aboutsummaryrefslogtreecommitdiffstats
path: root/docs
diff options
context:
space:
mode:
Diffstat (limited to 'docs')
-rw-r--r--docs/tutorial/OCamlLangImpl3.html4
-rw-r--r--docs/tutorial/OCamlLangImpl4.html18
-rw-r--r--docs/tutorial/OCamlLangImpl5.html1564
-rw-r--r--docs/tutorial/OCamlLangImpl6.html1569
-rw-r--r--docs/tutorial/OCamlLangImpl7.html1902
5 files changed, 5051 insertions, 6 deletions
diff --git a/docs/tutorial/OCamlLangImpl3.html b/docs/tutorial/OCamlLangImpl3.html
index 0edc726..079ab1c 100644
--- a/docs/tutorial/OCamlLangImpl3.html
+++ b/docs/tutorial/OCamlLangImpl3.html
@@ -183,7 +183,7 @@ variables</a>.</p>
let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in
build_uitofp i double_type "booltmp" builder
| _ -&gt; raise (Error "invalid binary operator")
- end
+ end
</pre>
</div>
@@ -280,7 +280,7 @@ let codegen_proto = function
(* Make the function type: double(double,double) etc. *)
let doubles = Array.make (Array.length args) double_type in
let ft = function_type double_type doubles in
- let f =
+ let f =
match lookup_function name the_module with
</pre>
</div>
diff --git a/docs/tutorial/OCamlLangImpl4.html b/docs/tutorial/OCamlLangImpl4.html
index fc1caeb..4e267b8 100644
--- a/docs/tutorial/OCamlLangImpl4.html
+++ b/docs/tutorial/OCamlLangImpl4.html
@@ -237,7 +237,7 @@ We do this by running it after our newly created function is constructed (in
<div class="doc_code">
<pre>
let codegen_func the_fpm = function
- ...
+ ...
try
let ret_val = codegen_expr body in
@@ -316,10 +316,9 @@ by adding a global variable and a call in <tt>main</tt>:</p>
...
let main () =
...
- <b>
- (* Create the JIT. *)
+ <b>(* Create the JIT. *)
let the_module_provider = ModuleProvider.create Codegen.the_module in
- let the_execution_engine = ExecutionEngine.create the_module_provider in</b>
+ let the_execution_engine = ExecutionEngine.create the_module_provider in</b>
...
</pre>
</div>
@@ -508,6 +507,17 @@ Here is the complete code listing for our running example, enhanced with the
LLVM JIT and optimizer. To build this example, use:
</p>
+<div class="doc_code">
+<pre>
+# Compile
+ocamlbuild toy.byte
+# Run
+./toy.byte
+</pre>
+</div>
+
+<p>Here is the code:</p>
+
<dl>
<dt>_tags:</dt>
<dd class="doc_code">
diff --git a/docs/tutorial/OCamlLangImpl5.html b/docs/tutorial/OCamlLangImpl5.html
new file mode 100644
index 0000000..ba8c2f7
--- /dev/null
+++ b/docs/tutorial/OCamlLangImpl5.html
@@ -0,0 +1,1564 @@
+<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
+ "http://www.w3.org/TR/html4/strict.dtd">
+
+<html>
+<head>
+ <title>Kaleidoscope: Extending the Language: Control Flow</title>
+ <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
+ <meta name="author" content="Chris Lattner">
+ <meta name="author" content="Erick Tryzelaar">
+ <link rel="stylesheet" href="../llvm.css" type="text/css">
+</head>
+
+<body>
+
+<div class="doc_title">Kaleidoscope: Extending the Language: Control Flow</div>
+
+<ul>
+<li><a href="index.html">Up to Tutorial Index</a></li>
+<li>Chapter 5
+ <ol>
+ <li><a href="#intro">Chapter 5 Introduction</a></li>
+ <li><a href="#ifthen">If/Then/Else</a>
+ <ol>
+ <li><a href="#iflexer">Lexer Extensions</a></li>
+ <li><a href="#ifast">AST Extensions</a></li>
+ <li><a href="#ifparser">Parser Extensions</a></li>
+ <li><a href="#ifir">LLVM IR</a></li>
+ <li><a href="#ifcodegen">Code Generation</a></li>
+ </ol>
+ </li>
+ <li><a href="#for">'for' Loop Expression</a>
+ <ol>
+ <li><a href="#forlexer">Lexer Extensions</a></li>
+ <li><a href="#forast">AST Extensions</a></li>
+ <li><a href="#forparser">Parser Extensions</a></li>
+ <li><a href="#forir">LLVM IR</a></li>
+ <li><a href="#forcodegen">Code Generation</a></li>
+ </ol>
+ </li>
+ <li><a href="#code">Full Code Listing</a></li>
+ </ol>
+</li>
+<li><a href="OCamlLangImpl6.html">Chapter 6</a>: Extending the Language:
+User-defined Operators</li>
+</ul>
+
+<div class="doc_author">
+ <p>
+ Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
+ and <a href="mailto:idadesub@users.sourceforge.net">Erick Tryzelaar</a>
+ </p>
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section"><a name="intro">Chapter 5 Introduction</a></div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>Welcome to Chapter 5 of the "<a href="index.html">Implementing a language
+with LLVM</a>" tutorial. Parts 1-4 described the implementation of the simple
+Kaleidoscope language and included support for generating LLVM IR, followed by
+optimizations and a JIT compiler. Unfortunately, as presented, Kaleidoscope is
+mostly useless: it has no control flow other than call and return. This means
+that you can't have conditional branches in the code, significantly limiting its
+power. In this episode of "build that compiler", we'll extend Kaleidoscope to
+have an if/then/else expression plus a simple 'for' loop.</p>
+
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section"><a name="ifthen">If/Then/Else</a></div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>
+Extending Kaleidoscope to support if/then/else is quite straightforward. It
+basically requires adding lexer support for this "new" concept to the lexer,
+parser, AST, and LLVM code emitter. This example is nice, because it shows how
+easy it is to "grow" a language over time, incrementally extending it as new
+ideas are discovered.</p>
+
+<p>Before we get going on "how" we add this extension, lets talk about "what" we
+want. The basic idea is that we want to be able to write this sort of thing:
+</p>
+
+<div class="doc_code">
+<pre>
+def fib(x)
+ if x &lt; 3 then
+ 1
+ else
+ fib(x-1)+fib(x-2);
+</pre>
+</div>
+
+<p>In Kaleidoscope, every construct is an expression: there are no statements.
+As such, the if/then/else expression needs to return a value like any other.
+Since we're using a mostly functional form, we'll have it evaluate its
+conditional, then return the 'then' or 'else' value based on how the condition
+was resolved. This is very similar to the C "?:" expression.</p>
+
+<p>The semantics of the if/then/else expression is that it evaluates the
+condition to a boolean equality value: 0.0 is considered to be false and
+everything else is considered to be true.
+If the condition is true, the first subexpression is evaluated and returned, if
+the condition is false, the second subexpression is evaluated and returned.
+Since Kaleidoscope allows side-effects, this behavior is important to nail down.
+</p>
+
+<p>Now that we know what we "want", lets break this down into its constituent
+pieces.</p>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsubsection"><a name="iflexer">Lexer Extensions for
+If/Then/Else</a></div>
+<!-- ======================================================================= -->
+
+
+<div class="doc_text">
+
+<p>The lexer extensions are straightforward. First we add new variants
+for the relevant tokens:</p>
+
+<div class="doc_code">
+<pre>
+ (* control *)
+ | If | Then | Else | For | In
+</pre>
+</div>
+
+<p>Once we have that, we recognize the new keywords in the lexer. This is pretty simple
+stuff:</p>
+
+<div class="doc_code">
+<pre>
+ ...
+ match Buffer.contents buffer with
+ | "def" -&gt; [&lt; 'Token.Def; stream &gt;]
+ | "extern" -&gt; [&lt; 'Token.Extern; stream &gt;]
+ | "if" -&gt; [&lt; 'Token.If; stream &gt;]
+ | "then" -&gt; [&lt; 'Token.Then; stream &gt;]
+ | "else" -&gt; [&lt; 'Token.Else; stream &gt;]
+ | "for" -&gt; [&lt; 'Token.For; stream &gt;]
+ | "in" -&gt; [&lt; 'Token.In; stream &gt;]
+ | id -&gt; [&lt; 'Token.Ident id; stream &gt;]
+</pre>
+</div>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsubsection"><a name="ifast">AST Extensions for
+ If/Then/Else</a></div>
+<!-- ======================================================================= -->
+
+<div class="doc_text">
+
+<p>To represent the new expression we add a new AST variant for it:</p>
+
+<div class="doc_code">
+<pre>
+type expr =
+ ...
+ (* variant for if/then/else. *)
+ | If of expr * expr * expr
+</pre>
+</div>
+
+<p>The AST variant just has pointers to the various subexpressions.</p>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsubsection"><a name="ifparser">Parser Extensions for
+If/Then/Else</a></div>
+<!-- ======================================================================= -->
+
+<div class="doc_text">
+
+<p>Now that we have the relevant tokens coming from the lexer and we have the
+AST node to build, our parsing logic is relatively straightforward. First we
+define a new parsing function:</p>
+
+<div class="doc_code">
+<pre>
+let rec parse_primary = parser
+ ...
+ (* ifexpr ::= 'if' expr 'then' expr 'else' expr *)
+ | [&lt; 'Token.If; c=parse_expr;
+ 'Token.Then ?? "expected 'then'"; t=parse_expr;
+ 'Token.Else ?? "expected 'else'"; e=parse_expr &gt;] -&gt;
+ Ast.If (c, t, e)
+</pre>
+</div>
+
+<p>Next we hook it up as a primary expression:</p>
+
+<div class="doc_code">
+<pre>
+let rec parse_primary = parser
+ ...
+ (* ifexpr ::= 'if' expr 'then' expr 'else' expr *)
+ | [&lt; 'Token.If; c=parse_expr;
+ 'Token.Then ?? "expected 'then'"; t=parse_expr;
+ 'Token.Else ?? "expected 'else'"; e=parse_expr &gt;] -&gt;
+ Ast.If (c, t, e)
+</pre>
+</div>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsubsection"><a name="ifir">LLVM IR for If/Then/Else</a></div>
+<!-- ======================================================================= -->
+
+<div class="doc_text">
+
+<p>Now that we have it parsing and building the AST, the final piece is adding
+LLVM code generation support. This is the most interesting part of the
+if/then/else example, because this is where it starts to introduce new concepts.
+All of the code above has been thoroughly described in previous chapters.
+</p>
+
+<p>To motivate the code we want to produce, lets take a look at a simple
+example. Consider:</p>
+
+<div class="doc_code">
+<pre>
+extern foo();
+extern bar();
+def baz(x) if x then foo() else bar();
+</pre>
+</div>
+
+<p>If you disable optimizations, the code you'll (soon) get from Kaleidoscope
+looks like this:</p>
+
+<div class="doc_code">
+<pre>
+declare double @foo()
+
+declare double @bar()
+
+define double @baz(double %x) {
+entry:
+ %ifcond = fcmp one double %x, 0.000000e+00
+ br i1 %ifcond, label %then, label %else
+
+then: ; preds = %entry
+ %calltmp = call double @foo()
+ br label %ifcont
+
+else: ; preds = %entry
+ %calltmp1 = call double @bar()
+ br label %ifcont
+
+ifcont: ; preds = %else, %then
+ %iftmp = phi double [ %calltmp, %then ], [ %calltmp1, %else ]
+ ret double %iftmp
+}
+</pre>
+</div>
+
+<p>To visualize the control flow graph, you can use a nifty feature of the LLVM
+'<a href="http://llvm.org/cmds/opt.html">opt</a>' tool. If you put this LLVM IR
+into "t.ll" and run "<tt>llvm-as &lt; t.ll | opt -analyze -view-cfg</tt>", <a
+href="../ProgrammersManual.html#ViewGraph">a window will pop up</a> and you'll
+see this graph:</p>
+
+<center><img src="LangImpl5-cfg.png" alt="Example CFG" width="423"
+height="315"></center>
+
+<p>Another way to get this is to call "<tt>Llvm_analysis.view_function_cfg
+f</tt>" or "<tt>Llvm_analysis.view_function_cfg_only f</tt>" (where <tt>f</tt>
+is a "<tt>Function</tt>") either by inserting actual calls into the code and
+recompiling or by calling these in the debugger. LLVM has many nice features
+for visualizing various graphs.</p>
+
+<p>Getting back to the generated code, it is fairly simple: the entry block
+evaluates the conditional expression ("x" in our case here) and compares the
+result to 0.0 with the "<tt><a href="../LangRef.html#i_fcmp">fcmp</a> one</tt>"
+instruction ('one' is "Ordered and Not Equal"). Based on the result of this
+expression, the code jumps to either the "then" or "else" blocks, which contain
+the expressions for the true/false cases.</p>
+
+<p>Once the then/else blocks are finished executing, they both branch back to the
+'ifcont' block to execute the code that happens after the if/then/else. In this
+case the only thing left to do is to return to the caller of the function. The
+question then becomes: how does the code know which expression to return?</p>
+
+<p>The answer to this question involves an important SSA operation: the
+<a href="http://en.wikipedia.org/wiki/Static_single_assignment_form">Phi
+operation</a>. If you're not familiar with SSA, <a
+href="http://en.wikipedia.org/wiki/Static_single_assignment_form">the wikipedia
+article</a> is a good introduction and there are various other introductions to
+it available on your favorite search engine. The short version is that
+"execution" of the Phi operation requires "remembering" which block control came
+from. The Phi operation takes on the value corresponding to the input control
+block. In this case, if control comes in from the "then" block, it gets the
+value of "calltmp". If control comes from the "else" block, it gets the value
+of "calltmp1".</p>
+
+<p>At this point, you are probably starting to think "Oh no! This means my
+simple and elegant front-end will have to start generating SSA form in order to
+use LLVM!". Fortunately, this is not the case, and we strongly advise
+<em>not</em> implementing an SSA construction algorithm in your front-end
+unless there is an amazingly good reason to do so. In practice, there are two
+sorts of values that float around in code written for your average imperative
+programming language that might need Phi nodes:</p>
+
+<ol>
+<li>Code that involves user variables: <tt>x = 1; x = x + 1; </tt></li>
+<li>Values that are implicit in the structure of your AST, such as the Phi node
+in this case.</li>
+</ol>
+
+<p>In <a href="OCamlLangImpl7.html">Chapter 7</a> of this tutorial ("mutable
+variables"), we'll talk about #1
+in depth. For now, just believe me that you don't need SSA construction to
+handle this case. For #2, you have the choice of using the techniques that we will
+describe for #1, or you can insert Phi nodes directly, if convenient. In this
+case, it is really really easy to generate the Phi node, so we choose to do it
+directly.</p>
+
+<p>Okay, enough of the motivation and overview, lets generate code!</p>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsubsection"><a name="ifcodegen">Code Generation for
+If/Then/Else</a></div>
+<!-- ======================================================================= -->
+
+<div class="doc_text">
+
+<p>In order to generate code for this, we implement the <tt>Codegen</tt> method
+for <tt>IfExprAST</tt>:</p>
+
+<div class="doc_code">
+<pre>
+let rec codegen_expr = function
+ ...
+ | Ast.If (cond, then_, else_) -&gt;
+ let cond = codegen_expr cond in
+
+ (* Convert condition to a bool by comparing equal to 0.0 *)
+ let zero = const_float double_type 0.0 in
+ let cond_val = build_fcmp Fcmp.One cond zero "ifcond" builder in
+</pre>
+</div>
+
+<p>This code is straightforward and similar to what we saw before. We emit the
+expression for the condition, then compare that value to zero to get a truth
+value as a 1-bit (bool) value.</p>
+
+<div class="doc_code">
+<pre>
+ (* Grab the first block so that we might later add the conditional branch
+ * to it at the end of the function. *)
+ let start_bb = insertion_block builder in
+ let the_function = block_parent start_bb in
+
+ let then_bb = append_block "then" the_function in
+ position_at_end then_bb builder;
+</pre>
+</div>
+
+<p>
+As opposed to the <a href="LangImpl5.html">C++ tutorial</a>, we have to build
+our basic blocks bottom up since we can't have dangling BasicBlocks. We start
+off by saving a pointer to the first block (which might not be the entry
+block), which we'll need to build a conditional branch later. We do this by
+asking the <tt>builder</tt> for the current BasicBlock. The fourth line
+gets the current Function object that is being built. It gets this by the
+<tt>start_bb</tt> for its "parent" (the function it is currently embedded
+into).</p>
+
+<p>Once it has that, it creates one block. It is automatically appended into
+the function's list of blocks.</p>
+
+<div class="doc_code">
+<pre>
+ (* Emit 'then' value. *)
+ position_at_end then_bb builder;
+ let then_val = codegen_expr then_ in
+
+ (* Codegen of 'then' can change the current block, update then_bb for the
+ * phi. We create a new name because one is used for the phi node, and the
+ * other is used for the conditional branch. *)
+ let new_then_bb = insertion_block builder in
+</pre>
+</div>
+
+<p>We move the builder to start inserting into the "then" block. Strictly
+speaking, this call moves the insertion point to be at the end of the specified
+block. However, since the "then" block is empty, it also starts out by
+inserting at the beginning of the block. :)</p>
+
+<p>Once the insertion point is set, we recursively codegen the "then" expression
+from the AST.</p>
+
+<p>The final line here is quite subtle, but is very important. The basic issue
+is that when we create the Phi node in the merge block, we need to set up the
+block/value pairs that indicate how the Phi will work. Importantly, the Phi
+node expects to have an entry for each predecessor of the block in the CFG. Why
+then, are we getting the current block when we just set it to ThenBB 5 lines
+above? The problem is that the "Then" expression may actually itself change the
+block that the Builder is emitting into if, for example, it contains a nested
+"if/then/else" expression. Because calling Codegen recursively could
+arbitrarily change the notion of the current block, we are required to get an
+up-to-date value for code that will set up the Phi node.</p>
+
+<div class="doc_code">
+<pre>
+ (* Emit 'else' value. *)
+ let else_bb = append_block "else" the_function in
+ position_at_end else_bb builder;
+ let else_val = codegen_expr else_ in
+
+ (* Codegen of 'else' can change the current block, update else_bb for the
+ * phi. *)
+ let new_else_bb = insertion_block builder in
+</pre>
+</div>
+
+<p>Code generation for the 'else' block is basically identical to codegen for
+the 'then' block.</p>
+
+<div class="doc_code">
+<pre>
+ (* Emit merge block. *)
+ let merge_bb = append_block "ifcont" the_function in
+ position_at_end merge_bb builder;
+ let incoming = [(then_val, new_then_bb); (else_val, new_else_bb)] in
+ let phi = build_phi incoming "iftmp" builder in
+</pre>
+</div>
+
+<p>The first two lines here are now familiar: the first adds the "merge" block
+to the Function object. The second block changes the insertion point so that
+newly created code will go into the "merge" block. Once that is done, we need
+to create the PHI node and set up the block/value pairs for the PHI.</p>
+
+<div class="doc_code">
+<pre>
+ (* Return to the start block to add the conditional branch. *)
+ position_at_end start_bb builder;
+ ignore (build_cond_br cond_val then_bb else_bb builder);
+</pre>
+</div>
+
+<p>Once the blocks are created, we can emit the conditional branch that chooses
+between them. Note that creating new blocks does not implicitly affect the
+LLVMBuilder, so it is still inserting into the block that the condition
+went into. This is why we needed to save the "start" block.</p>
+
+<div class="doc_code">
+<pre>
+ (* Set a unconditional branch at the end of the 'then' block and the
+ * 'else' block to the 'merge' block. *)
+ position_at_end new_then_bb builder; ignore (build_br merge_bb builder);
+ position_at_end new_else_bb builder; ignore (build_br merge_bb builder);
+
+ (* Finally, set the builder to the end of the merge block. *)
+ position_at_end merge_bb builder;
+
+ phi
+</pre>
+</div>
+
+<p>To finish off the blocks, we create an unconditional branch
+to the merge block. One interesting (and very important) aspect of the LLVM IR
+is that it <a href="../LangRef.html#functionstructure">requires all basic blocks
+to be "terminated"</a> with a <a href="../LangRef.html#terminators">control flow
+instruction</a> such as return or branch. This means that all control flow,
+<em>including fall throughs</em> must be made explicit in the LLVM IR. If you
+violate this rule, the verifier will emit an error.
