wbio, NULL) != fd) { bio = BIO_new(BIO_s_fd()); if (bio == NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_BUF_LIB); goto err; } BIO_set_fd(bio, fd, BIO_NOCLOSE); SSL_set_bio(s, bio, SSL_get_wbio(s)); } else { SSL_set_bio(s, SSL_get_wbio(s), SSL_get_wbio(s)); } ret = 1; err: return ret; } /* return length of latest Finished message we sent, copy to 'buf' */ size_t SSL_get_finished(const SSL *s, void *buf, size_t count) { size_t ret = 0; if (s->s3 != NULL) { ret = s->s3->tmp.finish_md_len; if (count > ret) { count = ret; } memcpy(buf, s->s3->tmp.finish_md, count); } return ret; } /* return length of latest Finished message we expected, copy to 'buf' */ size_t SSL_get_peer_finished(const SSL *s, void *buf, size_t count) { size_t ret = 0; if (s->s3 != NULL) { ret = s->s3->tmp.peer_finish_md_len; if (count > ret) { count = ret; } memcpy(buf, s->s3->tmp.peer_finish_md, count); } return ret; } int SSL_get_verify_mode(const SSL *ssl) { return ssl->verify_mode; } int SSL_get_verify_depth(const SSL *ssl) { return X509_VERIFY_PARAM_get_depth(ssl->param); } int SSL_get_extms_support(const SSL *ssl) { return ssl->s3->tmp.extended_master_secret == 1; } int (*SSL_get_verify_callback(const SSL *ssl))(int, X509_STORE_CTX *) { return ssl->verify_callback; } int SSL_CTX_get_verify_mode(const SSL_CTX *ctx) { return ctx->verify_mode; } int SSL_CTX_get_verify_depth(const SSL_CTX *ctx) { return X509_VERIFY_PARAM_get_depth(ctx->param); } int (*SSL_CTX_get_verify_callback(const SSL_CTX *ctx))( int ok, X509_STORE_CTX *store_ctx) { return ctx->default_verify_callback; } void SSL_set_verify(SSL *ssl, int mode, int (*callback)(int ok, X509_STORE_CTX *store_ctx)) { ssl->verify_mode = mode; if (callback != NULL) { ssl->verify_callback = callback; } } void SSL_set_verify_depth(SSL *ssl, int depth) { X509_VERIFY_PARAM_set_depth(ssl->param, depth); } int SSL_CTX_get_read_ahead(const SSL_CTX *ctx) { return 0; } int SSL_get_read_ahead(const SSL *s) { return 0; } void SSL_CTX_set_read_ahead(SSL_CTX *ctx, int yes) { } void SSL_set_read_ahead(SSL *s, int yes) { } int SSL_pending(const SSL *s) { return (s->s3->rrec.type == SSL3_RT_APPLICATION_DATA) ? s->s3->rrec.length : 0; } /* Fix this so it checks all the valid key/cert options */ int SSL_CTX_check_private_key(const SSL_CTX *ctx) { if (ctx->cert->x509 == NULL) { OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CERTIFICATE_ASSIGNED); return 0; } if (ctx->cert->privatekey == NULL) { OPENSSL_PUT_ERROR(SSL, SSL_R_NO_PRIVATE_KEY_ASSIGNED); return 0; } return X509_check_private_key(ctx->cert->x509, ctx->cert->privatekey); } /* Fix this function so that it takes an optional type parameter */ int SSL_check_private_key(const SSL *ssl) { if (ssl->cert->x509 == NULL) { OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CERTIFICATE_ASSIGNED); return 0; } if (ssl->cert->privatekey == NULL) { OPENSSL_PUT_ERROR(SSL, SSL_R_NO_PRIVATE_KEY_ASSIGNED); return 0; } return X509_check_private_key(ssl->cert->x509, ssl->cert->privatekey); } long SSL_get_default_timeout(const SSL *ssl) { return SSL_DEFAULT_SESSION_TIMEOUT; } int SSL_renegotiate(SSL *ssl) { /* Caller-initiated renegotiation is not supported. */ OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } int SSL_renegotiate_pending(SSL *ssl) { return SSL_in_init(ssl) && ssl->s3->initial_handshake_complete; } size_t SSL_CTX_get_max_cert_list(const SSL_CTX *ctx) { return ctx->max_cert_list; } void SSL_CTX_set_max_cert_list(SSL_CTX *ctx, size_t max_cert_list) { if (max_cert_list > kMaxHandshakeSize) { max_cert_list = kMaxHandshakeSize; } ctx->max_cert_list = (uint32_t)max_cert_list; } size_t SSL_get_max_cert_list(const SSL *ssl) { return ssl->max_cert_list; } void SSL_set_max_cert_list(SSL *ssl, size_t max_cert_list) { if (max_cert_list > kMaxHandshakeSize) { max_cert_list = kMaxHandshakeSize; } ssl->max_cert_list = (uint32_t)max_cert_list; } void SSL_CTX_set_max_send_fragment(SSL_CTX *ctx, size_t max_send_fragment) { if (max_send_fragment < 512) { max_send_fragment = 512; } if (max_send_fragment > SSL3_RT_MAX_PLAIN_LENGTH) { max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH; } ctx->max_send_fragment = (uint16_t)max_send_fragment; } void SSL_set_max_send_fragment(SSL *ssl, size_t max_send_fragment) { if (max_send_fragment < 512) { max_send_fragment = 512; } if (max_send_fragment > SSL3_RT_MAX_PLAIN_LENGTH) { max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH; } ssl->max_send_fragment = (uint16_t)max_send_fragment; } int SSL_set_mtu(SSL *ssl, unsigned mtu) { if (!SSL_IS_DTLS(ssl) || mtu < dtls1_min_mtu()) { return 0; } ssl->d1->mtu = mtu; return 1; } int SSL_get_secure_renegotiation_support(const SSL *ssl) { return ssl->s3->send_connection_binding; } LHASH_OF(SSL_SESSION) *SSL_CTX_sessions(SSL_CTX *ctx) { return ctx->sessions; } size_t SSL_CTX_sess_number(const SSL_CTX *ctx) { return lh_SSL_SESSION_num_items(ctx->sessions); } unsigned long SSL_CTX_sess_set_cache_size(SSL_CTX *ctx, unsigned long size) { unsigned long