+
+<p>Finally, the CodeGen function returns the phi node as the value computed by
+the if/then/else expression. In our example above, this returned value will
+feed into the code for the top-level function, which will create the return
+instruction.</p>
+
+<p>Overall, we now have the ability to execute conditional code in
+Kaleidoscope. With this extension, Kaleidoscope is a fairly complete language
+that can calculate a wide variety of numeric functions. Next up we'll add
+another useful expression that is familiar from non-functional languages...</p>
+
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section"><a name="for">'for' Loop Expression</a></div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>Now that we know how to add basic control flow constructs to the language,
+we have the tools to add more powerful things. Lets add something more
+aggressive, a 'for' expression:</p>
+
+<div class="doc_code">
+<pre>
+ extern putchard(char);
+ def printstar(n)
+ for i = 1, i &lt; n, 1.0 in
+ putchard(42); # ascii 42 = '*'
+
+ # print 100 '*' characters
+ printstar(100);
+</pre>
+</div>
+
+<p>This expression defines a new variable ("i" in this case) which iterates from
+a starting value, while the condition ("i &lt; n" in this case) is true,
+incrementing by an optional step value ("1.0" in this case). If the step value
+is omitted, it defaults to 1.0. While the loop is true, it executes its
+body expression. Because we don't have anything better to return, we'll just
+define the loop as always returning 0.0. In the future when we have mutable
+variables, it will get more useful.</p>
+
+<p>As before, lets talk about the changes that we need to Kaleidoscope to
+support this.</p>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsubsection"><a name="forlexer">Lexer Extensions for
+the 'for' Loop</a></div>
+<!-- ======================================================================= -->
+
+<div class="doc_text">
+
+<p>The lexer extensions are the same sort of thing as for if/then/else:</p>
+
+<div class="doc_code">
+<pre>
+ ... in Token.token ...
+ (* control *)
+ | If | Then | Else
+ <b>| For | In</b>
+
+ ... in Lexer.lex_ident...
+ match Buffer.contents buffer with
+ | "def" -&gt; [&lt; 'Token.Def; stream &gt;]
+ | "extern" -&gt; [&lt; 'Token.Extern; stream &gt;]
+ | "if" -&gt; [&lt; 'Token.If; stream &gt;]
+ | "then" -&gt; [&lt; 'Token.Then; stream &gt;]
+ | "else" -&gt; [&lt; 'Token.Else; stream &gt;]
+ <b>| "for" -&gt; [&lt; 'Token.For; stream &gt;]
+ | "in" -&gt; [&lt; 'Token.In; stream &gt;]</b>
+ | id -&gt; [&lt; 'Token.Ident id; stream &gt;]
+</pre>
+</div>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsubsection"><a name="forast">AST Extensions for
+the 'for' Loop</a></div>
+<!-- ======================================================================= -->
+
+<div class="doc_text">
+
+<p>The AST variant is just as simple. It basically boils down to capturing
+the variable name and the constituent expressions in the node.</p>
+
+<div class="doc_code">
+<pre>
+type expr =
+ ...
+ (* variant for for/in. *)
+ | For of string * expr * expr * expr option * expr
+</pre>
+</div>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsubsection"><a name="forparser">Parser Extensions for
+the 'for' Loop</a></div>
+<!-- ======================================================================= -->
+
+<div class="doc_text">
+
+<p>The parser code is also fairly standard. The only interesting thing here is
+handling of the optional step value. The parser code handles it by checking to
+see if the second comma is present. If not, it sets the step value to null in
+the AST node:</p>
+
+<div class="doc_code">
+<pre>
+let rec parse_primary = parser
+ ...
+ (* forexpr
+ ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression *)
+ | [&lt; 'Token.For;
+ 'Token.Ident id ?? "expected identifier after for";
+ 'Token.Kwd '=' ?? "expected '=' after for";
+ stream &gt;] -&gt;
+ begin parser
+ | [&lt;
+ start=parse_expr;
+ 'Token.Kwd ',' ?? "expected ',' after for";
+ end_=parse_expr;
+ stream &gt;] -&gt;
+ let step =
+ begin parser
+ | [&lt; 'Token.Kwd ','; step=parse_expr &gt;] -&gt; Some step
+ | [&lt; &gt;] -&gt; None
+ end stream
+ in
+ begin parser
+ | [&lt; 'Token.In; body=parse_expr &gt;] -&gt;
+ Ast.For (id, start, end_, step, body)
+ | [&lt; &gt;] -&gt;
+ raise (Stream.Error "expected 'in' after for")
+ end stream
+ | [&lt; &gt;] -&gt;
+ raise (Stream.Error "expected '=' after for")
+ end stream
+</pre>
+</div>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsubsection"><a name="forir">LLVM IR for
+the 'for' Loop</a></div>
+<!-- ======================================================================= -->
+
+<div class="doc_text">
+
+<p>Now we get to the good part: the LLVM IR we want to generate for this thing.
+With the simple example above, we get this LLVM IR (note that this dump is
+generated with optimizations disabled for clarity):
+</p>
+
+<div class="doc_code">
+<pre>
+declare double @putchard(double)
+
+define double @printstar(double %n) {
+entry:
+ ; initial value = 1.0 (inlined into phi)
+ br label %loop
+
+loop: ; preds = %loop, %entry
+ %i = phi double [ 1.000000e+00, %entry ], [ %nextvar, %loop ]
+ ; body
+ %calltmp = call double @putchard( double 4.200000e+01 )
+ ; increment
+ %nextvar = add double %i, 1.000000e+00
+
+ ; termination test
+ %cmptmp = fcmp ult double %i, %n
+ %booltmp = uitofp i1 %cmptmp to double
+ %loopcond = fcmp one double %booltmp, 0.000000e+00
+ br i1 %loopcond, label %loop, label %afterloop
+
+afterloop: ; preds = %loop
+ ; loop always returns 0.0
+ ret double 0.000000e+00
+}
+</pre>
+</div>
+
+<p>This loop contains all the same constructs we saw before: a phi node, several
+expressions, and some basic blocks. Lets see how this fits together.</p>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsubsection"><a name="forcodegen">Code Generation for
+the 'for' Loop</a></div>
+<!-- ======================================================================= -->
+
+<div class="doc_text">
+
+<p>The first part of Codegen is very simple: we just output the start expression
+for the loop value:</p>
+
+<div class="doc_code">
+<pre>
+let rec codegen_expr = function
+ ...
+ | Ast.For (var_name, start, end_, step, body) -&gt;
+ (* Emit the start code first, without 'variable' in scope. *)
+ let start_val = codegen_expr start in
+</pre>
+</div>
+
+<p>With this out of the way, the next step is to set up the LLVM basic block
+for the start of the loop body. In the case above, the whole loop body is one
+block, but remember that the body code itself could consist of multiple blocks
+(e.g. if it contains an if/then/else or a for/in expression).</p>
+
+<div class="doc_code">
+<pre>
+ (* Make the new basic block for the loop header, inserting after current
+ * block. *)
+ let preheader_bb = insertion_block builder in
+ let the_function = block_parent preheader_bb in
+ let loop_bb = append_block "loop" the_function in
+
+ (* Insert an explicit fall through from the current block to the
+ * loop_bb. *)
+ ignore (build_br loop_bb builder);
+</pre>
+</div>
+
+<p>This code is similar to what we saw for if/then/else. Because we will need
+it to create the Phi node, we remember the block that falls through into the
+loop. Once we have that, we create the actual block that starts the loop and
+create an unconditional branch for the fall-through between the two blocks.</p>
+
+<div class="doc_code">
+<pre>
+ (* Start insertion in loop_bb. *)
+ position_at_end loop_bb builder;
+
+ (* Start the PHI node with an entry for start. *)
+ let variable = build_phi [(start_val, preheader_bb)] var_name builder in
+</pre>
+</div>
+
+<p>Now that the "preheader" for the loop is set up, we switch to emitting code
+for the loop body. To begin with, we move the insertion point and create the
+PHI node for the loop induction variable. Since we already know the incoming
+value for the starting value, we add it to the Phi node. Note that the Phi will
+eventually get a second value for the backedge, but we can't set it up yet
+(because it doesn't exist!).</p>
+
+<div class="doc_code">
+<pre>
+ (* Within the loop, the variable is defined equal to the PHI node. If it
+ * shadows an existing variable, we have to restore it, so save it
+ * now. *)
+ let old_val =
+ try Some (Hashtbl.find named_values var_name) with Not_found -&gt; None
+ in
+ Hashtbl.add named_values var_name variable;
+
+ (* Emit the body of the loop. This, like any other expr, can change the
+ * current BB. Note that we ignore the value computed by the body, but
+ * don't allow an error *)
+ ignore (codegen_expr body);
+</pre>
+</div>
+
+<p>Now the code starts to get more interesting. Our 'for' loop introduces a new
+variable to the symbol table. This means that our symbol table can now contain
+either function arguments or loop variables. To handle this, before we codegen
+the body of the loop, we add the loop variable as the current value for its
+name. Note that it is possible that there is a variable of the same name in the
+outer scope. It would be easy to make this an error (emit an error and return
+null if there is already an entry for VarName) but we choose to allow shadowing
+of variables. In order to handle this correctly, we remember the Value that
+we are potentially shadowing in <tt>old_val</tt> (which will be None if there is
+no shadowed variable).</p>
+
+<p>Once the loop variable is set into the symbol table, the code recursively
+codegen's the body. This allows the body to use the loop variable: any
+references to it will naturally find it in the symbol table.</p>
+
+<div class="doc_code">
+<pre>
+ (* Emit the step value. *)
+ let step_val =
+ match step with
+ | Some step -&gt; codegen_expr step
+ (* If not specified, use 1.0. *)
+ | None -&gt; const_float double_type 1.0
+ in
+
+ let next_var = build_add variable step_val "nextvar" builder in
+</pre>
+</div>
+
+<p>Now that the body is emitted, we compute the next value of the iteration
+variable by adding the step value, or 1.0 if it isn't present.
+'<tt>next_var</tt>' will be the value of the loop variable on the next iteration
+of the loop.</p>
+
+<div class="doc_code">
+<pre>
+ (* Compute the end condition. *)
+ let end_cond = codegen_expr end_ in
+
+ (* Convert condition to a bool by comparing equal to 0.0. *)
+ let zero = const_float double_type 0.0 in
+ let end_cond = build_fcmp Fcmp.One end_cond zero "loopcond" builder in
+</pre>
+</div>
+
+<p>Finally, we evaluate the exit value of the loop, to determine whether the
+loop should exit. This mirrors the condition evaluation for the if/then/else
+statement.</p>
+
+<div class="doc_code">
+<pre>
+ (* Create the "after loop" block and insert it. *)
+ let loop_end_bb = insertion_block builder in
+ let after_bb = append_block "afterloop" the_function in
+
+ (* Insert the conditional branch into the end of loop_end_bb. *)
+ ignore (build_cond_br end_cond loop_bb after_bb builder);
+
+ (* Any new code will be inserted in after_bb. *)
+ position_at_end after_bb builder;
+</pre>
+</div>
+
+<p>With the code for the body of the loop complete, we just need to finish up
+the control flow for it. This code remembers the end block (for the phi node), then creates the block for the loop exit ("afterloop"). Based on the value of the
+exit condition, it creates a conditional branch that chooses between executing
+the loop again and exiting the loop. Any future code is emitted in the
+"afterloop" block, so it sets the insertion position to it.</p>
+
+<div class="doc_code">
+<pre>
+ (* Add a new entry to the PHI node for the backedge. *)
+ add_incoming (next_var, loop_end_bb) variable;
+
+ (* Restore the unshadowed variable. *)
+ begin match old_val with
+ | Some old_val -&gt; Hashtbl.add named_values var_name old_val
+ | None -&gt; ()
+ end;
+
+ (* for expr always returns 0.0. *)
+ const_null double_type
+</pre>
+</div>
+
+<p>The final code handles various cleanups: now that we have the
+"<tt>next_var</tt>" value, we can add the incoming value to the loop PHI node.
+After that, we remove the loop variable from the symbol table, so that it isn't
+in scope after the for loop. Finally, code generation of the for loop always
+returns 0.0, so that is what we return from <tt>Codegen.codegen_expr</tt>.</p>
+
+<p>With this, we conclude the "adding control flow to Kaleidoscope" chapter of
+the tutorial. In this chapter we added two control flow constructs, and used
+them to motivate a couple of aspects of the LLVM IR that are important for
+front-end implementors to know. In the next chapter of our saga, we will get
+a bit crazier and add <a href="OCamlLangImpl6.html">user-defined operators</a>
+to our poor innocent language.</p>
+
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section"><a name="code">Full Code Listing</a></div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>
+Here is the complete code listing for our running example, enhanced with the
+if/then/else and for expressions.. To build this example, use:
+</p>
+
+<div class="doc_code">
+<pre>
+# Compile
+ocamlbuild toy.byte
+# Run
+./toy.byte
+</pre>
+</div>
+
+<p>Here is the code:</p>
+
+<dl>
+<dt>_tags:</dt>
+<dd class="doc_code">
+<pre>
+&lt;{lexer,parser}.ml&gt;: use_camlp4, pp(camlp4of)
+&lt;*.{byte,native}&gt;: g++, use_llvm, use_llvm_analysis
+&lt;*.{byte,native}&gt;: use_llvm_executionengine, use_llvm_target
+&lt;*.{byte,native}&gt;: use_llvm_scalar_opts, use_bindings
+</pre>
+</dd>
+
+<dt>myocamlbuild.ml:</dt>
+<dd class="doc_code">
+<pre>
+open Ocamlbuild_plugin;;
+
+ocaml_lib ~extern:true "llvm";;
+ocaml_lib ~extern:true "llvm_analysis";;
+ocaml_lib ~extern:true "llvm_executionengine";;
+ocaml_lib ~extern:true "llvm_target";;
+ocaml_lib ~extern:true "llvm_scalar_opts";;
+
+flag ["link"; "ocaml"; "g++"] (S[A"-cc"; A"g++"]);;
+dep ["link"; "ocaml"; "use_bindings"] ["bindings.o"];;
+</pre>
+</dd>
+
+<dt>token.ml:</dt>
+<dd class="doc_code">
+<pre>
+(*===----------------------------------------------------------------------===
+ * Lexer Tokens
+ *===----------------------------------------------------------------------===*)
+
+(* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of
+ * these others for known things. *)
+type token =
+ (* commands *)
+ | Def | Extern
+
+ (* primary *)
+ | Ident of string | Number of float
+
+ (* unknown *)
+ | Kwd of char
+
+ (* control *)
+ | If | Then | Else
+ | For | In
+</pre>
+</dd>
+
+<dt>lexer.ml:</dt>
+<dd class="doc_code">
+<pre>
+(*===----------------------------------------------------------------------===
+ * Lexer
+ *===----------------------------------------------------------------------===*)
+
+let rec lex = parser
+ (* Skip any whitespace. *)
+ | [&lt; ' (' ' | '\n' | '\r' | '\t'); stream &gt;] -&gt; lex stream
+
+ (* identifier: [a-zA-Z][a-zA-Z0-9] *)
+ | [&lt; ' ('A' .. 'Z' | 'a' .. 'z' as c); stream &gt;] -&gt;
+ let buffer = Buffer.create 1 in
+ Buffer.add_char buffer c;
+ lex_ident buffer stream
+
+ (* number: [0-9.]+ *)
+ | [&lt; ' ('0' .. '9' as c); stream &gt;] -&gt;
+ let buffer = Buffer.create 1 in
+ Buffer.add_char buffer c;
+ lex_number buffer stream
+
+ (* Comment until end of line. *)
+ | [&lt; ' ('#'); stream &gt;] -&gt;
+ lex_comment stream
+
+ (* Otherwise, just return the character as its ascii value. *)
+ | [&lt; 'c; stream &gt;] -&gt;
+ [&lt; 'Token.Kwd c; lex stream &gt;]
+
+ (* end of stream. *)
+ | [&lt; &gt;] -&gt; [&lt; &gt;]
+
+and lex_number buffer = parser
+ | [&lt; ' ('0' .. '9' | '.' as c); stream &gt;] -&gt;
+ Buffer.add_char buffer c;
+ lex_number buffer stream
+ | [&lt; stream=lex &gt;] -&gt;
+ [&lt; 'Token.Number (float_of_string (Buffer.contents buffer)); stream &gt;]
+
+and lex_ident buffer = parser
+ | [&lt; ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream &gt;] -&gt;
+ Buffer.add_char buffer c;
+ lex_ident buffer stream
+ | [&lt; stream=lex &gt;] -&gt;
+ match Buffer.contents buffer with
+ | "def" -&gt; [&lt; 'Token.Def; stream &gt;]
+ | "extern" -&gt; [&lt; 'Token.Extern; stream &gt;]
+ | "if" -&gt; [&lt; 'Token.If; stream &gt;]
+ | "then" -&gt; [&lt; 'Token.Then; stream &gt;]
+ | "else" -&gt; [&lt; 'Token.Else; stream &gt;]
+ | "for" -&gt; [&lt; 'Token.For; stream &gt;]
+ | "in" -&gt; [&lt; 'Token.In; stream &gt;]
+ | id -&gt; [&lt; 'Token.Ident id; stream &gt;]
+
+and lex_comment = parser
+ | [&lt; ' ('\n'); stream=lex &gt;] -&gt; stream
+ | [&lt; 'c; e=lex_comment &gt;] -&gt; e
+ | [&lt; &gt;] -&gt; [&lt; &gt;]
+</pre>
+</dd>
+
+<dt>ast.ml:</dt>
+<dd class="doc_code">
+<pre>
+(*===----------------------------------------------------------------------===
+ * Abstract Syntax Tree (aka Parse Tree)
+ *===----------------------------------------------------------------------===*)
+
+(* expr - Base type for all expression nodes. *)
+type expr =
+ (* variant for numeric literals like "1.0". *)
+ | Number of float
+
+ (* variant for referencing a variable, like "a". *)
+ | Variable of string
+
+ (* variant for a binary operator. *)
+ | Binary of char * expr * expr
+
+ (* variant for function calls. *)
+ | Call of string * expr array
+
+ (* variant for if/then/else. *)
+ | If of expr * expr * expr
+
+ (* variant for for/in. *)
+ | For of string * expr * expr * expr option * expr
+
+(* proto - This type represents the "prototype" for a function, which captures
+ * its name, and its argument names (thus implicitly the number of arguments the
+ * function takes). *)
+type proto = Prototype of string * string array
+
+(* func - This type represents a function definition itself. *)
+type func = Function of proto * expr
+</pre>
+</dd>
+
+<dt>parser.ml:</dt>
+<dd class="doc_code">
+<pre>
+(*===---------------------------------------------------------------------===
+ * Parser
+ *===---------------------------------------------------------------------===*)
+
+(* binop_precedence - This holds the precedence for each binary operator that is
+ * defined *)
+let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10
+
+(* precedence - Get the precedence of the pending binary operator token. *)
+let precedence c = try Hashtbl.find binop_precedence c with Not_found -&gt; -1
+
+(* primary
+ * ::= identifier
+ * ::= numberexpr
+ * ::= parenexpr
+ * ::= ifexpr
+ * ::= forexpr *)
+let rec parse_primary = parser
+ (* numberexpr ::= number *)
+ | [&lt; 'Token.Number n &gt;] -&gt; Ast.Number n
+
+ (* parenexpr ::= '(' expression ')' *)
+ | [&lt; 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" &gt;] -&gt; e
+
+ (* identifierexpr
+ * ::= identifier
+ * ::= identifier '(' argumentexpr ')' *)
+ | [&lt; 'Token.Ident id; stream &gt;] -&gt;
+ let rec parse_args accumulator = parser
+ | [&lt; e=parse_expr; stream &gt;] -&gt;
+ begin parser
+ | [&lt; 'Token.Kwd ','; e=parse_args (e :: accumulator) &gt;] -&gt; e
+ | [&lt; &gt;] -&gt; e :: accumulator
+ end stream
+ | [&lt; &gt;] -&gt; accumulator
+ in
+ let rec parse_ident id = parser
+ (* Call. *)
+ | [&lt; 'Token.Kwd '(';
+ args=parse_args [];
+ 'Token.Kwd ')' ?? "expected ')'"&gt;] -&gt;
+ Ast.Call (id, Array.of_list (List.rev args))
+
+ (* Simple variable ref. *)
+ | [&lt; &gt;] -&gt; Ast.Variable id
+ in
+ parse_ident id stream
+
+ (* ifexpr ::= 'if' expr 'then' expr 'else' expr *)
+ | [&lt; 'Token.If; c=parse_expr;
+ 'Token.Then ?? "expected 'then'"; t=parse_expr;
+ 'Token.Else ?? "expected 'else'"; e=parse_expr &gt;] -&gt;
+ Ast.If (c, t, e)
+
+ (* forexpr
+ ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression *)
+ | [&lt; 'Token.For;
+ 'Token.Ident id ?? "expected identifier after for";
+ 'Token.Kwd '=' ?? "expected '=' after for";
+ stream &gt;] -&gt;
+ begin parser
+ | [&lt;
+ start=parse_expr;
+ 'Token.Kwd ',' ?? "expected ',' after for";
+ end_=parse_expr;
+ stream &gt;] -&gt;
+ let step =
+ begin parser
+ | [&lt; 'Token.Kwd ','; step=parse_expr &gt;] -&gt; Some step
+ | [&lt; &gt;] -&gt; None
+ end stream
+ in
+ begin parser
+ | [&lt; 'Token.In; body=parse_expr &gt;] -&gt;
+ Ast.For (id, start, end_, step, body)
+ | [&lt; &gt;] -&gt;
+ raise (Stream.Error "expected 'in' after for")
+ end stream
+ | [&lt; &gt;] -&gt;
+ raise (Stream.Error "expected '=' after for")
+ end stream
+
+ | [&lt; &gt;] -&gt; raise (Stream.Error "unknown token when expecting an expression.")
+
+(* binoprhs
+ * ::= ('+' primary)* *)
+and parse_bin_rhs expr_prec lhs stream =
+ match Stream.peek stream with
+ (* If this is a binop, find its precedence. *)
+ | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c -&gt;
+ let token_prec = precedence c in
+
+ (* If this is a binop that binds at least as tightly as the current binop,
+ * consume it, otherwise we are done. *)
+ if token_prec &lt; expr_prec then lhs else begin
+ (* Eat the binop. *)
+ Stream.junk stream;
+
+ (* Parse the primary expression after the binary operator. *)
+ let rhs = parse_primary stream in
+
+ (* Okay, we know this is a binop. *)
+ let rhs =
+ match Stream.peek stream with
+ | Some (Token.Kwd c2) -&gt;
+ (* If BinOp binds less tightly with rhs than the operator after
+ * rhs, let the pending operator take rhs as its lhs. *)
+ let next_prec = precedence c2 in
+ if token_prec &lt; next_prec
+ then parse_bin_rhs (token_prec + 1) rhs stream
+ else rhs
+ | _ -&gt; rhs
+ in
+
+ (* Merge lhs/rhs. *)
+ let lhs = Ast.Binary (c, lhs, rhs) in
+ parse_bin_rhs expr_prec lhs stream
+ end
+ | _ -&gt; lhs
+
+(* expression
+ * ::= primary binoprhs *)
+and parse_expr = parser
+ | [&lt; lhs=parse_primary; stream &gt;] -&gt; parse_bin_rhs 0 lhs stream
+
+(* prototype
+ * ::= id '(' id* ')' *)
+let parse_prototype =
+ let rec parse_args accumulator = parser
+ | [&lt; 'Token.Ident id; e=parse_args (id::accumulator) &gt;] -&gt; e
+ | [&lt; &gt;] -&gt; accumulator
+ in
+
+ parser
+ | [&lt; 'Token.Ident id;
+ 'Token.Kwd '(' ?? "expected '(' in prototype";
+ args=parse_args [];
+ 'Token.Kwd ')' ?? "expected ')' in prototype" &gt;] -&gt;
+ (* success. *)
+ Ast.Prototype (id, Array.of_list (List.rev args))
+
+ | [&lt; &gt;] -&gt;
+ raise (Stream.Error "expected function name in prototype")
+
+(* definition ::= 'def' prototype expression *)
+let parse_definition = parser
+ | [&lt; 'Token.Def; p=parse_prototype; e=parse_expr &gt;] -&gt;
+ Ast.Function (p, e)
+
+(* toplevelexpr ::= expression *)
+let parse_toplevel = parser
+ | [&lt; e=parse_expr &gt;] -&gt;
+ (* Make an anonymous proto. *)
+ Ast.Function (Ast.Prototype ("", [||]), e)
+
+(* external ::= 'extern' prototype *)
+let parse_extern = parser
+ | [&lt; 'Token.Extern; e=parse_prototype &gt;] -&gt; e
+</pre>
+</dd>
+
+<dt>codegen.ml:</dt>
+<dd class="doc_code">
+<pre>
+(*===----------------------------------------------------------------------===
+ * Code Generation
+ *===----------------------------------------------------------------------===*)
+
+open Llvm
+
+exception Error of string
+
+let the_module = create_module "my cool jit"
+let builder = builder ()
+let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10
+
+let rec codegen_expr = function
+ | Ast.Number n -&gt; const_float double_type n
+ | Ast.Variable name -&gt;
+ (try Hashtbl.find named_values name with
+ | Not_found -&gt; raise (Error "unknown variable name"))
+ | Ast.Binary (op, lhs, rhs) -&gt;
+ let lhs_val = codegen_expr lhs in
+ let rhs_val = codegen_expr rhs in
+ begin
+ match op with
+ | '+' -&gt; build_add lhs_val rhs_val "addtmp" builder
+ | '-' -&gt; build_sub lhs_val rhs_val "subtmp" builder
+ | '*' -&gt; build_mul lhs_val rhs_val "multmp" builder
+ | '&lt;' -&gt;
+ (* Convert bool 0/1 to double 0.0 or 1.0 *)
+ let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in
+ build_uitofp i double_type "booltmp" builder
+ | _ -&gt; raise (Error "invalid binary operator")
+ end
+ | Ast.Call (callee, args) -&gt;
+ (* Look up the name in the module table. *)
+ let callee =
+ match lookup_function callee the_module with
+ | Some callee -&gt; callee
+ | None -&gt; raise (Error "unknown function referenced")
+ in
+ let params = params callee in
+
+ (* If argument mismatch error. *)
+ if Array.length params == Array.length args then () else
+ raise (Error "incorrect # arguments passed");
+ let args = Array.map codegen_expr args in
+ build_call callee args "calltmp" builder
+ | Ast.If (cond, then_, else_) -&gt;
+ let cond = codegen_expr cond in
+
+ (* Convert condition to a bool by comparing equal to 0.0 *)
+ let zero = const_float double_type 0.0 in
+ let cond_val = build_fcmp Fcmp.One cond zero "ifcond" builder in
+
+ (* Grab the first block so that we might later add the conditional branch
+ * to it at the end of the function. *)
+ let start_bb = insertion_block builder in
+ let the_function = block_parent start_bb in
+
+ let then_bb = append_block "then" the_function in
+
+ (* Emit 'then' value. *)
+ position_at_end then_bb builder;
+ let then_val = codegen_expr then_ in
+
+ (* Codegen of 'then' can change the current block, update then_bb for the
+ * phi. We create a new name because one is used for the phi node, and the
+ * other is used for the conditional branch. *)
+ let new_then_bb = insertion_block builder in
+
+ (* Emit 'else' value. *)
+ let else_bb = append_block "else" the_function in
+ position_at_end else_bb builder;
+ let else_val = codegen_expr else_ in
+
+ (* Codegen of 'else' can change the current block, update else_bb for the
+ * phi. *)
+ let new_else_bb = insertion_block builder in
+
+ (* Emit merge block. *)
+ let merge_bb = append_block "ifcont" the_function in
+ position_at_end merge_bb builder;
+ let incoming = [(then_val, new_then_bb); (else_val, new_else_bb)] in
+ let phi = build_phi incoming "iftmp" builder in
+
+ (* Return to the start block to add the conditional branch. *)
+ position_at_end start_bb builder;
+ ignore (build_cond_br cond_val then_bb else_bb builder);
+
+ (* Set a unconditional branch at the end of the 'then' block and the
+ * 'else' block to the 'merge' block. *)
+ position_at_end new_then_bb builder; ignore (build_br merge_bb builder);
+ position_at_end new_else_bb builder; ignore (build_br merge_bb builder);
+
+ (* Finally, set the builder to the end of the merge block. *)
+ position_at_end merge_bb builder;
+
+ phi
+ | Ast.For (var_name, start, end_, step, body) -&gt;
+ (* Emit the start code first, without 'variable' in scope. *)
+ let start_val = codegen_expr start in
+
+ (* Make the new basic block for the loop header, inserting after current
+ * block. *)
+ let preheader_bb = insertion_block builder in
+ let the_function = block_parent preheader_bb in
+ let loop_bb = append_block "loop" the_function in
+
+ (* Insert an explicit fall through from the current block to the
+ * loop_bb. *)
+ ignore (build_br loop_bb builder);
+
+ (* Start insertion in loop_bb. *)
+ position_at_end loop_bb builder;
+
+ (* Start the PHI node with an entry for start. *)
+ let variable = build_phi [(start_val, preheader_bb)] var_name builder in
+
+ (* Within the loop, the variable is defined equal to the PHI node. If it
+ * shadows an existing variable, we have to restore it, so save it
+ * now. *)
+ let old_val =
+ try Some (Hashtbl.find named_values var_name) with Not_found -&gt; None
+ in
+ Hashtbl.add named_values var_name variable;
+
+ (* Emit the body of the loop. This, like any other expr, can change the
+ * current BB. Note that we ignore the value computed by the body, but
+ * don't allow an error *)
+ ignore (codegen_expr body);
+
+ (* Emit the step value. *)
+ let step_val =
+ match step with
+ | Some step -&gt; codegen_expr step
+ (* If not specified, use 1.0. *)
+ | None -&gt; const_float double_type 1.0
+ in
+
+ let next_var = build_add variable step_val "nextvar" builder in
+
+ (* Compute the end condition. *)
+ let end_cond = codegen_expr end_ in
+
+ (* Convert condition to a bool by comparing equal to 0.0. *)
+ let zero = const_float double_type 0.0 in
+ let end_cond = build_fcmp Fcmp.One end_cond zero "loopcond" builder in
+
+ (* Create the "after loop" block and insert it. *)
+ let loop_end_bb = insertion_block builder in
+ let after_bb = append_block "afterloop" the_function in
+
+ (* Insert the conditional branch into the end of loop_end_bb. *)
+ ignore (build_cond_br end_cond loop_bb after_bb builder);
+
+ (* Any new code will be inserted in after_bb. *)
+ position_at_end after_bb builder;
+
+ (* Add a new entry to the PHI node for the backedge. *)
+ add_incoming (next_var, loop_end_bb) variable;
+
+ (* Restore the unshadowed variable. *)
+ begin match old_val with
+ | Some old_val -&gt; Hashtbl.add named_values var_name old_val
+ | None -&gt; ()
+ end;
+
+ (* for expr always returns 0.0. *)
+ const_null double_type
+
+let codegen_proto = function
+ | Ast.Prototype (name, args) -&gt;
+ (* Make the function type: double(double,double) etc. *)
+ let doubles = Array.make (Array.length args) double_type in
+ let ft = function_type double_type doubles in
+ let f =
+ match lookup_function name the_module with
+ | None -&gt; declare_function name ft the_module
+
+ (* If 'f' conflicted, there was already something named 'name'. If it
+ * has a body, don't allow redefinition or reextern. *)
+ | Some f -&gt;
+ (* If 'f' already has a body, reject this. *)
+ if block_begin f &lt;&gt; At_end f then
+ raise (Error "redefinition of function");
+
+ (* If 'f' took a different number of arguments, reject. *)
+ if element_type (type_of f) &lt;&gt; ft then
+ raise (Error "redefinition of function with different # args");
+ f
+ in
+
+ (* Set names for all arguments. *)
+ Array.iteri (fun i a -&gt;
+ let n = args.(i) in
+ set_value_name n a;
+ Hashtbl.add named_values n a;
+ ) (params f);
+ f
+
+let codegen_func the_fpm = function
+ | Ast.Function (proto, body) -&gt;
+ Hashtbl.clear named_values;
+ let the_function = codegen_proto proto in
+
+ (* Create a new basic block to start insertion into. *)
+ let bb = append_block "entry" the_function in
+ position_at_end bb builder;
+
+ try
+ let ret_val = codegen_expr body in
+
+ (* Finish off the function. *)
+ let _ = build_ret ret_val builder in
+
+ (* Validate the generated code, checking for consistency. *)
+ Llvm_analysis.assert_valid_function the_function;
+
+ (* Optimize the function. *)
+ let _ = PassManager.run_function the_function the_fpm in
+
+ the_function
+ with e -&gt;
+ delete_function the_function;
+ raise e
+</pre>
+</dd>
+
+<dt>toplevel.ml:</dt>
+<dd class="doc_code">
+<pre>
+(*===----------------------------------------------------------------------===
+ * Top-Level parsing and JIT Driver
+ *===----------------------------------------------------------------------===*)
+
+open Llvm
+open Llvm_executionengine
+
+(* top ::= definition | external | expression | ';' *)
+let rec main_loop the_fpm the_execution_engine stream =
+ match Stream.peek stream with
+ | None -&gt; ()
+
+ (* ignore top-level semicolons. *)
+ | Some (Token.Kwd ';') -&gt;
+ Stream.junk stream;
+ main_loop the_fpm the_execution_engine stream
+
+ | Some token -&gt;
+ begin
+ try match token with
+ | Token.Def -&gt;
+ let e = Parser.parse_definition stream in
+ print_endline "parsed a function definition.";
+ dump_value (Codegen.codegen_func the_fpm e);
+ | Token.Extern -&gt;
+ let e = Parser.parse_extern stream in
+ print_endline "parsed an extern.";
+ dump_value (Codegen.codegen_proto e);
+ | _ -&gt;
+ (* Evaluate a top-level expression into an anonymous function. *)
+ let e = Parser.parse_toplevel stream in
+ print_endline "parsed a top-level expr";
+ let the_function = Codegen.codegen_func the_fpm e in
+ dump_value the_function;
+
+ (* JIT the function, returning a function pointer. *)
+ let result = ExecutionEngine.run_function the_function [||]
+ the_execution_engine in
+
+ print_string "Evaluated to ";
+ print_float (GenericValue.as_float double_type result);
+ print_newline ();
+ with Stream.Error s | Codegen.Error s -&gt;
+ (* Skip token for error recovery. *)
+ Stream.junk stream;
+ print_endline s;
+ end;
+ print_string "ready&gt; "; flush stdout;
+ main_loop the_fpm the_execution_engine stream
+</pre>
+</dd>
+
+<dt>toy.ml:</dt>
+<dd class="doc_code">
+<pre>
+(*===----------------------------------------------------------------------===
+ * Main driver code.
+ *===----------------------------------------------------------------------===*)
+
+open Llvm
+open Llvm_executionengine
+open Llvm_target
+open Llvm_scalar_opts
+
+let main () =
+ (* Install standard binary operators.