ret = ctx->session_cache_size; ctx->session_cache_size = size; return ret; } unsigned long SSL_CTX_sess_get_cache_size(const SSL_CTX *ctx) { return ctx->session_cache_size; } int SSL_CTX_set_session_cache_mode(SSL_CTX *ctx, int mode) { int ret = ctx->session_cache_mode; ctx->session_cache_mode = mode; return ret; } int SSL_CTX_get_session_cache_mode(const SSL_CTX *ctx) { return ctx->session_cache_mode; } /* return a STACK of the ciphers available for the SSL and in order of * preference */ STACK_OF(SSL_CIPHER) *SSL_get_ciphers(const SSL *s) { if (s == NULL) { return NULL; } if (s->cipher_list != NULL) { return s->cipher_list->ciphers; } if (s->version >= TLS1_1_VERSION && s->ctx != NULL && s->ctx->cipher_list_tls11 != NULL) { return s->ctx->cipher_list_tls11->ciphers; } if (s->version >= TLS1_VERSION && s->ctx != NULL && s->ctx->cipher_list_tls10 != NULL) { return s->ctx->cipher_list_tls10->ciphers; } if (s->ctx != NULL && s->ctx->cipher_list != NULL) { return s->ctx->cipher_list->ciphers; } return NULL; } /* return a STACK of the ciphers available for the SSL and in order of * algorithm id */ STACK_OF(SSL_CIPHER) *ssl_get_ciphers_by_id(SSL *s) { if (s == NULL) { return NULL; } if (s->cipher_list_by_id != NULL) { return s->cipher_list_by_id; } if (s->ctx != NULL && s->ctx->cipher_list_by_id != NULL) { return s->ctx->cipher_list_by_id; } return NULL; } /* The old interface to get the same thing as SSL_get_ciphers() */ const char *SSL_get_cipher_list(const SSL *s, int n) { const SSL_CIPHER *c; STACK_OF(SSL_CIPHER) *sk; if (s == NULL) { return NULL; } sk = SSL_get_ciphers(s); if (sk == NULL || n < 0 || (size_t)n >= sk_SSL_CIPHER_num(sk)) { return NULL; } c = sk_SSL_CIPHER_value(sk, n); if (c == NULL) { return NULL; } return c->name; } /* specify the ciphers to be used by default by the SSL_CTX */ int SSL_CTX_set_cipher_list(SSL_CTX *ctx, const char *str) { STACK_OF(SSL_CIPHER) *sk; sk = ssl_create_cipher_list(ctx->method, &ctx->cipher_list, &ctx->cipher_list_by_id, str); /* ssl_create_cipher_list may return an empty stack if it was unable to find * a cipher matching the given rule string (for example if the rule string * specifies a cipher which has been disabled). This is not an error as far * as ssl_create_cipher_list is concerned, and hence ctx->cipher_list and * ctx->cipher_list_by_id has been updated. */ if (sk == NULL) { return 0; } else if (sk_SSL_CIPHER_num(sk) == 0) { OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CIPHER_MATCH); return 0; } return 1; } int SSL_CTX_set_cipher_list_tls10(SSL_CTX *ctx, const char *str) { STACK_OF(SSL_CIPHER) *sk; sk = ssl_create_cipher_list(ctx->method, &ctx->cipher_list_tls10, NULL, str); if (sk == NULL) { return 0; } else if (sk_SSL_CIPHER_num(sk) == 0) { OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CIPHER_MATCH); return 0; } return 1; } int SSL_CTX_set_cipher_list_tls11(SSL_CTX *ctx, const char *str) { STACK_OF(SSL_CIPHER) *sk; sk = ssl_create_cipher_list(ctx->method, &ctx->cipher_list_tls11, NULL, str); if (sk == NULL) { return 0; } else if (sk_SSL_CIPHER_num(sk) == 0) { OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CIPHER_MATCH); return 0; } return 1; } /* specify the ciphers to be used by the SSL */ int SSL_set_cipher_list(SSL *s, const char *str) { STACK_OF(SSL_CIPHER) *sk; sk = ssl_create_cipher_list(s->ctx->method, &s->cipher_list, &s->cipher_list_by_id, str); /* see comment in SSL_CTX_set_cipher_list */ if (sk == NULL) { return 0; } else if (sk_SSL_CIPHER_num(sk) == 0) { OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CIPHER_MATCH); return 0; } return 1; } int ssl_cipher_list_to_bytes(SSL *s, STACK_OF(SSL_CIPHER) *sk, uint8_t *p) { size_t i; const SSL_CIPHER *c; CERT *ct = s->cert; uint8_t *q; /* Set disabled masks for this session */ ssl_set_client_disabled(s); if (sk == NULL) { return 0; } q = p; for (i = 0; i < sk_SSL_CIPHER_num(sk); i++) { c = sk_SSL_CIPHER_value(sk, i); /* Skip disabled ciphers */ if (c->algorithm_ssl & ct->mask_ssl || c->algorithm_mkey & ct->mask_k || c->algorithm_auth & ct->mask_a) { continue; } s2n(ssl_cipher_get_value(c), p); } /* If all ciphers were disabled, return the error to the caller. */ if (p == q) { return 0; } /* For SSLv3, the SCSV is added. Otherwise the renegotiation extension is * added. */ if (s->client_version == SSL3_VERSION && !s->s3->initial_handshake_complete) { s2n(SSL3_CK_SCSV & 0xffff, p); /* The renegotiation extension is required to be at index zero. */ s->s3->tmp.extensions.sent |= (1u << 0); } if (s->mode & SSL_MODE_SEND_FALLBACK_SCSV) { s2n(SSL3_CK_FALLBACK_SCSV & 0xffff, p); } return p - q; } STACK_OF(SSL_CIPHER) *ssl_bytes_to_cipher_list(SSL *s, const CBS *cbs) { CBS cipher_suites = *cbs; const SSL_CIPHER *c; STACK_OF(SSL_CIPHER) *sk; if (s->s3) { s->s3->send_connection_binding = 0; } if (CBS_len(&cipher_suites) % 2 != 0) { OPENSSL_PUT_ERROR(SSL, SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST); return NULL; } sk = sk_SSL_CIPHER_new_null(); if (sk == NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); goto err; } while (CBS_len(&cipher_suites) > 0) { uint16_t cipher_suite; if (!CBS_get_u16(&cipher_suites, &cipher_suite)) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); goto err; } /* Check for SCSV. */ if (s->s3 && cipher_suite == (SSL3_CK_SCSV & 0xffff)) { /* SCSV is fatal if renegotiating. */ if (s->s3->initial_handshake_complete) { OPENSSL_PUT_ERROR(SSL, SSL_R_SCSV_RECEIVED_WHEN_RENEGOTIATING); ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE); goto err; } s->s3->send_connection_binding = 1; continue; } /* Check for FALLBACK_SCSV. */ if (s->s3 && cipher_suite == (SSL3_CK_FALLBACK_SCSV & 0xffff)) { uint16_t max_version = ssl3_get_max_server_version(s); if (SSL_IS_DTLS(s) ? (uint16_t)s->version > max_version : (uint16_t)s->version < max_version) { OPENSSL_PUT_ERROR(SSL, SSL_R_INAPPROPRIATE_FALLBACK); ssl3_send_alert(s, SSL3_AL_FATAL, SSL3_AD_INAPPROPRIATE_FALLBACK); goto err; } continue; } c = SSL_get_cipher_by_value(cipher_suite); if (c != NULL && !sk_SSL_CIPHER_push(sk, c)) { OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); goto err; } } return sk; err: sk_SSL_CIPHER_free(sk); return NULL; } /* return a servername extension value if provided in Client Hello, or NULL. So * far, only host_name types are defined (RFC 3546). */ const char *SSL_get_servername(const SSL *s, const int type) { if (type != TLSEXT_NAMETYPE_host_name) { return NULL; } return s->session && !s->tlsext_hostname ? s->session->tlsext_hostname : s->tlsext_hostname; } int SSL_get_servername_type(const SSL *s) { if (s->session && (!s->tlsext_hostname ? s->session->tlsext_hostname : s->tlsext_hostname)) { return TLSEXT_NAMETYPE_host_name; } return -1; } void SSL_CTX_enable_signed_cert_timestamps(SSL_CTX *ctx) { ctx->signed_cert_timestamps_enabled = 1; } int SSL_enable_signed_cert_timestamps(SSL *ssl) { ssl->signed_cert_timestamps_enabled = 1; return 1; } void SSL_CTX_enable_ocsp_stapling(SSL_CTX *ctx) { ctx->ocsp_stapling_enabled = 1; } int SSL_enable_ocsp_stapling(SSL *ssl) { ssl->ocsp_stapling_enabled = 1; return 1; } void SSL_get0_signed_cert_timestamp_list(const SSL *ssl, const uint8_t **out, size_t *out_len) { SSL_SESSION *session = ssl->session; *out_len = 0; *out = NULL; if (ssl->server || !session || !session->tlsext_signed_cert_timestamp_list) { return; } *out = session->tlsext_signed_cert_timestamp_list; *out_len = session->tlsext_signed_cert_timestamp_list_length; } void SSL_get0_ocsp_response(const SSL *ssl, const uint8_t **out, size_t *out_len) { SSL_SESSION *session = ssl->session; *out_len = 0; *out = NULL; if (ssl->server || !session || !session->ocsp_response) { return; } *out = session->ocsp_response; *out_len = session->ocsp_response_length; } int SSL_CTX_set_signed_cert_timestamp_list(SSL_CTX *ctx, const uint8_t *list, size_t list_len) { OPENSSL_free(ctx->signed_cert_timestamp_list); ctx->signed_cert_timestamp_list_length = 0; ctx->signed_cert_timestamp_list = BUF_memdup(list, list_len); if (ctx->signed_cert_timestamp_list == NULL) { return 0; } ctx->signed_cert_timestamp_list_length = list_len; return 1; } int SSL_CTX_set_ocsp_response(SSL_CTX *ctx, const uint8_t *response, size_t response_len) { OPENSSL_free(ctx->ocsp_response); ctx->ocsp_response_length = 0; ctx->ocsp_response = BUF_memdup(response, response_len); if (ctx->ocsp_response == NULL) { return 0; } ctx->ocsp_response_length = response_len; return 1; } int SSL_select_next_proto(uint8_t **out, uint8_t *out_len, const uint8_t *server, unsigned server_len, const uint8_t *client, unsigned client_len) { unsigned int i, j; const uint8_t *result; int status = OPENSSL_NPN_UNSUPPORTED; /* For each protocol in server preference order, see if we support it. */ for (i = 0; i < server_len;) { for (j = 0; j < client_len;) { if (server[i] == client[j] && memcmp(&server[i + 1], &client[j + 1], server[i]) == 0) { /* We found a match */ result = &server[i]; status = OPENSSL_NPN_NEGOTIATED; goto found; } j += client[j]; j++; } i += server[i]; i++; } /* There's no overlap between our protocols and the server's list. */ result = client; status = OPENSSL_NPN_NO_OVERLAP; found: *out = (uint8_t *)result + 1; *out_len = result[0]; return status; } void SSL_get0_next_proto_negotiated(const SSL *ssl, const uint8_t **out_data, unsigned *out_len) { *out_data = ssl->next_proto_negotiated; if (*out_data == NULL) { *out_len = 0; } else { *out_len = ssl->next_proto_negotiated_len; } } void SSL_CTX_set_next_protos_advertised_cb( SSL_CTX *ctx, int (*cb)(SSL *ssl, const uint8_t **out, unsigned *out_len, void *arg), void *arg) { ctx->next_protos_advertised_cb = cb; ctx->next_protos_advertised_cb_arg = arg; } void SSL_CTX_set_next_proto_select_cb( SSL_CTX *ctx, int (*cb)(SSL *ssl, uint8_t **out, uint8_t *out_len, const uint8_t *in, unsigned in_len, void *arg), void *arg) { ctx->next_proto_select_cb = cb; ctx->next_proto_select_cb_arg = arg; } int SSL_CTX_set_alpn_protos(SSL_CTX *ctx, const uint8_t *protos, unsigned protos_len) { OPENSSL_free(ctx->alpn_client_proto_list); ctx->alpn_client_proto_list = BUF_memdup(protos, protos_len); if (!ctx->alpn_client_proto_list) { return 1; } ctx->alpn_client_proto_list_len = protos_len; return 0; } int SSL_set_alpn_protos(SSL *ssl, const uint8_t *protos, unsigned protos_len) { OPENSSL_free(ssl->alpn_client_proto_list); ssl->alpn_client_proto_list = BUF_memdup(protos, protos_len); if (!ssl->alpn_client_proto_list) { return 1; } ssl->alpn_client_proto_list_len = protos_len; return 0; } void SSL_CTX_set_alpn_select_cb(SSL_CTX *ctx, int (*cb)(SSL *ssl, const uint8_t **out, uint8_t *out_len, const uint8_t *in, unsigned in_len, void *arg), void *arg) { ctx->alpn_select_cb = cb; ctx->alpn_select_cb_arg = arg; } void SSL_get0_alpn_selected(const SSL *ssl, const uint8_t **out_data, unsigned *out_len) { *out_data = NULL; if (ssl->s3) { *out_data = ssl->s3->alpn_selected; } if (*out_data == NULL) { *out_len = 0; } else { *out_len = ssl->s3->alpn_selected_len; } } int SSL_export_keying_material(SSL *s, uint8_t *out, size_t out_len, const char *label, size_t label_len, const uint8_t *context, size_t context_len, int use_context) { if (s->version < TLS1_VERSION) { return 0; } return s->enc_method->export_keying_material( s, out, out_len, label, label_len, context, context_len, use_context); } void SSL_CTX_set_cert_verify_callback(SSL_CTX *ctx, int (*cb)(X509_STORE_CTX *store_ctx, void *arg), void *arg) { ctx->app_verify_callback = cb; ctx->app_verify_arg = arg; } void SSL_CTX_set_verify(SSL_CTX *ctx, int mode, int (*cb)(int, X509_STORE_CTX *)) { ctx->verify_mode = mode; ctx->default_verify_callback = cb; } void SSL_CTX_set_verify_depth(SSL_CTX *ctx, int depth) { X509_VERIFY_PARAM_set_depth(ctx->param, depth); } void SSL_CTX_set_cert_cb(SSL_CTX *ctx, int (*cb)(SSL *ssl, void *arg), void *arg) { ssl_cert_set_cert_cb(ctx->cert, cb, arg); } void SSL_set_cert_cb(SSL *ssl, int (*cb)(SSL *ssl, void *arg), void *arg) { ssl_cert_set_cert_cb(ssl->cert, cb, arg); } void ssl_get_compatible_server_ciphers(SSL *s, uint32_t *out_mask_k, uint32_t *out_mask_a) { CERT *c = s->cert; int have_rsa_cert = 0, dh_tmp; uint32_t mask_k, mask_a; int have_ecc_cert = 0, ecdsa_ok; X509 *x; dh_tmp = (c->dh_tmp != NULL || c->dh_tmp_cb != NULL); if (s->cert->x509 != NULL && ssl_has_private_key(s)) { if (ssl_private_key_type(s) == EVP_PKEY_RSA) { have_rsa_cert = 1; } else if (ssl_private_key_type(s) == EVP_PKEY_EC) { have_ecc_cert = 1; } } mask_k = 0; mask_a = 0; if (dh_tmp) { mask_k |= SSL_kDHE; } if (have_rsa_cert) { mask_k |= SSL_kRSA; mask_a |= SSL_aRSA; } /* An ECC certificate may be usable for ECDSA cipher suites depending on the * key usage extension and on the client's curve preferences. */ if (have_ecc_cert) { x = c->x509; /* This call populates extension flags (ex_flags). */ X509_check_purpose(x, -1, 0); ecdsa_ok = (x->ex_flags & EXFLAG_KUSAGE) ? (x->ex_kusage & X509v3_KU_DIGITAL_SIGNATURE) : 1; if (!tls1_check_ec_cert(s, x)) { ecdsa_ok = 0; } if (ecdsa_ok) { mask_a |= SSL_aECDSA; } } /* If we are considering an ECC cipher suite that uses an ephemeral EC * key, check it. */ if (tls1_check_ec_tmp_key(s)) { mask_k |= SSL_kECDHE; } /* PSK requires a server callback. */ if (s->psk_server_callback != NULL) { mask_k |= SSL_kPSK; mask_a |= SSL_aPSK; } *out_mask_k = mask_k; *out_mask_a = mask_a; } void ssl_update_cache(SSL *s, int mode) { /* Never cache sessions with empty session IDs. */ if (s->session->session_id_length == 0) { return; } int has_new_session = !s->hit; if (!s->server && s->tlsext_ticket_expected) { /* A client may see new sessions on abbreviated handshakes if the server * decides to renew the ticket. Once the handshake is completed, it should * be inserted into the cache. */ has_new_session = 1; } SSL_CTX *ctx = s->initial_ctx; if ((ctx->session_cache_mode & mode) == mode && has_new_session && ((ctx->session_cache_mode & SSL_SESS_CACHE_NO_INTERNAL_STORE) || SSL_CTX_add_session(ctx, s->session)) && ctx->new_session_cb != NULL) { /* Note: |new_session_cb| is called whether the internal session cache is * used or not. */ if (!ctx->new_session_cb(s, SSL_SESSION_up_ref(s->session))) { SSL_SESSION_free(s->session); } } if (!(ctx->session_cache_mode & SSL_SESS_CACHE_NO_AUTO_CLEAR) && !