+ * 1 is the lowest precedence. *)
+ Hashtbl.add Parser.binop_precedence '&lt;' 10;
+ Hashtbl.add Parser.binop_precedence '+' 20;
+ Hashtbl.add Parser.binop_precedence '-' 20;
+ Hashtbl.add Parser.binop_precedence '*' 40; (* highest. *)
+
+ (* Prime the first token. *)
+ print_string "ready&gt; "; flush stdout;
+ let stream = Lexer.lex (Stream.of_channel stdin) in
+
+ (* Create the JIT. *)
+ let the_module_provider = ModuleProvider.create Codegen.the_module in
+ let the_execution_engine = ExecutionEngine.create the_module_provider in
+ let the_fpm = PassManager.create_function the_module_provider in
+
+ (* Set up the optimizer pipeline. Start with registering info about how the
+ * target lays out data structures. *)
+ TargetData.add (ExecutionEngine.target_data the_execution_engine) the_fpm;
+
+ (* Do simple "peephole" optimizations and bit-twiddling optzn. *)
+ add_instruction_combining the_fpm;
+
+ (* reassociate expressions. *)
+ add_reassociation the_fpm;
+
+ (* Eliminate Common SubExpressions. *)
+ add_gvn the_fpm;
+
+ (* Simplify the control flow graph (deleting unreachable blocks, etc). *)
+ add_cfg_simplification the_fpm;
+
+ (* Run the main "interpreter loop" now. *)
+ Toplevel.main_loop the_fpm the_execution_engine stream;
+
+ (* Print out all the generated code. *)
+ dump_module Codegen.the_module
+;;
+
+main ()
+</pre>
+</dd>
+
+<dt>bindings.c</dt>
+<dd class="doc_code">
+<pre>
+#include &lt;stdio.h&gt;
+
+/* putchard - putchar that takes a double and returns 0. */
+extern double putchard(double X) {
+ putchar((char)X);
+ return 0;
+}
+</pre>
+</dd>
+</dl>
+
+<a href="OCamlLangImpl6.html">Next: Extending the language: user-defined
+operators</a>
+</div>
+
+<!-- *********************************************************************** -->
+<hr>
+<address>
+ <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
+ src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
+ <a href="http://validator.w3.org/check/referer"><img
+ src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
+
+ <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
+ <a href="mailto:idadesub@users.sourceforge.net">Erick Tryzelaar</a><br>
+ <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
+ Last modified: $Date: 2007-10-17 11:05:13 -0700 (Wed, 17 Oct 2007) $
+</address>
+</body>
+</html>
diff --git a/docs/tutorial/OCamlLangImpl6.html b/docs/tutorial/OCamlLangImpl6.html
new file mode 100644
index 0000000..780cab8
--- /dev/null
+++ b/docs/tutorial/OCamlLangImpl6.html
@@ -0,0 +1,1569 @@
+<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
+ "http://www.w3.org/TR/html4/strict.dtd">
+
+<html>
+<head>
+ <title>Kaleidoscope: Extending the Language: User-defined Operators</title>
+ <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
+ <meta name="author" content="Chris Lattner">
+ <meta name="author" content="Erick Tryzelaar">
+ <link rel="stylesheet" href="../llvm.css" type="text/css">
+</head>
+
+<body>
+
+<div class="doc_title">Kaleidoscope: Extending the Language: User-defined Operators</div>
+
+<ul>
+<li><a href="index.html">Up to Tutorial Index</a></li>
+<li>Chapter 6
+ <ol>
+ <li><a href="#intro">Chapter 6 Introduction</a></li>
+ <li><a href="#idea">User-defined Operators: the Idea</a></li>
+ <li><a href="#binary">User-defined Binary Operators</a></li>
+ <li><a href="#unary">User-defined Unary Operators</a></li>
+ <li><a href="#example">Kicking the Tires</a></li>
+ <li><a href="#code">Full Code Listing</a></li>
+ </ol>
+</li>
+<li><a href="OCamlLangImpl7.html">Chapter 7</a>: Extending the Language: Mutable
+Variables / SSA Construction</li>
+</ul>
+
+<div class="doc_author">
+ <p>
+ Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
+ and <a href="mailto:idadesub@users.sourceforge.net">Erick Tryzelaar</a>
+ </p>
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section"><a name="intro">Chapter 6 Introduction</a></div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>Welcome to Chapter 6 of the "<a href="index.html">Implementing a language
+with LLVM</a>" tutorial. At this point in our tutorial, we now have a fully
+functional language that is fairly minimal, but also useful. There
+is still one big problem with it, however. Our language doesn't have many
+useful operators (like division, logical negation, or even any comparisons
+besides less-than).</p>
+
+<p>This chapter of the tutorial takes a wild digression into adding user-defined
+operators to the simple and beautiful Kaleidoscope language. This digression now
+gives us a simple and ugly language in some ways, but also a powerful one at the
+same time. One of the great things about creating your own language is that you
+get to decide what is good or bad. In this tutorial we'll assume that it is
+okay to use this as a way to show some interesting parsing techniques.</p>
+
+<p>At the end of this tutorial, we'll run through an example Kaleidoscope
+application that <a href="#example">renders the Mandelbrot set</a>. This gives
+an example of what you can build with Kaleidoscope and its feature set.</p>
+
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section"><a name="idea">User-defined Operators: the Idea</a></div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>
+The "operator overloading" that we will add to Kaleidoscope is more general than
+languages like C++. In C++, you are only allowed to redefine existing
+operators: you can't programatically change the grammar, introduce new
+operators, change precedence levels, etc. In this chapter, we will add this
+capability to Kaleidoscope, which will let the user round out the set of
+operators that are supported.</p>
+
+<p>The point of going into user-defined operators in a tutorial like this is to
+show the power and flexibility of using a hand-written parser. Thus far, the parser
+we have been implementing uses recursive descent for most parts of the grammar and
+operator precedence parsing for the expressions. See <a
+href="OCamlLangImpl2.html">Chapter 2</a> for details. Without using operator
+precedence parsing, it would be very difficult to allow the programmer to
+introduce new operators into the grammar: the grammar is dynamically extensible
+as the JIT runs.</p>
+
+<p>The two specific features we'll add are programmable unary operators (right
+now, Kaleidoscope has no unary operators at all) as well as binary operators.
+An example of this is:</p>
+
+<div class="doc_code">
+<pre>
+# Logical unary not.
+def unary!(v)
+ if v then
+ 0
+ else
+ 1;
+
+# Define &gt; with the same precedence as &lt;.
+def binary&gt; 10 (LHS RHS)
+ RHS &lt; LHS;
+
+# Binary "logical or", (note that it does not "short circuit")
+def binary| 5 (LHS RHS)
+ if LHS then
+ 1
+ else if RHS then
+ 1
+ else
+ 0;
+
+# Define = with slightly lower precedence than relationals.
+def binary= 9 (LHS RHS)
+ !(LHS &lt; RHS | LHS &gt; RHS);
+</pre>
+</div>
+
+<p>Many languages aspire to being able to implement their standard runtime
+library in the language itself. In Kaleidoscope, we can implement significant
+parts of the language in the library!</p>
+
+<p>We will break down implementation of these features into two parts:
+implementing support for user-defined binary operators and adding unary
+operators.</p>
+
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section"><a name="binary">User-defined Binary Operators</a></div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>Adding support for user-defined binary operators is pretty simple with our
+current framework. We'll first add support for the unary/binary keywords:</p>
+
+<div class="doc_code">
+<pre>
+type token =
+ ...
+ <b>(* operators *)
+ | Binary | Unary</b>
+
+...
+
+and lex_ident buffer = parser
+ ...
+ | "for" -&gt; [&lt; 'Token.For; stream &gt;]
+ | "in" -&gt; [&lt; 'Token.In; stream &gt;]
+ <b>| "binary" -&gt; [&lt; 'Token.Binary; stream &gt;]
+ | "unary" -&gt; [&lt; 'Token.Unary; stream &gt;]</b>
+</pre>
+</div>
+
+<p>This just adds lexer support for the unary and binary keywords, like we
+did in <a href="OCamlLangImpl5.html#iflexer">previous chapters</a>. One nice
+thing about our current AST, is that we represent binary operators with full
+generalisation by using their ASCII code as the opcode. For our extended
+operators, we'll use this same representation, so we don't need any new AST or
+parser support.</p>
+
+<p>On the other hand, we have to be able to represent the definitions of these
+new operators, in the "def binary| 5" part of the function definition. In our
+grammar so far, the "name" for the function definition is parsed as the
+"prototype" production and into the <tt>Ast.Prototype</tt> AST node. To
+represent our new user-defined operators as prototypes, we have to extend
+the <tt>Ast.Prototype</tt> AST node like this:</p>
+
+<div class="doc_code">
+<pre>
+(* proto - This type represents the "prototype" for a function, which captures
+ * its name, and its argument names (thus implicitly the number of arguments the
+ * function takes). *)
+type proto =
+ | Prototype of string * string array
+ <b>| BinOpPrototype of string * string array * int</b>
+</pre>
+</div>
+
+<p>Basically, in addition to knowing a name for the prototype, we now keep track
+of whether it was an operator, and if it was, what precedence level the operator
+is at. The precedence is only used for binary operators (as you'll see below,
+it just doesn't apply for unary operators). Now that we have a way to represent
+the prototype for a user-defined operator, we need to parse it:</p>
+
+<div class="doc_code">
+<pre>
+(* prototype
+ * ::= id '(' id* ')'
+ <b>* ::= binary LETTER number? (id, id)
+ * ::= unary LETTER number? (id) *)</b>
+let parse_prototype =
+ let rec parse_args accumulator = parser
+ | [&lt; 'Token.Ident id; e=parse_args (id::accumulator) &gt;] -&gt; e
+ | [&lt; &gt;] -&gt; accumulator
+ in
+ let parse_operator = parser
+ | [&lt; 'Token.Unary &gt;] -&gt; "unary", 1
+ | [&lt; 'Token.Binary &gt;] -&gt; "binary", 2
+ in
+ let parse_binary_precedence = parser
+ | [&lt; 'Token.Number n &gt;] -&gt; int_of_float n
+ | [&lt; &gt;] -&gt; 30
+ in
+ parser
+ | [&lt; 'Token.Ident id;
+ 'Token.Kwd '(' ?? "expected '(' in prototype";
+ args=parse_args [];
+ 'Token.Kwd ')' ?? "expected ')' in prototype" &gt;] -&gt;
+ (* success. *)
+ Ast.Prototype (id, Array.of_list (List.rev args))
+ <b>| [&lt; (prefix, kind)=parse_operator;
+ 'Token.Kwd op ?? "expected an operator";
+ (* Read the precedence if present. *)
+ binary_precedence=parse_binary_precedence;
+ 'Token.Kwd '(' ?? "expected '(' in prototype";
+ args=parse_args [];
+ 'Token.Kwd ')' ?? "expected ')' in prototype" &gt;] -&gt;
+ let name = prefix ^ (String.make 1 op) in
+ let args = Array.of_list (List.rev args) in
+
+ (* Verify right number of arguments for operator. *)
+ if Array.length args != kind
+ then raise (Stream.Error "invalid number of operands for operator")
+ else
+ if kind == 1 then
+ Ast.Prototype (name, args)
+ else
+ Ast.BinOpPrototype (name, args, binary_precedence)</b>
+ | [&lt; &gt;] -&gt;
+ raise (Stream.Error "expected function name in prototype")
+</pre>
+</div>
+
+<p>This is all fairly straightforward parsing code, and we have already seen
+a lot of similar code in the past. One interesting part about the code above is
+the couple lines that set up <tt>name</tt> for binary operators. This builds
+names like "binary@" for a newly defined "@" operator. This then takes
+advantage of the fact that symbol names in the LLVM symbol table are allowed to
+have any character in them, including embedded nul characters.</p>
+
+<p>The next interesting thing to add, is codegen support for these binary
+operators. Given our current structure, this is a simple addition of a default
+case for our existing binary operator node:</p>
+
+<div class="doc_code">
+<pre>
+let codegen_expr = function
+ ...
+ | Ast.Binary (op, lhs, rhs) -&gt;
+ let lhs_val = codegen_expr lhs in
+ let rhs_val = codegen_expr rhs in
+ begin
+ match op with
+ | '+' -&gt; build_add lhs_val rhs_val "addtmp" builder
+ | '-' -&gt; build_sub lhs_val rhs_val "subtmp" builder
+ | '*' -&gt; build_mul lhs_val rhs_val "multmp" builder
+ | '&lt;' -&gt;
+ (* Convert bool 0/1 to double 0.0 or 1.0 *)
+ let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in
+ build_uitofp i double_type "booltmp" builder
+ <b>| _ -&gt;
+ (* If it wasn't a builtin binary operator, it must be a user defined
+ * one. Emit a call to it. *)
+ let callee = "binary" ^ (String.make 1 op) in
+ let callee =
+ match lookup_function callee the_module with
+ | Some callee -&gt; callee
+ | None -&gt; raise (Error "binary operator not found!")
+ in
+ build_call callee [|lhs_val; rhs_val|] "binop" builder</b>
+ end
+</pre>
+</div>
+
+<p>As you can see above, the new code is actually really simple. It just does
+a lookup for the appropriate operator in the symbol table and generates a
+function call to it. Since user-defined operators are just built as normal
+functions (because the "prototype" boils down to a function with the right
+name) everything falls into place.</p>
+
+<p>The final piece of code we are missing, is a bit of top level magic:</p>
+
+<div class="doc_code">
+<pre>
+let codegen_func the_fpm = function
+ | Ast.Function (proto, body) -&gt;
+ Hashtbl.clear named_values;
+ let the_function = codegen_proto proto in
+
+ <b>(* If this is an operator, install it. *)
+ begin match proto with
+ | Ast.BinOpPrototype (name, args, prec) -&gt;
+ let op = name.[String.length name - 1] in
+ Hashtbl.add Parser.binop_precedence op prec;
+ | _ -&gt; ()
+ end;</b>
+
+ (* Create a new basic block to start insertion into. *)
+ let bb = append_block "entry" the_function in
+ position_at_end bb builder;
+ ...
+</pre>
+</div>
+
+<p>Basically, before codegening a function, if it is a user-defined operator, we
+register it in the precedence table. This allows the binary operator parsing
+logic we already have in place to handle it. Since we are working on a
+fully-general operator precedence parser, this is all we need to do to "extend
+the grammar".</p>
+
+<p>Now we have useful user-defined binary operators. This builds a lot
+on the previous framework we built for other operators. Adding unary operators
+is a bit more challenging, because we don't have any framework for it yet - lets
+see what it takes.</p>
+
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section"><a name="unary">User-defined Unary Operators</a></div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>Since we don't currently support unary operators in the Kaleidoscope
+language, we'll need to add everything to support them. Above, we added simple
+support for the 'unary' keyword to the lexer. In addition to that, we need an
+AST node:</p>
+
+<div class="doc_code">
+<pre>
+type expr =
+ ...
+ (* variant for a unary operator. *)
+ | Unary of char * expr
+ ...
+</pre>
+</div>
+
+<p>This AST node is very simple and obvious by now. It directly mirrors the
+binary operator AST node, except that it only has one child. With this, we
+need to add the parsing logic. Parsing a unary operator is pretty simple: we'll
+add a new function to do it:</p>
+
+<div class="doc_code">
+<pre>
+(* unary
+ * ::= primary
+ * ::= '!' unary *)
+and parse_unary = parser
+ (* If this is a unary operator, read it. *)
+ | [&lt; 'Token.Kwd op when op != '(' &amp;&amp; op != ')'; operand=parse_expr &gt;] -&gt;
+ Ast.Unary (op, operand)
+
+ (* If the current token is not an operator, it must be a primary expr. *)
+ | [&lt; stream &gt;] -&gt; parse_primary stream
+</pre>
+</div>
+
+<p>The grammar we add is pretty straightforward here. If we see a unary
+operator when parsing a primary operator, we eat the operator as a prefix and
+parse the remaining piece as another unary operator. This allows us to handle
+multiple unary operators (e.g. "!!x"). Note that unary operators can't have
+ambiguous parses like binary operators can, so there is no need for precedence
+information.</p>
+
+<p>The problem with this function, is that we need to call ParseUnary from
+somewhere. To do this, we change previous callers of ParsePrimary to call
+<tt>parse_unary</tt> instead:</p>
+
+<div class="doc_code">
+<pre>
+(* binoprhs
+ * ::= ('+' primary)* *)
+and parse_bin_rhs expr_prec lhs stream =
+ ...
+ <b>(* Parse the unary expression after the binary operator. *)
+ let rhs = parse_unary stream in</b>
+ ...
+
+...
+
+(* expression
+ * ::= primary binoprhs *)
+and parse_expr = parser
+ | [&lt; lhs=<b>parse_unary</b>; stream &gt;] -&gt; parse_bin_rhs 0 lhs stream
+</pre>
+</div>
+
+<p>With these two simple changes, we are now able to parse unary operators and build the
+AST for them. Next up, we need to add parser support for prototypes, to parse
+the unary operator prototype. We extend the binary operator code above
+with:</p>
+
+<div class="doc_code">
+<pre>
+(* prototype
+ * ::= id '(' id* ')'
+ * ::= binary LETTER number? (id, id)
+ <b>* ::= unary LETTER number? (id)</b> *)
+let parse_prototype =
+ let rec parse_args accumulator = parser
+ | [&lt; 'Token.Ident id; e=parse_args (id::accumulator) &gt;] -&gt; e
+ | [&lt; &gt;] -&gt; accumulator
+ in
+ <b>let parse_operator = parser
+ | [&lt; 'Token.Unary &gt;] -&gt; "unary", 1
+ | [&lt; 'Token.Binary &gt;] -&gt; "binary", 2
+ in</b>
+ let parse_binary_precedence = parser
+ | [&lt; 'Token.Number n &gt;] -&gt; int_of_float n
+ | [&lt; &gt;] -&gt; 30
+ in
+ parser
+ | [&lt; 'Token.Ident id;
+ 'Token.Kwd '(' ?? "expected '(' in prototype";
+ args=parse_args [];
+ 'Token.Kwd ')' ?? "expected ')' in prototype" &gt;] -&gt;
+ (* success. *)
+ Ast.Prototype (id, Array.of_list (List.rev args))
+ <b>| [&lt; (prefix, kind)=parse_operator;
+ 'Token.Kwd op ?? "expected an operator";
+ (* Read the precedence if present. *)
+ binary_precedence=parse_binary_precedence;
+ 'Token.Kwd '(' ?? "expected '(' in prototype";
+ args=parse_args [];
+ 'Token.Kwd ')' ?? "expected ')' in prototype" &gt;] -&gt;
+ let name = prefix ^ (String.make 1 op) in
+ let args = Array.of_list (List.rev args) in
+
+ (* Verify right number of arguments for operator. *)
+ if Array.length args != kind
+ then raise (Stream.Error "invalid number of operands for operator")
+ else
+ if kind == 1 then
+ Ast.Prototype (name, args)
+ else
+ Ast.BinOpPrototype (name, args, binary_precedence)</b>
+ | [&lt; &gt;] -&gt;
+ raise (Stream.Error "expected function name in prototype")
+</pre>
+</div>
+
+<p>As with binary operators, we name unary operators with a name that includes
+the operator character. This assists us at code generation time. Speaking of,
+the final piece we need to add is codegen support for unary operators. It looks
+like this:</p>
+
+<div class="doc_code">
+<pre>
+let rec codegen_expr = function
+ ...
+ | Ast.Unary (op, operand) -&gt;
+ let operand = codegen_expr operand in
+ let callee = "unary" ^ (String.make 1 op) in
+ let callee =
+ match lookup_function callee the_module with
+ | Some callee -&gt; callee
+ | None -&gt; raise (Error "unknown unary operator")
+ in
+ build_call callee [|operand|] "unop" builder
+</pre>
+</div>
+
+<p>This code is similar to, but simpler than, the code for binary operators. It
+is simpler primarily because it doesn't need to handle any predefined operators.
+</p>
+
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section"><a name="example">Kicking the Tires</a></div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>It is somewhat hard to believe, but with a few simple extensions we've
+covered in the last chapters, we have grown a real-ish language. With this, we
+can do a lot of interesting things, including I/O, math, and a bunch of other
+things. For example, we can now add a nice sequencing operator (printd is
+defined to print out the specified value and a newline):</p>
+
+<div class="doc_code">
+<pre>
+ready&gt; <b>extern printd(x);</b>
+Read extern: declare double @printd(double)
+ready&gt; <b>def binary : 1 (x y) 0; # Low-precedence operator that ignores operands.</b>
+..
+ready&gt; <b>printd(123) : printd(456) : printd(789);</b>
+123.000000
+456.000000
+789.000000
+Evaluated to 0.000000
+</pre>
+</div>
+
+<p>We can also define a bunch of other "primitive" operations, such as:</p>
+
+<div class="doc_code">
+<pre>
+# Logical unary not.
+def unary!(v)
+ if v then
+ 0
+ else
+ 1;
+
+# Unary negate.
+def unary-(v)
+ 0-v;
+
+# Define &gt; with the same precedence as &gt;.
+def binary&gt; 10 (LHS RHS)
+ RHS &lt; LHS;
+
+# Binary logical or, which does not short circuit.
+def binary| 5 (LHS RHS)
+ if LHS then
+ 1
+ else if RHS then
+ 1
+ else
+ 0;
+
+# Binary logical and, which does not short circuit.
+def binary&amp; 6 (LHS RHS)
+ if !LHS then
+ 0
+ else
+ !!RHS;
+
+# Define = with slightly lower precedence than relationals.
+def binary = 9 (LHS RHS)
+ !(LHS &lt; RHS | LHS &gt; RHS);
+
+</pre>
+</div>
+
+
+<p>Given the previous if/then/else support, we can also define interesting
+functions for I/O. For example, the following prints out a character whose
+"density" reflects the value passed in: the lower the value, the denser the
+character:</p>
+
+<div class="doc_code">
+<pre>
+ready&gt;
+<b>
+extern putchard(char)
+def printdensity(d)
+ if d &gt; 8 then
+ putchard(32) # ' '
+ else if d &gt; 4 then
+ putchard(46) # '.'
+ else if d &gt; 2 then
+ putchard(43) # '+'
+ else
+ putchard(42); # '*'</b>
+...
+ready&gt; <b>printdensity(1): printdensity(2): printdensity(3) :
+ printdensity(4): printdensity(5): printdensity(9): putchard(10);</b>
+*++..
+Evaluated to 0.000000
+</pre>
+</div>
+
+<p>Based on these simple primitive operations, we can start to define more
+interesting things. For example, here's a little function that solves for the
+number of iterations it takes a function in the complex plane to
+converge:</p>
+
+<div class="doc_code">
+<pre>
+# determine whether the specific location diverges.
+# Solve for z = z^2 + c in the complex plane.
+def mandleconverger(real imag iters creal cimag)
+ if iters &gt; 255 | (real*real + imag*imag &gt; 4) then
+ iters
+ else
+ mandleconverger(real*real - imag*imag + creal,
+ 2*real*imag + cimag,
+ iters+1, creal, cimag);
+
+# return the number of iterations required for the iteration to escape
+def mandleconverge(real imag)
+ mandleconverger(real, imag, 0, real, imag);
+</pre>
+</div>
+
+<p>This "z = z<sup>2</sup> + c" function is a beautiful little creature that is the basis
+for computation of the <a
+href="http://en.wikipedia.org/wiki/Mandelbrot_set">Mandelbrot Set</a>. Our
+<tt>mandelconverge</tt> function returns the number of iterations that it takes
+for a complex orbit to escape, saturating to 255. This is not a very useful
+function by itself, but if you plot its value over a two-dimensional plane,
+you can see the Mandelbrot set. Given that we are limited to using putchard
+here, our amazing graphical output is limited, but we can whip together
+something using the density plotter above:</p>
+
+<div class="doc_code">
+<pre>
+# compute and plot the mandlebrot set with the specified 2 dimensional range
+# info.
+def mandelhelp(xmin xmax xstep ymin ymax ystep)
+ for y = ymin, y &lt; ymax, ystep in (
+ (for x = xmin, x &lt; xmax, xstep in
+ printdensity(mandleconverge(x,y)))
+ : putchard(10)
+ )
+
+# mandel - This is a convenient helper function for ploting the mandelbrot set
+# from the specified position with the specified Magnification.
+def mandel(realstart imagstart realmag imagmag)
+ mandelhelp(realstart, realstart+realmag*78, realmag,
+ imagstart, imagstart+imagmag*40, imagmag);
+</pre>
+</div>
+
+<p>Given this, we can try plotting out the mandlebrot set! Lets try it out:</p>
+
+<div class="doc_code">
+<pre>
+ready&gt; <b>mandel(-2.3, -1.3, 0.05, 0.07);</b>
+*******************************+++++++++++*************************************
+*************************+++++++++++++++++++++++*******************************
+**********************+++++++++++++++++++++++++++++****************************
+*******************+++++++++++++++++++++.. ...++++++++*************************
+*****************++++++++++++++++++++++.... ...+++++++++***********************
+***************+++++++++++++++++++++++..... ...+++++++++*********************
+**************+++++++++++++++++++++++.... ....+++++++++********************
+*************++++++++++++++++++++++...... .....++++++++*******************
+************+++++++++++++++++++++....... .......+++++++******************
+***********+++++++++++++++++++.... ... .+++++++*****************
+**********+++++++++++++++++....... .+++++++****************
+*********++++++++++++++........... ...+++++++***************
+********++++++++++++............ ...++++++++**************
+********++++++++++... .......... .++++++++**************
+*******+++++++++..... .+++++++++*************
+*******++++++++...... ..+++++++++*************
+*******++++++....... ..+++++++++*************
+*******+++++...... ..+++++++++*************
+*******.... .... ...+++++++++*************
+*******.... . ...+++++++++*************
+*******+++++...... ...+++++++++*************
+*******++++++....... ..+++++++++*************
+*******++++++++...... .+++++++++*************
+*******+++++++++..... ..+++++++++*************
+********++++++++++... .......... .++++++++**************
+********++++++++++++............ ...++++++++**************
+*********++++++++++++++.......... ...+++++++***************
+**********++++++++++++++++........ .+++++++****************
+**********++++++++++++++++++++.... ... ..+++++++****************
+***********++++++++++++++++++++++....... .......++++++++*****************
+************+++++++++++++++++++++++...... ......++++++++******************
+**************+++++++++++++++++++++++.... ....++++++++********************
+***************+++++++++++++++++++++++..... ...+++++++++*********************
+*****************++++++++++++++++++++++.... ...++++++++***********************
+*******************+++++++++++++++++++++......++++++++*************************
+*********************++++++++++++++++++++++.++++++++***************************
+*************************+++++++++++++++++++++++*******************************
+******************************+++++++++++++************************************
+*******************************************************************************
+*******************************************************************************
+*******************************************************************************
+Evaluated to 0.000000
+ready&gt; <b>mandel(-2, -1, 0.02, 0.04);</b>
+**************************+++++++++++++++++++++++++++++++++++++++++++++++++++++
+***********************++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+*********************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++.
+*******************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++...
+*****************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++.....
+***************++++++++++++++++++++++++++++++++++++++++++++++++++++++++........
+**************++++++++++++++++++++++++++++++++++++++++++++++++++++++...........
+************+++++++++++++++++++++++++++++++++++++++++++++++++++++..............
+***********++++++++++++++++++++++++++++++++++++++++++++++++++........ .
+**********++++++++++++++++++++++++++++++++++++++++++++++.............
+********+++++++++++++++++++++++++++++++++++++++++++..................
+*******+++++++++++++++++++++++++++++++++++++++.......................
+******+++++++++++++++++++++++++++++++++++...........................
+*****++++++++++++++++++++++++++++++++............................
+*****++++++++++++++++++++++++++++...............................
+****++++++++++++++++++++++++++...... .........................
+***++++++++++++++++++++++++......... ...... ...........
+***++++++++++++++++++++++............
+**+++++++++++++++++++++..............
+**+++++++++++++++++++................
+*++++++++++++++++++.................
+*++++++++++++++++............ ...
+*++++++++++++++..............
+*+++....++++................
+*.......... ...........
+*
+*.......... ...........
+*+++....++++................
+*++++++++++++++..............
+*++++++++++++++++............ ...
+*++++++++++++++++++.................
+**+++++++++++++++++++................
+**+++++++++++++++++++++..............
+***++++++++++++++++++++++............
+***++++++++++++++++++++++++......... ...... ...........
+****++++++++++++++++++++++++++...... .........................
+*****++++++++++++++++++++++++++++...............................
+*****++++++++++++++++++++++++++++++++............................
+******+++++++++++++++++++++++++++++++++++...........................
+*******+++++++++++++++++++++++++++++++++++++++.......................
+********+++++++++++++++++++++++++++++++++++++++++++..................
+Evaluated to 0.000000
+ready&gt; <b>mandel(-0.9, -1.4, 0.02, 0.03);</b>
+*******************************************************************************
+*******************************************************************************
+*******************************************************************************
+**********+++++++++++++++++++++************************************************
+*+++++++++++++++++++++++++++++++++++++++***************************************
++++++++++++++++++++++++++++++++++++++++++++++**********************************
+++++++++++++++++++++++++++++++++++++++++++++++++++*****************************
+++++++++++++++++++++++++++++++++++++++++++++++++++++++*************************
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++**********************
++++++++++++++++++++++++++++++++++.........++++++++++++++++++*******************
++++++++++++++++++++++++++++++++.... ......+++++++++++++++++++****************
++++++++++++++++++++++++++++++....... ........+++++++++++++++++++**************
+++++++++++++++++++++++++++++........ ........++++++++++++++++++++************
++++++++++++++++++++++++++++......... .. ...+++++++++++++++++++++**********
+++++++++++++++++++++++++++........... ....++++++++++++++++++++++********
+++++++++++++++++++++++++............. .......++++++++++++++++++++++******
++++++++++++++++++++++++............. ........+++++++++++++++++++++++****
+++++++++++++++++++++++........... ..........++++++++++++++++++++++***
+++++++++++++++++++++........... .........++++++++++++++++++++++*
+++++++++++++++++++............ ...........++++++++++++++++++++
+++++++++++++++++............... .............++++++++++++++++++
+++++++++++++++................. ...............++++++++++++++++
+++++++++++++.................. .................++++++++++++++
++++++++++.................. .................+++++++++++++
+++++++........ . ......... ..++++++++++++
+++............ ...... ....++++++++++
+.............. ...++++++++++
+.............. ....+++++++++
+.............. .....++++++++
+............. ......++++++++
+........... .......++++++++
+......... ........+++++++
+......... ........+++++++
+......... ....+++++++
+........ ...+++++++
+....... ...+++++++
+ ....+++++++
+ .....+++++++
+ ....+++++++
+ ....+++++++
+ ....+++++++
+Evaluated to 0.000000
+ready&gt; <b>^D</b>
+</pre>
+</div>
+
+<p>At this point, you may be starting to realize that Kaleidoscope is a real
+and powerful language. It may not be self-similar :), but it can be used to
+plot things that are!</p>
+
+<p>With this, we conclude the "adding user-defined operators" chapter of the
+tutorial. We have successfully augmented our language, adding the ability to
+extend the language in the library, and we have shown how this can be used to
+build a simple but interesting end-user application in Kaleidoscope. At this
+point, Kaleidoscope can build a variety of applications that are functional and
+can call functions with side-effects, but it can't actually define and mutate a
+variable itself.</p>
+
+<p>Strikingly, variable mutation is an important feature of some
+languages, and it is not at all obvious how to <a href="OCamlLangImpl7.html">add
+support for mutable variables</a> without having to add an "SSA construction"
+phase to your front-end. In the next chapter, we will describe how you can
+add variable mutation without building SSA in your front-end.</p>
+
+</div>
+
+
+<!-- *********************************************************************** -->
+<div class="doc_section"><a name="code">Full Code Listing</a></div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>
+Here is the complete code listing for our running example, enhanced with the
+if/then/else and for expressions.. To build this example, use:
+</p>
+
+<div class="doc_code">
+<pre>
+# Compile
+ocamlbuild toy.byte
+# Run
+./toy.byte
+</pre>
+</div>
+
+<p>Here is the code:</p>
+
+<dl>
+<dt>_tags:</dt>
+<dd class="doc_code">
+<pre>
+&lt;{lexer,parser}.ml&gt;: use_camlp4, pp(camlp4of)
+&lt;*.{byte,native}&gt;: g++, use_llvm, use_llvm_analysis
+&lt;*.{byte,native}&gt;: use_llvm_executionengine, use_llvm_target
+&lt;*.{byte,native}&gt;: use_llvm_scalar_opts, use_bindings
+</pre>
+</dd>
+
+<dt>myocamlbuild.ml:</dt>
+<dd class="doc_code">
+<pre>
+open Ocamlbuild_plugin;;
+
+ocaml_lib ~extern:true "llvm";;
+ocaml_lib ~extern:true "llvm_analysis";;
+ocaml_lib ~extern:true "llvm_executionengine";;
+ocaml_lib ~extern:true "llvm_target";;
+ocaml_lib ~extern:true "llvm_scalar_opts";;
+
+flag ["link"; "ocaml"; "g++"] (S[A"-cc"; A"g++"]);;
+dep ["link"; "ocaml"; "use_bindings"] ["bindings.o"];;
+</pre>
+</dd>
+
+<dt>token.ml:</dt>
+<dd class="doc_code">
+<pre>
+(*===----------------------------------------------------------------------===
+ * Lexer Tokens
+ *===----------------------------------------------------------------------===*)
+
+(* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of
+ * these others for known things. *)
+type token =
+ (* commands *)
+ | Def | Extern
+
+ (* primary *)
+ | Ident of string | Number of float
+
+ (* unknown *)
+ | Kwd of char
+
+ (* control *)
+ | If | Then | Else
+ | For | In
+
+ (* operators *)
+ | Binary | Unary
+</pre>
+</dd>
+
+<dt>lexer.ml:</dt>
+<dd class="doc_code">
+<pre>
+(*===----------------------------------------------------------------------===
+ * Lexer
+ *===----------------------------------------------------------------------===*)
+
+let rec lex = parser
+ (* Skip any whitespace. *)
+ | [&lt; ' (' ' | '\n' | '\r' | '\t'); stream &gt;] -&gt; lex stream
+
+ (* identifier: [a-zA-Z][a-zA-Z0-9] *)
+ | [&lt; ' ('A' .. 'Z' | 'a' .. 'z' as c); stream &gt;] -&gt;
+ let buffer = Buffer.create 1 in
+ Buffer.add_char buffer c;
+ lex_ident buffer stream
+
+ (* number: [0-9.]+ *)
+ | [&lt; ' ('0' .. '9' as c); stream &gt;] -&gt;
+ let buffer = Buffer.create 1 in
+ Buffer.add_char buffer c;
+ lex_number buffer stream
+
+ (* Comment until end of line. *)
+ | [&lt; ' ('#'); stream &gt;] -&gt;
+ lex_comment stream
+
+ (* Otherwise, just return the character as its ascii value. *)
+ | [&lt; 'c; stream &gt;] -&gt;
+ [&lt; 'Token.Kwd c; lex stream &gt;]
+
+ (* end of stream. *)
+ | [&lt; &gt;] -&gt; [&lt; &gt;]
+
+and lex_number buffer = parser
+ | [&lt; ' ('0' .. '9' | '.' as c); stream &gt;] -&gt;
+ Buffer.add_char buffer c;
+ lex_number buffer stream
+ | [&lt; stream=lex &gt;] -&gt;
+ [&lt; 'Token.Number (float_of_string (Buffer.contents buffer)); stream &gt;]
+
+and lex_ident buffer = parser
+ | [&lt; ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream &gt;] -&gt;
+ Buffer.add_char buffer c;
+ lex_ident buffer stream
+ | [&lt; stream=lex &gt;] -&gt;
+ match Buffer.contents buffer with
+ | "def" -&gt; [&lt; 'Token.Def; stream &gt;]
+ | "extern" -&gt; [&lt; 'Token.Extern; stream &gt;]
+ | "if" -&gt; [&lt; 'Token.If; stream &gt;]
+ | "then" -&gt; [&lt; 'Token.Then; stream &gt;]
+ | "else" -&gt; [&lt; 'Token.Else; stream &gt;]
+ | "for" -&gt; [&lt; 'Token.For; stream &gt;]
+ | "in" -&gt; [&lt; 'Token.In; stream &gt;]
+ | "binary" -&gt; [&lt; 'Token.Binary; stream &gt;]
+ | "unary" -&gt; [&lt; 'Token.Unary; stream &gt;]
+ | id -&gt; [&lt; 'Token.Ident id; stream &gt;]
+
+and lex_comment = parser
+ | [&lt; ' ('\n'); stream=lex &gt;] -&gt; stream
+ | [&lt; 'c; e=lex_comment &gt;] -&gt; e
+ | [&lt; &gt;] -&gt; [&lt; &gt;]
+</pre>
+</dd>
+
+<dt>ast.ml:</dt>
+<dd class="doc_code">
+<pre>
+(*===----------------------------------------------------------------------===
+ * Abstract Syntax Tree (aka Parse Tree)
+ *===----------------------------------------------------------------------===*)
+
+(* expr - Base type for all expression nodes. *)
+type expr =
+ (* variant for numeric literals like "1.0". *)
+ | Number of float
+
+ (* variant for referencing a variable, like "a". *)
+ | Variable of string
+
+ (* variant for a unary operator. *)
+ | Unary of char * expr
+
+ (* variant for a binary operator. *)
+ | Binary of char * expr * expr
+
+ (* variant for function calls. *)
+ | Call of string * expr array
+
+ (* variant for if/then/else. *)
+ | If of expr * expr * expr
+
+ (* variant for for/in. *)
+ | For of string * expr * expr * expr option * expr
+
+(* proto - This type represents the "prototype" for a function, which captures
+ * its name, and its argument names (thus implicitly the number of arguments the
+ * function takes). *)
+type proto =
+ | Prototype of string * string array
+ | BinOpPrototype of string * string array * int
+
+(* func - This type represents a function definition itself. *)
+type func = Function of proto * expr
+</pre>
+</dd>
+
+<dt>parser.ml:</dt>
+<dd class="doc_code">
+<pre>
+(*===---------------------------------------------------------------------===
+ * Parser
+ *===---------------------------------------------------------------------===*)
+
+(* binop_precedence - This holds the precedence for each binary operator that is
+ * defined *)
+let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10
+
+(* precedence - Get the precedence of the pending binary operator token. *)
+let precedence c = try Hashtbl.find binop_precedence c with Not_found -&gt; -1
+
+(* primary
+ * ::= identifier
+ * ::= numberexpr
+ * ::= parenexpr
+ * ::= ifexpr
+ * ::= forexpr *)
+let rec parse_primary = parser
+ (* numberexpr ::= number *)
+ | [&lt; 'Token.Number n &gt;] -&gt; Ast.Number n
+
+ (* parenexpr ::= '(' expression ')' *)
+ | [&lt; 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" &gt;] -&gt; e
+
+ (* identifierexpr
+ * ::= identifier
+ * ::= identifier '(' argumentexpr ')' *)
+ | [&lt; 'Token.Ident id; stream &gt;] -&gt;
+ let rec parse_args accumulator = parser
+ | [&lt; e=parse_expr; stream &gt;] -&gt;
+ begin parser
+ | [&lt; 'Token.Kwd ','; e=parse_args (e :: accumulator) &gt;] -&gt; e
+ | [&lt; &gt;] -&gt; e :: accumulator
+ end stream
+ | [&lt; &gt;] -&gt; accumulator
+ in
+ let rec parse_ident id = parser
+ (* Call. *)
+ | [&lt; 'Token.Kwd '(';
+ args=parse_args [];
+ 'Token.Kwd ')' ?? "expected ')'"&gt;] -&gt;
+ Ast.Call (id, Array.of_list (List.rev args))
+
+ (* Simple variable ref. *)
+ | [&lt; &gt;] -&gt; Ast.Variable id
+ in
+ parse_ident id stream
+
+ (* ifexpr ::= 'if' expr 'then' expr 'else' expr *)
+ | [&lt; 'Token.If; c=parse_expr;
+ 'Token.Then ?? "expected 'then'"; t=parse_expr;
+ 'Token.Else ?? "expected 'else'"; e=parse_expr &gt;] -&gt;
+ Ast.If (c, t, e)
+
+ (* forexpr
+ ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression *)
+ | [&lt; 'Token.For;
+ 'Token.Ident id ?? "expected identifier after for";
+ 'Token.Kwd '=' ?? "expected '=' after for";
+ stream &gt;] -&gt;
+ begin parser
+ | [&lt;
+ start=parse_expr;
+ 'Token.Kwd ',' ?? "expected ',' after for";
+ end_=parse_expr;
+ stream &gt;] -&gt;
+ let step =
+ begin parser
+ | [&lt; 'Token.Kwd ','; step=parse_expr &gt;] -&gt; Some step
+ | [&lt; &gt;] -&gt; None
+ end stream
+ in
+ begin parser
+ | [&lt; 'Token.In; body=parse_expr &gt;] -&gt;
+ Ast.For (id, start, end_, step, body)
+ | [&lt; &gt;] -&gt;
+ raise (Stream.Error "expected 'in' after for")
+ end stream
+ | [&lt; &gt;] -&gt;
+ raise (Stream.Error "expected '=' after for")
+ end stream
+
+ | [&lt; &gt;] -&gt; raise (Stream.Error "unknown token when expecting an expression.")