(ctx->session_cache_mode & SSL_SESS_CACHE_NO_INTERNAL_STORE) && (ctx->session_cache_mode & mode) == mode) { /* Automatically flush the internal session cache every 255 connections. */ int flush_cache = 0; CRYPTO_MUTEX_lock_write(&ctx->lock); ctx->handshakes_since_cache_flush++; if (ctx->handshakes_since_cache_flush >= 255) { flush_cache = 1; ctx->handshakes_since_cache_flush = 0; } CRYPTO_MUTEX_unlock(&ctx->lock); if (flush_cache) { SSL_CTX_flush_sessions(ctx, (unsigned long)time(NULL)); } } } static const char *ssl_get_version(int version) { switch (version) { case TLS1_2_VERSION: return "TLSv1.2"; case TLS1_1_VERSION: return "TLSv1.1"; case TLS1_VERSION: return "TLSv1"; case SSL3_VERSION: return "SSLv3"; case DTLS1_VERSION: return "DTLSv1"; case DTLS1_2_VERSION: return "DTLSv1.2"; default: return "unknown"; } } const char *SSL_get_version(const SSL *ssl) { return ssl_get_version(ssl->version); } const char *SSL_SESSION_get_version(const SSL_SESSION *session) { return ssl_get_version(session->ssl_version); } const char* SSL_get_curve_name(uint16_t curve_id) { return tls1_ec_curve_id2name(curve_id); } void ssl_clear_cipher_ctx(SSL *s) { SSL_AEAD_CTX_free(s->aead_read_ctx); s->aead_read_ctx = NULL; SSL_AEAD_CTX_free(s->aead_write_ctx); s->aead_write_ctx = NULL; } X509 *SSL_get_certificate(const SSL *s) { if (s->cert != NULL) { return s->cert->x509; } return NULL; } EVP_PKEY *SSL_get_privatekey(const SSL *s) { if (s->cert != NULL) { return s->cert->privatekey; } return NULL; } X509 *SSL_CTX_get0_certificate(const SSL_CTX *ctx) { if (ctx->cert != NULL) { return ctx->cert->x509; } return NULL; } EVP_PKEY *SSL_CTX_get0_privatekey(const SSL_CTX *ctx) { if (ctx->cert != NULL) { return ctx->cert->privatekey; } return NULL; } const SSL_CIPHER *SSL_get_current_cipher(const SSL *ssl) { if (ssl->aead_write_ctx == NULL) { return NULL; } return ssl->aead_write_ctx->cipher; } const COMP_METHOD *SSL_get_current_compression(SSL *s) { return NULL; } const COMP_METHOD *SSL_get_current_expansion(SSL *s) { return NULL; } int ssl_init_wbio_buffer(SSL *s, int push) { BIO *bbio; if (s->bbio == NULL) { bbio = BIO_new(BIO_f_buffer()); if (bbio == NULL) { return 0; } s->bbio = bbio; } else { bbio = s->bbio; if (s->bbio == s->wbio) { s->wbio = BIO_pop(s->wbio); } } BIO_reset(bbio); if (!BIO_set_read_buffer_size(bbio, 1)) { OPENSSL_PUT_ERROR(SSL, ERR_R_BUF_LIB); return 0; } if (push) { if (s->wbio != bbio) { s->wbio = BIO_push(bbio, s->wbio); } } else { if (s->wbio == bbio) { s->wbio = BIO_pop(bbio); } } return 1; } void ssl_free_wbio_buffer(SSL *s) { if (s->bbio == NULL) { return; } if (s->bbio == s->wbio) { /* remove buffering */ s->wbio = BIO_pop(s->wbio); } BIO_free(s->bbio); s->bbio = NULL; } void SSL_CTX_set_quiet_shutdown(SSL_CTX *ctx, int mode) { ctx->quiet_shutdown = mode; } int SSL_CTX_get_quiet_shutdown(const SSL_CTX *ctx) { return ctx->quiet_shutdown; } void SSL_set_quiet_shutdown(SSL *s, int mode) { s->quiet_shutdown = mode; } int SSL_get_quiet_shutdown(const SSL *s) { return s->quiet_shutdown; } void SSL_set_shutdown(SSL *s, int mode) { s->shutdown = mode; } int SSL_get_shutdown(const SSL *s) { return s->shutdown; } int SSL_version(const SSL *s) { return s->version; } SSL_CTX *SSL_get_SSL_CTX(const SSL *ssl) { return ssl->ctx; } SSL_CTX *SSL_set_SSL_CTX(SSL *ssl, SSL_CTX *ctx) { if (ssl->ctx == ctx) { return ssl->ctx; } if (ctx == NULL) { ctx = ssl->initial_ctx; } ssl_cert_free(ssl->cert); ssl->cert = ssl_cert_dup(ctx->cert); CRYPTO_refcount_inc(&ctx->references); SSL_CTX_free(ssl->ctx); /* decrement reference count */ ssl->ctx = ctx; ssl->sid_ctx_length = ctx->sid_ctx_length; assert(ssl->sid_ctx_length <= sizeof(ssl->sid_ctx)); memcpy(ssl->sid_ctx, ctx->sid_ctx, sizeof(ssl->sid_ctx)); return ssl->ctx; } int SSL_CTX_set_default_verify_paths(SSL_CTX *ctx) { return X509_STORE_set_default_paths(ctx->cert_store); } int SSL_CTX_load_verify_locations(SSL_CTX *ctx, const char *ca_file, const char *ca_dir) { return X509_STORE_load_locations(ctx->cert_store, ca_file, ca_dir); } void SSL_set_info_callback(SSL *ssl, void (*cb)(const SSL *ssl, int type, int val)) { ssl->info_callback = cb; } void (*SSL_get_info_callback(const SSL *ssl))(const SSL * /*ssl*/, int /*type*/, int /*val*/) { return ssl->info_callback; } int SSL_state(const SSL *ssl) { return ssl->state; } void SSL_set_state(SSL *ssl, int state) { } void SSL_set_verify_result(SSL *ssl, long result) { ssl->verify_result = result; } long SSL_get_verify_result(const SSL *ssl) { return ssl->verify_result; } int SSL_get_ex_new_index(long argl, void *argp, CRYPTO_EX_new *new_func, CRYPTO_EX_dup *dup_func, CRYPTO_EX_free *free_func) { int index; if (!CRYPTO_get_ex_new_index(&g_ex_data_class_ssl, &index, argl, argp, new_func, dup_func, free_func)) { return -1; } return index; } int SSL_set_ex_data(SSL *ssl, int idx, void *arg) { return CRYPTO_set_ex_data(&ssl->ex_data, idx, arg); } void *SSL_get_ex_data(const SSL *ssl, int idx) { return CRYPTO_get_ex_data(&ssl->ex_data, idx); } int SSL_CTX_get_ex_new_index(long argl, void *argp, CRYPTO_EX_new *new_func, CRYPTO_EX_dup *dup_func, CRYPTO_EX_free *free_func) { int index; if (!CRYPTO_get_ex_new_index(&g_ex_data_class_ssl_ctx, &index, argl, argp, new_func, dup_func, free_func)) { return -1; } return index; } int SSL_CTX_set_ex_data(SSL_CTX *ctx, int idx, void *arg) { return CRYPTO_set_ex_data(&ctx->ex_data, idx, arg); } void *SSL_CTX_get_ex_data(const SSL_CTX *ctx, int idx) { return CRYPTO_get_ex_data(&ctx->ex_data, idx); } X509_STORE *SSL_CTX_get_cert_store(const SSL_CTX *ctx) { return ctx->cert_store; } void SSL_CTX_set_cert_store(SSL_CTX *ctx, X509_STORE *store) { X509_STORE_free(ctx->cert_store); ctx->cert_store = store; } int SSL_want(const SSL *s) { return s->rwstate; } void SSL_CTX_set_tmp_rsa_callback(SSL_CTX *ctx, RSA *(*cb)(SSL *ssl, int is_export, int keylength)) { } void SSL_set_tmp_rsa_callback(SSL *ssl, RSA *(*cb)(SSL *ssl, int is_export, int keylength)) { } void SSL_CTX_set_tmp_dh_callback(SSL_CTX *ctx, DH *(*callback)(SSL *ssl, int is_export, int keylength)) { ctx->cert->dh_tmp_cb = callback; } void SSL_set_tmp_dh_callback(SSL *ssl, DH *(*callback)(SSL *ssl, int is_export, int keylength)) { ssl->cert->dh_tmp_cb = callback; } void SSL_CTX_set_tmp_ecdh_callback(SSL_CTX *ctx, EC_KEY *(*callback)(SSL *ssl, int is_export, int keylength)) { ctx->cert->ecdh_tmp_cb = callback; } void SSL_set_tmp_ecdh_callback(SSL *ssl, EC_KEY *(*callback)(SSL *ssl, int is_export, int keylength)) { ssl->cert->ecdh_tmp_cb = callback; } int SSL_CTX_use_psk_identity_hint(SSL_CTX *ctx, const char *identity_hint) { if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) { OPENSSL_PUT_ERROR(SSL, SSL_R_DATA_LENGTH_TOO_LONG); return 0; } OPENSSL_free(ctx->psk_identity_hint); if (identity_hint != NULL) { ctx->psk_identity_hint = BUF_strdup(identity_hint); if (ctx->psk_identity_hint == NULL) { return 0; } } else { ctx->psk_identity_hint = NULL; } return 1; } int SSL_use_psk_identity_hint(SSL *ssl, const char *identity_hint) { if (ssl == NULL) { return 0; } if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) { OPENSSL_PUT_ERROR(SSL, SSL_R_DATA_LENGTH_TOO_LONG); return 0; } /* Clear currently configured hint, if any. */ OPENSSL_free(ssl->psk_identity_hint); ssl->psk_identity_hint = NULL; if (identity_hint != NULL) { ssl->psk_identity_hint = BUF_strdup(identity_hint); if (ssl->psk_identity_hint == NULL) { return 0; } } return 1; } const char *SSL_get_psk_identity_hint(const SSL *ssl) { if (ssl == NULL) { return NULL; } return ssl->psk_identity_hint; } const char *SSL_get_psk_identity(const SSL *ssl) { if (ssl == NULL || ssl->session == NULL) { return NULL; } return ssl->session->psk_identity; } void SSL_set_psk_client_callback( SSL *ssl, unsigned (*cb)(SSL *ssl, const char *hint, char *identity, unsigned max_identity_len, uint8_t *psk, unsigned max_psk_len)) { ssl->psk_client_callback = cb; } void SSL_CTX_set_psk_client_callback( SSL_CTX *ctx, unsigned (*cb)(SSL *ssl, const char *hint, char *identity, unsigned max_identity_len, uint8_t *psk, unsigned max_psk_len)) { ctx->psk_client_callback = cb; } void SSL_set_psk_server_callback( SSL *ssl, unsigned (*cb)(SSL *ssl, const char *identity, uint8_t *psk, unsigned max_psk_len)) { ssl->psk_server_callback = cb; } void SSL_CTX_set_psk_server_callback( SSL_CTX *ctx, unsigned (*cb)(SSL *ssl, const char *identity, uint8_t *psk, unsigned max_psk_len)) { ctx->psk_server_callback = cb; } void SSL_CTX_set_msg_callback(SSL_CTX *ctx, void (*cb)(int write_p, int version, int content_type, const void *buf, size_t len, SSL *ssl, void *arg)) { ctx->msg_callback = cb; } void SSL_CTX_set_msg_callback_arg(SSL_CTX *ctx, void *arg) { ctx->msg_callback_arg = arg; } void SSL_set_msg_callback(SSL *ssl, void (*cb)(int write_p, int version, int content_type, const void *buf, size_t len, SSL *ssl, void *arg)) { ssl->msg_callback = cb; } void SSL_set_msg_callback_arg(SSL *ssl, void *arg) { ssl->msg_callback_arg = arg; } void SSL_CTX_set_keylog_bio(SSL_CTX *ctx, BIO *keylog_bio) { BIO_free(ctx->keylog_bio); ctx->keylog_bio = keylog_bio; } static int cbb_add_hex(CBB *cbb, const uint8_t *in, size_t in_len) { static const char hextable[] = "0123456789abcdef"; uint8_t *out; size_t i; if (!CBB_add_space(cbb, &out, in_len * 2)) { return 0; } for (i = 0; i < in_len; i++) { *(out++) = (uint8_t)hextable[in[i] >> 4]; *(out++) = (uint8_t)hextable[in[i] & 0xf]; } return 1; } int ssl_ctx_log_rsa_client_key_exchange(SSL_CTX *ctx, const uint8_t *encrypted_premaster, size_t encrypted_premaster_len, const uint8_t *premaster, size_t premaster_len) { BIO *bio = ctx->keylog_bio; CBB cbb; uint8_t *out; size_t out_len; int ret; if (bio == NULL) { return 1; } if (encrypted_premaster_len < 8) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); return 0; } CBB_zero(&cbb); if (!CBB_init(&cbb, 4 + 16 + 1 + premaster_len * 2 + 1) || !CBB_add_bytes(&cbb, (const uint8_t *)"RSA ", 4) || /* Only the first 8 bytes of the encrypted premaster secret are * logged. */ !cbb_add_hex(&cbb, encrypted_premaster, 8) || !CBB_add_bytes(&cbb, (const uint8_t *)" ", 1) || !cbb_add_hex(&cbb, premaster, premaster_len) || !CBB_add_bytes(&cbb, (const uint8_t *)"\n", 1) || !CBB_finish(&cbb, &out, &out_len)) { CBB_cleanup(&cbb); return 0; } CRYPTO_MUTEX_lock_write(&ctx->lock); ret = BIO_write(bio, out, out_len) >= 0 && BIO_flush(bio); CRYPTO_MUTEX_unlock(&ctx->lock); OPENSSL_free(out); return ret; } int ssl_ctx_log_master_secret(SSL_CTX *ctx, const uint8_t *client_random, size_t client_random_len, const uint8_t *master, size_t master_len) { BIO *bio = ctx->keylog_bio; CBB cbb; uint8_t *out; size_t out_len; int ret; if (bio == NULL) { return 1; } if (client_random_len != 32) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); return 0; } CBB_zero(&cbb); if (!CBB_init(&cbb, 14 + 64 + 1 + master_len * 2 + 1) || !CBB_add_bytes(&cbb, (const uint8_t *)"CLIENT_RANDOM ", 14) || !cbb_add_hex(&cbb, client_random, 32) || !CBB_add_bytes(&cbb, (const uint8_t *)" ", 1) || !cbb_add_hex(&cbb, master, master_len) || !CBB_add_bytes(&cbb, (const uint8_t *)"\n", 1) || !CBB_finish(&cbb, &out, &out_len)) { CBB_cleanup(&cbb); return 0; } CRYPTO_MUTEX_lock_write(&ctx->lock); ret = BIO_write(bio, out, out_len) >= 0 && BIO_flush(bio); CRYPTO_MUTEX_unlock(&ctx->lock); OPENSSL_free(out); return ret; } int SSL_in_false_start(const SSL *s) { return s->s3->tmp.in_false_start; } int SSL_cutthrough_complete(const SSL *s) { return SSL_in_false_start(s); } void SSL_get_structure_sizes(size_t *ssl_size, size_t *ssl_ctx_size, size_t *ssl_session_size) { *ssl_size = sizeof(SSL); *ssl_ctx_size = sizeof(SSL_CTX); *ssl_session_size = sizeof(SSL_SESSION); } int ssl3_can_false_start(const SSL *s) { const SSL_CIPHER *const cipher = SSL_get_current_cipher(s); /* False Start only for TLS 1.2 with an ECDHE+AEAD cipher and ALPN or NPN. */ return !SSL_IS_DTLS(s) && SSL_version(s) >= TLS1_2_VERSION && (s->s3->alpn_selected || s->s3->next_proto_neg_seen) && cipher != NULL && cipher->algorithm_mkey == SSL_kECDHE && (cipher->algorithm_enc == SSL_AES128GCM || cipher->algorithm_enc == SSL_AES256GCM || cipher->algorithm_enc == SSL_CHACHA20POLY1305); } const SSL3_ENC_METHOD *ssl3_get_enc_method(uint16_t version) { switch (version) { case SSL3_VERSION: return &SSLv3_enc_data; case TLS1_VERSION: return &TLSv1_enc_data; case DTLS1_VERSION: case TLS1_1_VERSION: return &TLSv1_1_enc_data; case DTLS1_2_VERSION: case TLS1_2_VERSION: return &TLSv1_2_enc_data; default: return NULL; } } uint16_t ssl3_get_max_server_version(const SSL *s) { uint16_t max_version; if (SSL_IS_DTLS(s)) { max_version = (s->max_version != 0) ? s->max_version : DTLS1_2_VERSION; if (!(s->options & SSL_OP_NO_DTLSv1_2) && DTLS1_2_VERSION >= max_version) { return DTLS1_2_VERSION; } if (!(s->options & SSL_OP_NO_DTLSv1) && DTLS1_VERSION >= max_version) { return DTLS1_VERSION; } return 0; } max_version = (s->max_version != 0) ? s->max_version : TLS1_2_VERSION; if (!(s->options & SSL_OP_NO_TLSv1_2) && TLS1_2_VERSION <= max_version) { return TLS1_2_VERSION; } if (!(s->options & SSL_OP_NO_TLSv1_1) && TLS1_1_VERSION <= max_version) { return TLS1_1_VERSION; } if (!(s->options & SSL_OP_NO_TLSv1) && TLS1_VERSION <= max_version) { return TLS1_VERSION; } if (!(s->options & SSL_OP_NO_SSLv3) && SSL3_VERSION <= max_version) { return SSL3_VERSION; } return 0; } uint16_t ssl3_get_mutual_version(SSL *s, uint16_t client_version) { uint16_t version = 0; if (SSL_IS_DTLS(s)) { /* Clamp client_version to max_version. */ if (s->max_version != 0 && client_version < s->max_version) { client_version = s->max_version; } if (client_version <= DTLS1_2_VERSION && !(s->options & SSL_OP_NO_DTLSv1_2)) { version = DTLS1_2_VERSION; } else if (client_version <= DTLS1_VERSION && !(s->options & SSL_OP_NO_DTLSv1)) { version = DTLS1_VERSION; } /* Check against min_version. */ if (version != 0 && s->min_version != 0 && version > s->min_version) { return 0; } return version; } else { /* Clamp client_version to max_version. */ if (s->max_version != 0 && client_version > s->max_version) { client_version = s->max_version; } if (client_version >= TLS1_2_VERSION && !(s->options & SSL_OP_NO_TLSv1_2)) { version = TLS1_2_VERSION; } else if (client_version >= TLS1_1_VERSION && !(s->options & SSL_OP_NO_TLSv1_1)) { version = TLS1_1_VERSION; } else if (client_version >= TLS1_VERSION && !(s->options & SSL_OP_NO_TLSv1)) { version = TLS1_VERSION; } else if (client_version >= SSL3_VERSION && !(s->options & SSL_OP_NO_SSLv3)) { version = SSL3_VERSION; } /* Check against min_version. */ if (version != 0 && s->min_version != 0 && version < s->min_version) { return 0; } return version; } } uint16_t ssl3_get_max_client_version(SSL *s) { uint32_t options = s->options; uint16_t version = 0; /* OpenSSL's API for controlling versions entails blacklisting individual * protocols. This has two problems. First, on the client, the protocol can * only express a contiguous range of versions. Second, a library consumer * trying to set a maximum version cannot disable protocol versions that get * added in a future version of the library. * * To account for both of these, OpenSSL interprets the client-side bitmask * as a min/max range by picking the lowest contiguous non-empty range of * enabled protocols. Note that this means it is impossible to set a maximum * version of TLS 1.2 in a future-proof way. * * By this scheme, the maximum version is the lowest version V such that V is * enabled and V+1 is disabled or unimplemented. */ if (SSL_IS_DTLS(s)) { if (!(options & SSL_OP_NO_DTLSv1_2)) { version = DTLS1_2_VERSION; } if (!