+
+(* unary
+ * ::= primary
+ * ::= '!' unary *)
+and parse_unary = parser
+ (* If this is a unary operator, read it. *)
+ | [&lt; 'Token.Kwd op when op != '(' &amp;&amp; op != ')'; operand=parse_expr &gt;] -&gt;
+ Ast.Unary (op, operand)
+
+ (* If the current token is not an operator, it must be a primary expr. *)
+ | [&lt; stream &gt;] -&gt; parse_primary stream
+
+(* binoprhs
+ * ::= ('+' primary)* *)
+and parse_bin_rhs expr_prec lhs stream =
+ match Stream.peek stream with
+ (* If this is a binop, find its precedence. *)
+ | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c -&gt;
+ let token_prec = precedence c in
+
+ (* If this is a binop that binds at least as tightly as the current binop,
+ * consume it, otherwise we are done. *)
+ if token_prec &lt; expr_prec then lhs else begin
+ (* Eat the binop. *)
+ Stream.junk stream;
+
+ (* Parse the unary expression after the binary operator. *)
+ let rhs = parse_unary stream in
+
+ (* Okay, we know this is a binop. *)
+ let rhs =
+ match Stream.peek stream with
+ | Some (Token.Kwd c2) -&gt;
+ (* If BinOp binds less tightly with rhs than the operator after
+ * rhs, let the pending operator take rhs as its lhs. *)
+ let next_prec = precedence c2 in
+ if token_prec &lt; next_prec
+ then parse_bin_rhs (token_prec + 1) rhs stream
+ else rhs
+ | _ -&gt; rhs
+ in
+
+ (* Merge lhs/rhs. *)
+ let lhs = Ast.Binary (c, lhs, rhs) in
+ parse_bin_rhs expr_prec lhs stream
+ end
+ | _ -&gt; lhs
+
+(* expression
+ * ::= primary binoprhs *)
+and parse_expr = parser
+ | [&lt; lhs=parse_unary; stream &gt;] -&gt; parse_bin_rhs 0 lhs stream
+
+(* prototype
+ * ::= id '(' id* ')'
+ * ::= binary LETTER number? (id, id)
+ * ::= unary LETTER number? (id) *)
+let parse_prototype =
+ let rec parse_args accumulator = parser
+ | [&lt; 'Token.Ident id; e=parse_args (id::accumulator) &gt;] -&gt; e
+ | [&lt; &gt;] -&gt; accumulator
+ in
+ let parse_operator = parser
+ | [&lt; 'Token.Unary &gt;] -&gt; "unary", 1
+ | [&lt; 'Token.Binary &gt;] -&gt; "binary", 2
+ in
+ let parse_binary_precedence = parser
+ | [&lt; 'Token.Number n &gt;] -&gt; int_of_float n
+ | [&lt; &gt;] -&gt; 30
+ in
+ parser
+ | [&lt; 'Token.Ident id;
+ 'Token.Kwd '(' ?? "expected '(' in prototype";
+ args=parse_args [];
+ 'Token.Kwd ')' ?? "expected ')' in prototype" &gt;] -&gt;
+ (* success. *)
+ Ast.Prototype (id, Array.of_list (List.rev args))
+ | [&lt; (prefix, kind)=parse_operator;
+ 'Token.Kwd op ?? "expected an operator";
+ (* Read the precedence if present. *)
+ binary_precedence=parse_binary_precedence;
+ 'Token.Kwd '(' ?? "expected '(' in prototype";
+ args=parse_args [];
+ 'Token.Kwd ')' ?? "expected ')' in prototype" &gt;] -&gt;
+ let name = prefix ^ (String.make 1 op) in
+ let args = Array.of_list (List.rev args) in
+
+ (* Verify right number of arguments for operator. *)
+ if Array.length args != kind
+ then raise (Stream.Error "invalid number of operands for operator")
+ else
+ if kind == 1 then
+ Ast.Prototype (name, args)
+ else
+ Ast.BinOpPrototype (name, args, binary_precedence)
+ | [&lt; &gt;] -&gt;
+ raise (Stream.Error "expected function name in prototype")
+
+(* definition ::= 'def' prototype expression *)
+let parse_definition = parser
+ | [&lt; 'Token.Def; p=parse_prototype; e=parse_expr &gt;] -&gt;
+ Ast.Function (p, e)
+
+(* toplevelexpr ::= expression *)
+let parse_toplevel = parser
+ | [&lt; e=parse_expr &gt;] -&gt;
+ (* Make an anonymous proto. *)
+ Ast.Function (Ast.Prototype ("", [||]), e)
+
+(* external ::= 'extern' prototype *)
+let parse_extern = parser
+ | [&lt; 'Token.Extern; e=parse_prototype &gt;] -&gt; e
+</pre>
+</dd>
+
+<dt>codegen.ml:</dt>
+<dd class="doc_code">
+<pre>
+(*===----------------------------------------------------------------------===
+ * Code Generation
+ *===----------------------------------------------------------------------===*)
+
+open Llvm
+
+exception Error of string
+
+let the_module = create_module "my cool jit"
+let builder = builder ()
+let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10
+
+let rec codegen_expr = function
+ | Ast.Number n -&gt; const_float double_type n
+ | Ast.Variable name -&gt;
+ (try Hashtbl.find named_values name with
+ | Not_found -&gt; raise (Error "unknown variable name"))
+ | Ast.Unary (op, operand) -&gt;
+ let operand = codegen_expr operand in
+ let callee = "unary" ^ (String.make 1 op) in
+ let callee =
+ match lookup_function callee the_module with
+ | Some callee -&gt; callee
+ | None -&gt; raise (Error "unknown unary operator")
+ in
+ build_call callee [|operand|] "unop" builder
+ | Ast.Binary (op, lhs, rhs) -&gt;
+ let lhs_val = codegen_expr lhs in
+ let rhs_val = codegen_expr rhs in
+ begin
+ match op with
+ | '+' -&gt; build_add lhs_val rhs_val "addtmp" builder
+ | '-' -&gt; build_sub lhs_val rhs_val "subtmp" builder
+ | '*' -&gt; build_mul lhs_val rhs_val "multmp" builder
+ | '&lt;' -&gt;
+ (* Convert bool 0/1 to double 0.0 or 1.0 *)
+ let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in
+ build_uitofp i double_type "booltmp" builder
+ | _ -&gt;
+ (* If it wasn't a builtin binary operator, it must be a user defined
+ * one. Emit a call to it. *)
+ let callee = "binary" ^ (String.make 1 op) in
+ let callee =
+ match lookup_function callee the_module with
+ | Some callee -&gt; callee
+ | None -&gt; raise (Error "binary operator not found!")
+ in
+ build_call callee [|lhs_val; rhs_val|] "binop" builder
+ end
+ | Ast.Call (callee, args) -&gt;
+ (* Look up the name in the module table. *)
+ let callee =
+ match lookup_function callee the_module with
+ | Some callee -&gt; callee
+ | None -&gt; raise (Error "unknown function referenced")
+ in
+ let params = params callee in
+
+ (* If argument mismatch error. *)
+ if Array.length params == Array.length args then () else
+ raise (Error "incorrect # arguments passed");
+ let args = Array.map codegen_expr args in
+ build_call callee args "calltmp" builder
+ | Ast.If (cond, then_, else_) -&gt;
+ let cond = codegen_expr cond in
+
+ (* Convert condition to a bool by comparing equal to 0.0 *)
+ let zero = const_float double_type 0.0 in
+ let cond_val = build_fcmp Fcmp.One cond zero "ifcond" builder in
+
+ (* Grab the first block so that we might later add the conditional branch
+ * to it at the end of the function. *)
+ let start_bb = insertion_block builder in
+ let the_function = block_parent start_bb in
+
+ let then_bb = append_block "then" the_function in
+
+ (* Emit 'then' value. *)
+ position_at_end then_bb builder;
+ let then_val = codegen_expr then_ in
+
+ (* Codegen of 'then' can change the current block, update then_bb for the
+ * phi. We create a new name because one is used for the phi node, and the
+ * other is used for the conditional branch. *)
+ let new_then_bb = insertion_block builder in
+
+ (* Emit 'else' value. *)
+ let else_bb = append_block "else" the_function in
+ position_at_end else_bb builder;
+ let else_val = codegen_expr else_ in
+
+ (* Codegen of 'else' can change the current block, update else_bb for the
+ * phi. *)
+ let new_else_bb = insertion_block builder in
+
+ (* Emit merge block. *)
+ let merge_bb = append_block "ifcont" the_function in
+ position_at_end merge_bb builder;
+ let incoming = [(then_val, new_then_bb); (else_val, new_else_bb)] in
+ let phi = build_phi incoming "iftmp" builder in
+
+ (* Return to the start block to add the conditional branch. *)
+ position_at_end start_bb builder;
+ ignore (build_cond_br cond_val then_bb else_bb builder);
+
+ (* Set a unconditional branch at the end of the 'then' block and the
+ * 'else' block to the 'merge' block. *)
+ position_at_end new_then_bb builder; ignore (build_br merge_bb builder);
+ position_at_end new_else_bb builder; ignore (build_br merge_bb builder);
+
+ (* Finally, set the builder to the end of the merge block. *)
+ position_at_end merge_bb builder;
+
+ phi
+ | Ast.For (var_name, start, end_, step, body) -&gt;
+ (* Emit the start code first, without 'variable' in scope. *)
+ let start_val = codegen_expr start in
+
+ (* Make the new basic block for the loop header, inserting after current
+ * block. *)
+ let preheader_bb = insertion_block builder in
+ let the_function = block_parent preheader_bb in
+ let loop_bb = append_block "loop" the_function in
+
+ (* Insert an explicit fall through from the current block to the
+ * loop_bb. *)
+ ignore (build_br loop_bb builder);
+
+ (* Start insertion in loop_bb. *)
+ position_at_end loop_bb builder;
+
+ (* Start the PHI node with an entry for start. *)
+ let variable = build_phi [(start_val, preheader_bb)] var_name builder in
+
+ (* Within the loop, the variable is defined equal to the PHI node. If it
+ * shadows an existing variable, we have to restore it, so save it
+ * now. *)
+ let old_val =
+ try Some (Hashtbl.find named_values var_name) with Not_found -&gt; None
+ in
+ Hashtbl.add named_values var_name variable;
+
+ (* Emit the body of the loop. This, like any other expr, can change the
+ * current BB. Note that we ignore the value computed by the body, but
+ * don't allow an error *)
+ ignore (codegen_expr body);
+
+ (* Emit the step value. *)
+ let step_val =
+ match step with
+ | Some step -&gt; codegen_expr step
+ (* If not specified, use 1.0. *)
+ | None -&gt; const_float double_type 1.0
+ in
+
+ let next_var = build_add variable step_val "nextvar" builder in
+
+ (* Compute the end condition. *)
+ let end_cond = codegen_expr end_ in
+
+ (* Convert condition to a bool by comparing equal to 0.0. *)
+ let zero = const_float double_type 0.0 in
+ let end_cond = build_fcmp Fcmp.One end_cond zero "loopcond" builder in
+
+ (* Create the "after loop" block and insert it. *)
+ let loop_end_bb = insertion_block builder in
+ let after_bb = append_block "afterloop" the_function in
+
+ (* Insert the conditional branch into the end of loop_end_bb. *)
+ ignore (build_cond_br end_cond loop_bb after_bb builder);
+
+ (* Any new code will be inserted in after_bb. *)
+ position_at_end after_bb builder;
+
+ (* Add a new entry to the PHI node for the backedge. *)
+ add_incoming (next_var, loop_end_bb) variable;
+
+ (* Restore the unshadowed variable. *)
+ begin match old_val with
+ | Some old_val -&gt; Hashtbl.add named_values var_name old_val
+ | None -&gt; ()
+ end;
+
+ (* for expr always returns 0.0. *)
+ const_null double_type
+
+let codegen_proto = function
+ | Ast.Prototype (name, args) | Ast.BinOpPrototype (name, args, _) -&gt;
+ (* Make the function type: double(double,double) etc. *)
+ let doubles = Array.make (Array.length args) double_type in
+ let ft = function_type double_type doubles in
+ let f =
+ match lookup_function name the_module with
+ | None -&gt; declare_function name ft the_module
+
+ (* If 'f' conflicted, there was already something named 'name'. If it
+ * has a body, don't allow redefinition or reextern. *)
+ | Some f -&gt;
+ (* If 'f' already has a body, reject this. *)
+ if block_begin f &lt;&gt; At_end f then
+ raise (Error "redefinition of function");
+
+ (* If 'f' took a different number of arguments, reject. *)
+ if element_type (type_of f) &lt;&gt; ft then
+ raise (Error "redefinition of function with different # args");
+ f
+ in
+
+ (* Set names for all arguments. *)
+ Array.iteri (fun i a -&gt;
+ let n = args.(i) in
+ set_value_name n a;
+ Hashtbl.add named_values n a;
+ ) (params f);
+ f
+
+let codegen_func the_fpm = function
+ | Ast.Function (proto, body) -&gt;
+ Hashtbl.clear named_values;
+ let the_function = codegen_proto proto in
+
+ (* If this is an operator, install it. *)
+ begin match proto with
+ | Ast.BinOpPrototype (name, args, prec) -&gt;
+ let op = name.[String.length name - 1] in
+ Hashtbl.add Parser.binop_precedence op prec;
+ | _ -&gt; ()
+ end;
+
+ (* Create a new basic block to start insertion into. *)
+ let bb = append_block "entry" the_function in
+ position_at_end bb builder;
+
+ try
+ let ret_val = codegen_expr body in
+
+ (* Finish off the function. *)
+ let _ = build_ret ret_val builder in
+
+ (* Validate the generated code, checking for consistency. *)
+ Llvm_analysis.assert_valid_function the_function;
+
+ (* Optimize the function. *)
+ let _ = PassManager.run_function the_function the_fpm in
+
+ the_function
+ with e -&gt;
+ delete_function the_function;
+ raise e
+</pre>
+</dd>
+
+<dt>toplevel.ml:</dt>
+<dd class="doc_code">
+<pre>
+(*===----------------------------------------------------------------------===
+ * Top-Level parsing and JIT Driver
+ *===----------------------------------------------------------------------===*)
+
+open Llvm
+open Llvm_executionengine
+
+(* top ::= definition | external | expression | ';' *)
+let rec main_loop the_fpm the_execution_engine stream =
+ match Stream.peek stream with
+ | None -&gt; ()
+
+ (* ignore top-level semicolons. *)
+ | Some (Token.Kwd ';') -&gt;
+ Stream.junk stream;
+ main_loop the_fpm the_execution_engine stream
+
+ | Some token -&gt;
+ begin
+ try match token with
+ | Token.Def -&gt;
+ let e = Parser.parse_definition stream in
+ print_endline "parsed a function definition.";
+ dump_value (Codegen.codegen_func the_fpm e);
+ | Token.Extern -&gt;
+ let e = Parser.parse_extern stream in
+ print_endline "parsed an extern.";
+ dump_value (Codegen.codegen_proto e);
+ | _ -&gt;
+ (* Evaluate a top-level expression into an anonymous function. *)
+ let e = Parser.parse_toplevel stream in
+ print_endline "parsed a top-level expr";
+ let the_function = Codegen.codegen_func the_fpm e in
+ dump_value the_function;
+
+ (* JIT the function, returning a function pointer. *)
+ let result = ExecutionEngine.run_function the_function [||]
+ the_execution_engine in
+
+ print_string "Evaluated to ";
+ print_float (GenericValue.as_float double_type result);
+ print_newline ();
+ with Stream.Error s | Codegen.Error s -&gt;
+ (* Skip token for error recovery. *)
+ Stream.junk stream;
+ print_endline s;
+ end;
+ print_string "ready&gt; "; flush stdout;
+ main_loop the_fpm the_execution_engine stream
+</pre>
+</dd>
+
+<dt>toy.ml:</dt>
+<dd class="doc_code">
+<pre>
+(*===----------------------------------------------------------------------===
+ * Main driver code.
+ *===----------------------------------------------------------------------===*)
+
+open Llvm
+open Llvm_executionengine
+open Llvm_target
+open Llvm_scalar_opts
+
+let main () =
+ (* Install standard binary operators.
+ * 1 is the lowest precedence. *)
+ Hashtbl.add Parser.binop_precedence '&lt;' 10;
+ Hashtbl.add Parser.binop_precedence '+' 20;
+ Hashtbl.add Parser.binop_precedence '-' 20;
+ Hashtbl.add Parser.binop_precedence '*' 40; (* highest. *)
+
+ (* Prime the first token. *)
+ print_string "ready&gt; "; flush stdout;
+ let stream = Lexer.lex (Stream.of_channel stdin) in
+
+ (* Create the JIT. *)
+ let the_module_provider = ModuleProvider.create Codegen.the_module in
+ let the_execution_engine = ExecutionEngine.create the_module_provider in
+ let the_fpm = PassManager.create_function the_module_provider in
+
+ (* Set up the optimizer pipeline. Start with registering info about how the
+ * target lays out data structures. *)
+ TargetData.add (ExecutionEngine.target_data the_execution_engine) the_fpm;
+
+ (* Do simple "peephole" optimizations and bit-twiddling optzn. *)
+ add_instruction_combining the_fpm;
+
+ (* reassociate expressions. *)
+ add_reassociation the_fpm;
+
+ (* Eliminate Common SubExpressions. *)
+ add_gvn the_fpm;
+
+ (* Simplify the control flow graph (deleting unreachable blocks, etc). *)
+ add_cfg_simplification the_fpm;
+
+ (* Run the main "interpreter loop" now. *)
+ Toplevel.main_loop the_fpm the_execution_engine stream;
+
+ (* Print out all the generated code. *)
+ dump_module Codegen.the_module
+;;
+
+main ()
+</pre>
+</dd>
+
+<dt>bindings.c</dt>
+<dd class="doc_code">
+<pre>
+#include &lt;stdio.h&gt;
+
+/* putchard - putchar that takes a double and returns 0. */
+extern double putchard(double X) {
+ putchar((char)X);
+ return 0;
+}
+
+/* printd - printf that takes a double prints it as "%f\n", returning 0. */
+extern double printd(double X) {
+ printf("%f\n", X);
+ return 0;
+}
+</pre>
+</dd>
+</dl>
+
+<a href="OCamlLangImpl7.html">Next: Extending the language: mutable variables /
+SSA construction</a>
+</div>
+
+<!-- *********************************************************************** -->
+<hr>
+<address>
+ <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
+ src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
+ <a href="http://validator.w3.org/check/referer"><img
+ src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
+
+ <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
+ <a href="mailto:idadesub@users.sourceforge.net">Erick Tryzelaar</a><br>
+ <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
+ Last modified: $Date: 2007-10-17 11:05:13 -0700 (Wed, 17 Oct 2007) $
+</address>
+</body>
+</html>
diff --git a/docs/tutorial/OCamlLangImpl7.html b/docs/tutorial/OCamlLangImpl7.html
new file mode 100644
index 0000000..abda440
--- /dev/null
+++ b/docs/tutorial/OCamlLangImpl7.html
@@ -0,0 +1,1902 @@
+<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
+ "http://www.w3.org/TR/html4/strict.dtd">
+
+<html>
+<head>
+ <title>Kaleidoscope: Extending the Language: Mutable Variables / SSA
+ construction</title>
+ <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
+ <meta name="author" content="Chris Lattner">
+ <meta name="author" content="Erick Tryzelaar">
+ <link rel="stylesheet" href="../llvm.css" type="text/css">
+</head>
+
+<body>
+
+<div class="doc_title">Kaleidoscope: Extending the Language: Mutable Variables</div>
+
+<ul>
+<li><a href="index.html">Up to Tutorial Index</a></li>
+<li>Chapter 7
+ <ol>
+ <li><a href="#intro">Chapter 7 Introduction</a></li>
+ <li><a href="#why">Why is this a hard problem?</a></li>
+ <li><a href="#memory">Memory in LLVM</a></li>
+ <li><a href="#kalvars">Mutable Variables in Kaleidoscope</a></li>
+ <li><a href="#adjustments">Adjusting Existing Variables for
+ Mutation</a></li>
+ <li><a href="#assignment">New Assignment Operator</a></li>
+ <li><a href="#localvars">User-defined Local Variables</a></li>
+ <li><a href="#code">Full Code Listing</a></li>
+ </ol>
+</li>
+<li><a href="LangImpl8.html">Chapter 8</a>: Conclusion and other useful LLVM
+ tidbits</li>
+</ul>
+
+<div class="doc_author">
+ <p>
+ Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
+ and <a href="mailto:idadesub@users.sourceforge.net">Erick Tryzelaar</a>
+ </p>
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section"><a name="intro">Chapter 7 Introduction</a></div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>Welcome to Chapter 7 of the "<a href="index.html">Implementing a language
+with LLVM</a>" tutorial. In chapters 1 through 6, we've built a very
+respectable, albeit simple, <a
+href="http://en.wikipedia.org/wiki/Functional_programming">functional
+programming language</a>. In our journey, we learned some parsing techniques,
+how to build and represent an AST, how to build LLVM IR, and how to optimize
+the resultant code as well as JIT compile it.</p>
+
+<p>While Kaleidoscope is interesting as a functional language, the fact that it
+is functional makes it "too easy" to generate LLVM IR for it. In particular, a
+functional language makes it very easy to build LLVM IR directly in <a
+href="http://en.wikipedia.org/wiki/Static_single_assignment_form">SSA form</a>.
+Since LLVM requires that the input code be in SSA form, this is a very nice
+property and it is often unclear to newcomers how to generate code for an
+imperative language with mutable variables.</p>
+
+<p>The short (and happy) summary of this chapter is that there is no need for
+your front-end to build SSA form: LLVM provides highly tuned and well tested
+support for this, though the way it works is a bit unexpected for some.</p>
+
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section"><a name="why">Why is this a hard problem?</a></div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>
+To understand why mutable variables cause complexities in SSA construction,
+consider this extremely simple C example:
+</p>
+
+<div class="doc_code">
+<pre>
+int G, H;
+int test(_Bool Condition) {
+ int X;
+ if (Condition)
+ X = G;
+ else
+ X = H;
+ return X;
+}
+</pre>
+</div>
+
+<p>In this case, we have the variable "X", whose value depends on the path
+executed in the program. Because there are two different possible values for X
+before the return instruction, a PHI node is inserted to merge the two values.
+The LLVM IR that we want for this example looks like this:</p>
+
+<div class="doc_code">
+<pre>
+@G = weak global i32 0 ; type of @G is i32*
+@H = weak global i32 0 ; type of @H is i32*
+
+define i32 @test(i1 %Condition) {
+entry:
+ br i1 %Condition, label %cond_true, label %cond_false
+
+cond_true:
+ %X.0 = load i32* @G
+ br label %cond_next
+
+cond_false:
+ %X.1 = load i32* @H
+ br label %cond_next
+
+cond_next:
+ %X.2 = phi i32 [ %X.1, %cond_false ], [ %X.0, %cond_true ]
+ ret i32 %X.2
+}
+</pre>
+</div>
+
+<p>In this example, the loads from the G and H global variables are explicit in
+the LLVM IR, and they live in the then/else branches of the if statement
+(cond_true/cond_false). In order to merge the incoming values, the X.2 phi node
+in the cond_next block selects the right value to use based on where control
+flow is coming from: if control flow comes from the cond_false block, X.2 gets
+the value of X.1. Alternatively, if control flow comes from cond_true, it gets
+the value of X.0. The intent of this chapter is not to explain the details of
+SSA form. For more information, see one of the many <a
+href="http://en.wikipedia.org/wiki/Static_single_assignment_form">online
+references</a>.</p>
+
+<p>The question for this article is "who places the phi nodes when lowering
+assignments to mutable variables?". The issue here is that LLVM
+<em>requires</em> that its IR be in SSA form: there is no "non-ssa" mode for it.
+However, SSA construction requires non-trivial algorithms and data structures,
+so it is inconvenient and wasteful for every front-end to have to reproduce this
+logic.</p>
+
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section"><a name="memory">Memory in LLVM</a></div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>The 'trick' here is that while LLVM does require all register values to be
+in SSA form, it does not require (or permit) memory objects to be in SSA form.
+In the example above, note that the loads from G and H are direct accesses to
+G and H: they are not renamed or versioned. This differs from some other
+compiler systems, which do try to version memory objects. In LLVM, instead of
+encoding dataflow analysis of memory into the LLVM IR, it is handled with <a
+href="../WritingAnLLVMPass.html">Analysis Passes</a> which are computed on
+demand.</p>
+
+<p>
+With this in mind, the high-level idea is that we want to make a stack variable
+(which lives in memory, because it is on the stack) for each mutable object in
+a function. To take advantage of this trick, we need to talk about how LLVM
+represents stack variables.
+</p>
+
+<p>In LLVM, all memory accesses are explicit with load/store instructions, and
+it is carefully designed not to have (or need) an "address-of" operator. Notice
+how the type of the @G/@H global variables is actually "i32*" even though the
+variable is defined as "i32". What this means is that @G defines <em>space</em>
+for an i32 in the global data area, but its <em>name</em> actually refers to the
+address for that space. Stack variables work the same way, except that instead of
+being declared with global variable definitions, they are declared with the
+<a href="../LangRef.html#i_alloca">LLVM alloca instruction</a>:</p>
+
+<div class="doc_code">
+<pre>
+define i32 @example() {
+entry:
+ %X = alloca i32 ; type of %X is i32*.
+ ...
+ %tmp = load i32* %X ; load the stack value %X from the stack.
+ %tmp2 = add i32 %tmp, 1 ; increment it
+ store i32 %tmp2, i32* %X ; store it back
+ ...
+</pre>
+</div>
+
+<p>This code shows an example of how you can declare and manipulate a stack
+variable in the LLVM IR. Stack memory allocated with the alloca instruction is
+fully general: you can pass the address of the stack slot to functions, you can
+store it in other variables, etc. In our example above, we could rewrite the
+example to use the alloca technique to avoid using a PHI node:</p>
+
+<div class="doc_code">
+<pre>
+@G = weak global i32 0 ; type of @G is i32*
+@H = weak global i32 0 ; type of @H is i32*
+
+define i32 @test(i1 %Condition) {
+entry:
+ %X = alloca i32 ; type of %X is i32*.
+ br i1 %Condition, label %cond_true, label %cond_false
+
+cond_true:
+ %X.0 = load i32* @G
+ store i32 %X.0, i32* %X ; Update X
+ br label %cond_next
+
+cond_false:
+ %X.1 = load i32* @H
+ store i32 %X.1, i32* %X ; Update X
+ br label %cond_next
+
+cond_next:
+ %X.2 = load i32* %X ; Read X
+ ret i32 %X.2
+}
+</pre>
+</div>
+
+<p>With this, we have discovered a way to handle arbitrary mutable variables
+without the need to create Phi nodes at all:</p>
+
+<ol>
+<li>Each mutable variable becomes a stack allocation.</li>
+<li>Each read of the variable becomes a load from the stack.</li>
+<li>Each update of the variable becomes a store to the stack.</li>
+<li>Taking the address of a variable just uses the stack address directly.</li>
+</ol>
+
+<p>While this solution has solved our immediate problem, it introduced another
+one: we have now apparently introduced a lot of stack traffic for very simple
+and common operations, a major performance problem. Fortunately for us, the
+LLVM optimizer has a highly-tuned optimization pass named "mem2reg" that handles
+this case, promoting allocas like this into SSA registers, inserting Phi nodes
+as appropriate. If you run this example through the pass, for example, you'll
+get:</p>
+
+<div class="doc_code">
+<pre>
+$ <b>llvm-as &lt; example.ll | opt -mem2reg | llvm-dis</b>
+@G = weak global i32 0
+@H = weak global i32 0
+
+define i32 @test(i1 %Condition) {
+entry:
+ br i1 %Condition, label %cond_true, label %cond_false
+
+cond_true:
+ %X.0 = load i32* @G
+ br label %cond_next
+
+cond_false:
+ %X.1 = load i32* @H
+ br label %cond_next
+
+cond_next:
+ %X.01 = phi i32 [ %X.1, %cond_false ], [ %X.0, %cond_true ]
+ ret i32 %X.01
+}
+</pre>
+</div>
+
+<p>The mem2reg pass implements the standard "iterated dominance frontier"
+algorithm for constructing SSA form and has a number of optimizations that speed
+up (very common) degenerate cases. The mem2reg optimization pass is the answer
+to dealing with mutable variables, and we highly recommend that you depend on
+it. Note that mem2reg only works on variables in certain circumstances:</p>
+
+<ol>
+<li>mem2reg is alloca-driven: it looks for allocas and if it can handle them, it
+promotes them. It does not apply to global variables or heap allocations.</li>
+
+<li>mem2reg only looks for alloca instructions in the entry block of the
+function. Being in the entry block guarantees that the alloca is only executed
+once, which makes analysis simpler.</li>
+
+<li>mem2reg only promotes allocas whose uses are direct loads and stores. If
+the address of the stack object is passed to a function, or if any funny pointer
+arithmetic is involved, the alloca will not be promoted.</li>
+
+<li>mem2reg only works on allocas of <a
+href="../LangRef.html#t_classifications">first class</a>
+values (such as pointers, scalars and vectors), and only if the array size
+of the allocation is 1 (or missing in the .ll file). mem2reg is not capable of
+promoting structs or arrays to registers. Note that the "scalarrepl" pass is
+more powerful and can promote structs, "unions", and arrays in many cases.</li>
+
+</ol>
+
+<p>
+All of these properties are easy to satisfy for most imperative languages, and
+we'll illustrate it below with Kaleidoscope. The final question you may be
+asking is: should I bother with this nonsense for my front-end? Wouldn't it be
+better if I just did SSA construction directly, avoiding use of the mem2reg
+optimization pass? In short, we strongly recommend that you use this technique
+for building SSA form, unless there is an extremely good reason not to. Using
+this technique is:</p>
+
+<ul>
+<li>Proven and well tested: llvm-gcc and clang both use this technique for local
+mutable variables. As such, the most common clients of LLVM are using this to
+handle a bulk of their variables. You can be sure that bugs are found fast and
+fixed early.</li>
+
+<li>Extremely Fast: mem2reg has a number of special cases that make it fast in
+common cases as well as fully general. For example, it has fast-paths for
+variables that are only used in a single block, variables that only have one
+assignment point, good heuristics to avoid insertion of unneeded phi nodes, etc.
+</li>
+
+<li>Needed for debug info generation: <a href="../SourceLevelDebugging.html">
+Debug information in LLVM</a> relies on having the address of the variable
+exposed so that debug info can be attached to it. This technique dovetails
+very naturally with this style of debug info.</li>
+</ul>
+
+<p>If nothing else, this makes it much easier to get your front-end up and
+running, and is very simple to implement. Lets extend Kaleidoscope with mutable
+variables now!
+</p>
+
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section"><a name="kalvars">Mutable Variables in
+Kaleidoscope</a></div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>Now that we know the sort of problem we want to tackle, lets see what this
+looks like in the context of our little Kaleidoscope language. We're going to
+add two features:</p>
+
+<ol>
+<li>The ability to mutate variables with the '=' operator.</li>
+<li>The ability to define new variables.</li>
+</ol>
+
+<p>While the first item is really what this is about, we only have variables
+for incoming arguments as well as for induction variables, and redefining those only
+goes so far :). Also, the ability to define new variables is a
+useful thing regardless of whether you will be mutating them. Here's a
+motivating example that shows how we could use these:</p>
+
+<div class="doc_code">
+<pre>
+# Define ':' for sequencing: as a low-precedence operator that ignores operands
+# and just returns the RHS.
+def binary : 1 (x y) y;
+
+# Recursive fib, we could do this before.
+def fib(x)
+ if (x &lt; 3) then
+ 1
+ else
+ fib(x-1)+fib(x-2);
+
+# Iterative fib.
+def fibi(x)
+ <b>var a = 1, b = 1, c in</b>
+ (for i = 3, i &lt; x in
+ <b>c = a + b</b> :
+ <b>a = b</b> :
+ <b>b = c</b>) :
+ b;
+
+# Call it.
+fibi(10);
+</pre>
+</div>
+
+<p>
+In order to mutate variables, we have to change our existing variables to use
+the "alloca trick". Once we have that, we'll add our new operator, then extend
+Kaleidoscope to support new variable definitions.
+</p>
+
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section"><a name="adjustments">Adjusting Existing Variables for
+Mutation</a></div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>
+The symbol table in Kaleidoscope is managed at code generation time by the
+'<tt>named_values</tt>' map. This map currently keeps track of the LLVM
+"Value*" that holds the double value for the named variable. In order to
+support mutation, we need to change this slightly, so that it
+<tt>named_values</tt> holds the <em>memory location</em> of the variable in
+question. Note that this change is a refactoring: it changes the structure of
+the code, but does not (by itself) change the behavior of the compiler. All of
+these changes are isolated in the Kaleidoscope code generator.</p>
+
+<p>
+At this point in Kaleidoscope's development, it only supports variables for two
+things: incoming arguments to functions and the induction variable of 'for'
+loops. For consistency, we'll allow mutation of these variables in addition to
+other user-defined variables. This means that these will both need memory
+locations.
+</p>
+
+<p>To start our transformation of Kaleidoscope, we'll change the
+<tt>named_values</tt> map so that it maps to AllocaInst* instead of Value*.
+Once we do this, the C++ compiler will tell us what parts of the code we need to
+update:</p>
+
+<p><b>Note:</b> the ocaml bindings currently model both <tt>Value*</tt>s and
+<tt>AllocInst*</tt>s as <tt>Llvm.llvalue</tt>s, but this may change in the
+future to be more type safe.</p>
+
+<div class="doc_code">
+<pre>
+let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10
+</pre>
+</div>
+
+<p>Also, since we will need to create these alloca's, we'll use a helper
+function that ensures that the allocas are created in the entry block of the
+function:</p>
+
+<div class="doc_code">
+<pre>
+(* Create an alloca instruction in the entry block of the function. This
+ * is used for mutable variables etc. *)
+let create_entry_block_alloca the_function var_name =
+ let builder = builder_at (instr_begin (entry_block the_function)) in
+ build_alloca double_type var_name builder
+</pre>
+</div>
+
+<p>This funny looking code creates an <tt>Llvm.llbuilder</tt> object that is
+pointing at the first instruction of the entry block. It then creates an alloca
+with the expected name and returns it. Because all values in Kaleidoscope are
+doubles, there is no need to pass in a type to use.</p>
+
+<p>With this in place, the first functionality change we want to make is to
+variable references. In our new scheme, variables live on the stack, so code
+generating a reference to them actually needs to produce a load from the stack
+slot:</p>
+
+<div class="doc_code">
+<pre>
+let rec codegen_expr = function
+ ...