(options & SSL_OP_NO_DTLSv1) && (options & SSL_OP_NO_DTLSv1_2)) { version = DTLS1_VERSION; } if (s->max_version != 0 && version < s->max_version) { version = s->max_version; } } else { if (!(options & SSL_OP_NO_TLSv1_2)) { version = TLS1_2_VERSION; } if (!(options & SSL_OP_NO_TLSv1_1) && (options & SSL_OP_NO_TLSv1_2)) { version = TLS1_1_VERSION; } if (!(options & SSL_OP_NO_TLSv1) && (options & SSL_OP_NO_TLSv1_1)) { version = TLS1_VERSION; } if (!(options & SSL_OP_NO_SSLv3) && (options & SSL_OP_NO_TLSv1)) { version = SSL3_VERSION; } if (s->max_version != 0 && version > s->max_version) { version = s->max_version; } } return version; } int ssl3_is_version_enabled(SSL *s, uint16_t version) { if (SSL_IS_DTLS(s)) { if (s->max_version != 0 && version < s->max_version) { return 0; } if (s->min_version != 0 && version > s->min_version) { return 0; } switch (version) { case DTLS1_VERSION: return !(s->options & SSL_OP_NO_DTLSv1); case DTLS1_2_VERSION: return !(s->options & SSL_OP_NO_DTLSv1_2); default: return 0; } } else { if (s->max_version != 0 && version > s->max_version) { return 0; } if (s->min_version != 0 && version < s->min_version) { return 0; } switch (version) { case SSL3_VERSION: return !(s->options & SSL_OP_NO_SSLv3); case TLS1_VERSION: return !(s->options & SSL_OP_NO_TLSv1); case TLS1_1_VERSION: return !(s->options & SSL_OP_NO_TLSv1_1); case TLS1_2_VERSION: return !(s->options & SSL_OP_NO_TLSv1_2); default: return 0; } } } uint16_t ssl3_version_from_wire(SSL *s, uint16_t wire_version) { if (!SSL_IS_DTLS(s)) { return wire_version; } uint16_t tls_version = ~wire_version; uint16_t version = tls_version + 0x0201; /* If either component overflowed, clamp it so comparisons still work. */ if ((version >> 8) < (tls_version >> 8)) { version = 0xff00 | (version & 0xff); } if ((version & 0xff) < (tls_version & 0xff)) { version = (version & 0xff00) | 0xff; } /* DTLS 1.0 maps to TLS 1.1, not TLS 1.0. */ if (version == TLS1_VERSION) { version = TLS1_1_VERSION; } return version; } int SSL_cache_hit(SSL *ssl) { return SSL_session_reused(ssl); } int SSL_is_server(SSL *ssl) { return ssl->server; } void SSL_CTX_set_dos_protection_cb( SSL_CTX *ctx, int (*cb)(const struct ssl_early_callback_ctx *)) { ctx->dos_protection_cb = cb; } void SSL_set_reject_peer_renegotiations(SSL *s, int reject) { s->accept_peer_renegotiations = !reject; } int SSL_get_rc4_state(const SSL *ssl, const RC4_KEY **read_key, const RC4_KEY **write_key) { if (ssl->aead_read_ctx == NULL || ssl->aead_write_ctx == NULL) { return 0; } return EVP_AEAD_CTX_get_rc4_state(&ssl->aead_read_ctx->ctx, read_key) && EVP_AEAD_CTX_get_rc4_state(&ssl->aead_write_ctx->ctx, write_key); } int SSL_clear(SSL *ssl) { if (ssl->method == NULL) { OPENSSL_PUT_ERROR(SSL, SSL_R_NO_METHOD_SPECIFIED); return 0; } if (ssl_clear_bad_session(ssl)) { SSL_SESSION_free(ssl->session); ssl->session = NULL; } ssl->hit = 0; ssl->shutdown = 0; /* SSL_clear may be called before or after the |ssl| is initialized in either * accept or connect state. In the latter case, SSL_clear should preserve the * half and reset |ssl->state| accordingly. */ if (ssl->handshake_func != NULL) { if (ssl->server) { SSL_set_accept_state(ssl); } else { SSL_set_connect_state(ssl); } } else { assert(ssl->state == 0); } /* TODO(davidben): Some state on |ssl| is reset both in |SSL_new| and * |SSL_clear| because it is per-connection state rather than configuration * state. Per-connection state should be on |ssl->s3| and |ssl->d1| so it is * naturally reset at the right points between |SSL_new|, |SSL_clear|, and * |ssl3_new|. */ ssl->rwstate = SSL_NOTHING; BUF_MEM_free(ssl->init_buf); ssl->init_buf = NULL; ssl_clear_cipher_ctx(ssl); OPENSSL_free(ssl->next_proto_negotiated); ssl->next_proto_negotiated = NULL; ssl->next_proto_negotiated_len = 0; /* The ssl->d1->mtu is simultaneously configuration (preserved across * clear) and connection-specific state (gets reset). * * TODO(davidben): Avoid this. */ unsigned mtu = 0; if (ssl->d1 != NULL) { mtu = ssl->d1->mtu; } ssl->method->ssl_free(ssl); if (!ssl->method->ssl_new(ssl)) { return 0; } ssl->enc_method = ssl3_get_enc_method(ssl->version); assert(ssl->enc_method != NULL); if (SSL_IS_DTLS(ssl) && (SSL_get_options(ssl) & SSL_OP_NO_QUERY_MTU)) { ssl->d1->mtu = mtu; } ssl->client_version = ssl->version; return 1; } int SSL_CTX_sess_connect(const SSL_CTX *ctx) { return 0; } int SSL_CTX_sess_connect_good(const SSL_CTX *ctx) { return 0; } int SSL_CTX_sess_connect_renegotiate(const SSL_CTX *ctx) { return 0; } int SSL_CTX_sess_accept(const SSL_CTX *ctx) { return 0; } int SSL_CTX_sess_accept_renegotiate(const SSL_CTX *ctx) { return 0; } int SSL_CTX_sess_accept_good(const SSL_CTX *ctx) { return 0; } int SSL_CTX_sess_hits(const SSL_CTX *ctx) { return 0; } int SSL_CTX_sess_cb_hits(const SSL_CTX *ctx) { return 0; } int SSL_CTX_sess_misses(const SSL_CTX *ctx) { return 0; } int SSL_CTX_sess_timeouts(const SSL_CTX *ctx) { return 0; } int SSL_CTX_sess_cache_full(const SSL_CTX *ctx) { return 0; } void ERR_load_SSL_strings(void) {} void SSL_load_error_strings(void) {}