+ | Ast.Variable name -&gt;
+ let v = try Hashtbl.find named_values name with
+ | Not_found -&gt; raise (Error "unknown variable name")
+ in
+ <b>(* Load the value. *)
+ build_load v name builder</b>
+</pre>
+</div>
+
+<p>As you can see, this is pretty straightforward. Now we need to update the
+things that define the variables to set up the alloca. We'll start with
+<tt>codegen_expr Ast.For ...</tt> (see the <a href="#code">full code listing</a>
+for the unabridged code):</p>
+
+<div class="doc_code">
+<pre>
+ | Ast.For (var_name, start, end_, step, body) -&gt;
+ let the_function = block_parent (insertion_block builder) in
+
+ (* Create an alloca for the variable in the entry block. *)
+ <b>let alloca = create_entry_block_alloca the_function var_name in</b>
+
+ (* Emit the start code first, without 'variable' in scope. *)
+ let start_val = codegen_expr start in
+
+ <b>(* Store the value into the alloca. *)
+ ignore(build_store start_val alloca builder);</b>
+
+ ...
+
+ (* Within the loop, the variable is defined equal to the PHI node. If it
+ * shadows an existing variable, we have to restore it, so save it
+ * now. *)
+ let old_val =
+ try Some (Hashtbl.find named_values var_name) with Not_found -&gt; None
+ in
+ <b>Hashtbl.add named_values var_name alloca;</b>
+
+ ...
+
+ (* Compute the end condition. *)
+ let end_cond = codegen_expr end_ in
+
+ <b>(* Reload, increment, and restore the alloca. This handles the case where
+ * the body of the loop mutates the variable. *)
+ let cur_var = build_load alloca var_name builder in
+ let next_var = build_add cur_var step_val "nextvar" builder in
+ ignore(build_store next_var alloca builder);</b>
+ ...
+</pre>
+</div>
+
+<p>This code is virtually identical to the code <a
+href="OCamlLangImpl5.html#forcodegen">before we allowed mutable variables</a>.
+The big difference is that we no longer have to construct a PHI node, and we use
+load/store to access the variable as needed.</p>
+
+<p>To support mutable argument variables, we need to also make allocas for them.
+The code for this is also pretty simple:</p>
+
+<div class="doc_code">
+<pre>
+(* Create an alloca for each argument and register the argument in the symbol
+ * table so that references to it will succeed. *)
+let create_argument_allocas the_function proto =
+ let args = match proto with
+ | Ast.Prototype (_, args) | Ast.BinOpPrototype (_, args, _) -&gt; args
+ in
+ Array.iteri (fun i ai -&gt;
+ let var_name = args.(i) in
+ (* Create an alloca for this variable. *)
+ let alloca = create_entry_block_alloca the_function var_name in
+
+ (* Store the initial value into the alloca. *)
+ ignore(build_store ai alloca builder);
+
+ (* Add arguments to variable symbol table. *)
+ Hashtbl.add named_values var_name alloca;
+ ) (params the_function)
+</pre>
+</div>
+
+<p>For each argument, we make an alloca, store the input value to the function
+into the alloca, and register the alloca as the memory location for the
+argument. This method gets invoked by <tt>Codegen.codegen_func</tt> right after
+it sets up the entry block for the function.</p>
+
+<p>The final missing piece is adding the mem2reg pass, which allows us to get
+good codegen once again:</p>
+
+<div class="doc_code">
+<pre>
+let main () =
+ ...
+ let the_fpm = PassManager.create_function the_module_provider in
+
+ (* Set up the optimizer pipeline. Start with registering info about how the
+ * target lays out data structures. *)
+ TargetData.add (ExecutionEngine.target_data the_execution_engine) the_fpm;
+
+ <b>(* Promote allocas to registers. *)
+ add_memory_to_register_promotion the_fpm;</b>
+
+ (* Do simple "peephole" optimizations and bit-twiddling optzn. *)
+ add_instruction_combining the_fpm;
+
+ (* reassociate expressions. *)
+ add_reassociation the_fpm;
+</pre>
+</div>
+
+<p>It is interesting to see what the code looks like before and after the
+mem2reg optimization runs. For example, this is the before/after code for our
+recursive fib function. Before the optimization:</p>
+
+<div class="doc_code">
+<pre>
+define double @fib(double %x) {
+entry:
+ <b>%x1 = alloca double
+ store double %x, double* %x1
+ %x2 = load double* %x1</b>
+ %cmptmp = fcmp ult double %x2, 3.000000e+00
+ %booltmp = uitofp i1 %cmptmp to double
+ %ifcond = fcmp one double %booltmp, 0.000000e+00
+ br i1 %ifcond, label %then, label %else
+
+then: ; preds = %entry
+ br label %ifcont
+
+else: ; preds = %entry
+ <b>%x3 = load double* %x1</b>
+ %subtmp = sub double %x3, 1.000000e+00
+ %calltmp = call double @fib( double %subtmp )
+ <b>%x4 = load double* %x1</b>
+ %subtmp5 = sub double %x4, 2.000000e+00
+ %calltmp6 = call double @fib( double %subtmp5 )
+ %addtmp = add double %calltmp, %calltmp6
+ br label %ifcont
+
+ifcont: ; preds = %else, %then
+ %iftmp = phi double [ 1.000000e+00, %then ], [ %addtmp, %else ]
+ ret double %iftmp
+}
+</pre>
+</div>
+
+<p>Here there is only one variable (x, the input argument) but you can still
+see the extremely simple-minded code generation strategy we are using. In the
+entry block, an alloca is created, and the initial input value is stored into
+it. Each reference to the variable does a reload from the stack. Also, note
+that we didn't modify the if/then/else expression, so it still inserts a PHI
+node. While we could make an alloca for it, it is actually easier to create a
+PHI node for it, so we still just make the PHI.</p>
+
+<p>Here is the code after the mem2reg pass runs:</p>
+
+<div class="doc_code">
+<pre>
+define double @fib(double %x) {
+entry:
+ %cmptmp = fcmp ult double <b>%x</b>, 3.000000e+00
+ %booltmp = uitofp i1 %cmptmp to double
+ %ifcond = fcmp one double %booltmp, 0.000000e+00
+ br i1 %ifcond, label %then, label %else
+
+then:
+ br label %ifcont
+
+else:
+ %subtmp = sub double <b>%x</b>, 1.000000e+00
+ %calltmp = call double @fib( double %subtmp )
+ %subtmp5 = sub double <b>%x</b>, 2.000000e+00
+ %calltmp6 = call double @fib( double %subtmp5 )
+ %addtmp = add double %calltmp, %calltmp6
+ br label %ifcont
+
+ifcont: ; preds = %else, %then
+ %iftmp = phi double [ 1.000000e+00, %then ], [ %addtmp, %else ]
+ ret double %iftmp
+}
+</pre>
+</div>
+
+<p>This is a trivial case for mem2reg, since there are no redefinitions of the
+variable. The point of showing this is to calm your tension about inserting
+such blatent inefficiencies :).</p>
+
+<p>After the rest of the optimizers run, we get:</p>
+
+<div class="doc_code">
+<pre>
+define double @fib(double %x) {
+entry:
+ %cmptmp = fcmp ult double %x, 3.000000e+00
+ %booltmp = uitofp i1 %cmptmp to double
+ %ifcond = fcmp ueq double %booltmp, 0.000000e+00
+ br i1 %ifcond, label %else, label %ifcont
+
+else:
+ %subtmp = sub double %x, 1.000000e+00
+ %calltmp = call double @fib( double %subtmp )
+ %subtmp5 = sub double %x, 2.000000e+00
+ %calltmp6 = call double @fib( double %subtmp5 )
+ %addtmp = add double %calltmp, %calltmp6
+ ret double %addtmp
+
+ifcont:
+ ret double 1.000000e+00
+}
+</pre>
+</div>
+
+<p>Here we see that the simplifycfg pass decided to clone the return instruction
+into the end of the 'else' block. This allowed it to eliminate some branches
+and the PHI node.</p>
+
+<p>Now that all symbol table references are updated to use stack variables,
+we'll add the assignment operator.</p>
+
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section"><a name="assignment">New Assignment Operator</a></div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>With our current framework, adding a new assignment operator is really
+simple. We will parse it just like any other binary operator, but handle it
+internally (instead of allowing the user to define it). The first step is to
+set a precedence:</p>
+
+<div class="doc_code">
+<pre>
+let main () =
+ (* Install standard binary operators.
+ * 1 is the lowest precedence. *)
+ <b>Hashtbl.add Parser.binop_precedence '=' 2;</b>
+ Hashtbl.add Parser.binop_precedence '&lt;' 10;
+ Hashtbl.add Parser.binop_precedence '+' 20;
+ Hashtbl.add Parser.binop_precedence '-' 20;
+ ...
+</pre>
+</div>
+
+<p>Now that the parser knows the precedence of the binary operator, it takes
+care of all the parsing and AST generation. We just need to implement codegen
+for the assignment operator. This looks like:</p>
+
+<div class="doc_code">
+<pre>
+let rec codegen_expr = function
+ begin match op with
+ | '=' -&gt;
+ (* Special case '=' because we don't want to emit the LHS as an
+ * expression. *)
+ let name =
+ match lhs with
+ | Ast.Variable name -&gt; name
+ | _ -&gt; raise (Error "destination of '=' must be a variable")
+ in
+</pre>
+</div>
+
+<p>Unlike the rest of the binary operators, our assignment operator doesn't
+follow the "emit LHS, emit RHS, do computation" model. As such, it is handled
+as a special case before the other binary operators are handled. The other
+strange thing is that it requires the LHS to be a variable. It is invalid to
+have "(x+1) = expr" - only things like "x = expr" are allowed.
+</p>
+
+
+<div class="doc_code">
+<pre>
+ (* Codegen the rhs. *)
+ let val_ = codegen_expr rhs in
+
+ (* Lookup the name. *)
+ let variable = try Hashtbl.find named_values name with
+ | Not_found -&gt; raise (Error "unknown variable name")
+ in
+ ignore(build_store val_ variable builder);
+ val_
+ | _ -&gt;
+ ...
+</pre>
+</div>
+
+<p>Once we have the variable, codegen'ing the assignment is straightforward:
+we emit the RHS of the assignment, create a store, and return the computed
+value. Returning a value allows for chained assignments like "X = (Y = Z)".</p>
+
+<p>Now that we have an assignment operator, we can mutate loop variables and
+arguments. For example, we can now run code like this:</p>
+
+<div class="doc_code">
+<pre>
+# Function to print a double.
+extern printd(x);
+
+# Define ':' for sequencing: as a low-precedence operator that ignores operands
+# and just returns the RHS.
+def binary : 1 (x y) y;
+
+def test(x)
+ printd(x) :
+ x = 4 :
+ printd(x);
+
+test(123);
+</pre>
+</div>
+
+<p>When run, this example prints "123" and then "4", showing that we did
+actually mutate the value! Okay, we have now officially implemented our goal:
+getting this to work requires SSA construction in the general case. However,
+to be really useful, we want the ability to define our own local variables, lets
+add this next!
+</p>
+
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section"><a name="localvars">User-defined Local
+Variables</a></div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>Adding var/in is just like any other other extensions we made to
+Kaleidoscope: we extend the lexer, the parser, the AST and the code generator.
+The first step for adding our new 'var/in' construct is to extend the lexer.
+As before, this is pretty trivial, the code looks like this:</p>
+
+<div class="doc_code">
+<pre>
+type token =
+ ...
+ <b>(* var definition *)
+ | Var</b>
+
+...
+
+and lex_ident buffer = parser
+ ...
+ | "in" -&gt; [&lt; 'Token.In; stream &gt;]
+ | "binary" -&gt; [&lt; 'Token.Binary; stream &gt;]
+ | "unary" -&gt; [&lt; 'Token.Unary; stream &gt;]
+ <b>| "var" -&gt; [&lt; 'Token.Var; stream &gt;]</b>
+ ...
+</pre>
+</div>
+
+<p>The next step is to define the AST node that we will construct. For var/in,
+it looks like this:</p>
+
+<div class="doc_code">
+<pre>
+type expr =
+ ...
+ (* variant for var/in. *)
+ | Var of (string * expr option) array * expr
+ ...
+</pre>
+</div>
+
+<p>var/in allows a list of names to be defined all at once, and each name can
+optionally have an initializer value. As such, we capture this information in
+the VarNames vector. Also, var/in has a body, this body is allowed to access
+the variables defined by the var/in.</p>
+
+<p>With this in place, we can define the parser pieces. The first thing we do
+is add it as a primary expression:</p>
+
+<div class="doc_code">
+<pre>
+(* primary
+ * ::= identifier
+ * ::= numberexpr
+ * ::= parenexpr
+ * ::= ifexpr
+ * ::= forexpr
+ <b>* ::= varexpr</b> *)
+let rec parse_primary = parser
+ ...
+ <b>(* varexpr
+ * ::= 'var' identifier ('=' expression?
+ * (',' identifier ('=' expression)?)* 'in' expression *)
+ | [&lt; 'Token.Var;
+ (* At least one variable name is required. *)
+ 'Token.Ident id ?? "expected identifier after var";
+ init=parse_var_init;
+ var_names=parse_var_names [(id, init)];
+ (* At this point, we have to have 'in'. *)
+ 'Token.In ?? "expected 'in' keyword after 'var'";
+ body=parse_expr &gt;] -&gt;
+ Ast.Var (Array.of_list (List.rev var_names), body)</b>
+
+...
+
+and parse_var_init = parser
+ (* read in the optional initializer. *)
+ | [&lt; 'Token.Kwd '='; e=parse_expr &gt;] -&gt; Some e
+ | [&lt; &gt;] -&gt; None
+
+and parse_var_names accumulator = parser
+ | [&lt; 'Token.Kwd ',';
+ 'Token.Ident id ?? "expected identifier list after var";
+ init=parse_var_init;
+ e=parse_var_names ((id, init) :: accumulator) &gt;] -&gt; e
+ | [&lt; &gt;] -&gt; accumulator
+</pre>
+</div>
+
+<p>Now that we can parse and represent the code, we need to support emission of
+LLVM IR for it. This code starts out with:</p>
+
+<div class="doc_code">
+<pre>
+let rec codegen_expr = function
+ ...
+ | Ast.Var (var_names, body)
+ let old_bindings = ref [] in
+
+ let the_function = block_parent (insertion_block builder) in
+
+ (* Register all variables and emit their initializer. *)
+ Array.iter (fun (var_name, init) -&gt;
+</pre>
+</div>
+
+<p>Basically it loops over all the variables, installing them one at a time.
+For each variable we put into the symbol table, we remember the previous value
+that we replace in OldBindings.</p>
+
+<div class="doc_code">
+<pre>
+ (* Emit the initializer before adding the variable to scope, this
+ * prevents the initializer from referencing the variable itself, and
+ * permits stuff like this:
+ * var a = 1 in
+ * var a = a in ... # refers to outer 'a'. *)
+ let init_val =
+ match init with
+ | Some init -&gt; codegen_expr init
+ (* If not specified, use 0.0. *)
+ | None -&gt; const_float double_type 0.0
+ in
+
+ let alloca = create_entry_block_alloca the_function var_name in
+ ignore(build_store init_val alloca builder);
+
+ (* Remember the old variable binding so that we can restore the binding
+ * when we unrecurse. *)
+
+ begin
+ try
+ let old_value = Hashtbl.find named_values var_name in
+ old_bindings := (var_name, old_value) :: !old_bindings;
+ with Not_found &gt; ()
+ end;
+
+ (* Remember this binding. *)
+ Hashtbl.add named_values var_name alloca;
+ ) var_names;
+</pre>
+</div>
+
+<p>There are more comments here than code. The basic idea is that we emit the
+initializer, create the alloca, then update the symbol table to point to it.
+Once all the variables are installed in the symbol table, we evaluate the body
+of the var/in expression:</p>
+
+<div class="doc_code">
+<pre>
+ (* Codegen the body, now that all vars are in scope. *)
+ let body_val = codegen_expr body in
+</pre>
+</div>
+
+<p>Finally, before returning, we restore the previous variable bindings:</p>
+
+<div class="doc_code">
+<pre>
+ (* Pop all our variables from scope. *)
+ List.iter (fun (var_name, old_value) -&gt;
+ Hashtbl.add named_values var_name old_value
+ ) !old_bindings;
+
+ (* Return the body computation. *)
+ body_val
+</pre>
+</div>
+
+<p>The end result of all of this is that we get properly scoped variable
+definitions, and we even (trivially) allow mutation of them :).</p>
+
+<p>With this, we completed what we set out to do. Our nice iterative fib
+example from the intro compiles and runs just fine. The mem2reg pass optimizes
+all of our stack variables into SSA registers, inserting PHI nodes where needed,
+and our front-end remains simple: no "iterated dominance frontier" computation
+anywhere in sight.</p>
+
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section"><a name="code">Full Code Listing</a></div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>
+Here is the complete code listing for our running example, enhanced with mutable
+variables and var/in support. To build this example, use:
+</p>
+
+<div class="doc_code">
+<pre>
+# Compile
+ocamlbuild toy.byte
+# Run
+./toy.byte
+</pre>
+</div>
+
+<p>Here is the code:</p>
+
+<dl>
+<dt>_tags:</dt>
+<dd class="doc_code">
+<pre>
+&lt;{lexer,parser}.ml&gt;: use_camlp4, pp(camlp4of)
+&lt;*.{byte,native}&gt;: g++, use_llvm, use_llvm_analysis
+&lt;*.{byte,native}&gt;: use_llvm_executionengine, use_llvm_target
+&lt;*.{byte,native}&gt;: use_llvm_scalar_opts, use_bindings
+</pre>
+</dd>
+
+<dt>myocamlbuild.ml:</dt>
+<dd class="doc_code">
+<pre>
+open Ocamlbuild_plugin;;
+
+ocaml_lib ~extern:true "llvm";;
+ocaml_lib ~extern:true "llvm_analysis";;
+ocaml_lib ~extern:true "llvm_executionengine";;
+ocaml_lib ~extern:true "llvm_target";;
+ocaml_lib ~extern:true "llvm_scalar_opts";;
+
+flag ["link"; "ocaml"; "g++"] (S[A"-cc"; A"g++"]);;
+dep ["link"; "ocaml"; "use_bindings"] ["bindings.o"];;
+</pre>
+</dd>
+
+<dt>token.ml:</dt>
+<dd class="doc_code">
+<pre>
+(*===----------------------------------------------------------------------===
+ * Lexer Tokens
+ *===----------------------------------------------------------------------===*)
+
+(* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of
+ * these others for known things. *)
+type token =
+ (* commands *)
+ | Def | Extern
+
+ (* primary *)
+ | Ident of string | Number of float
+
+ (* unknown *)
+ | Kwd of char
+
+ (* control *)
+ | If | Then | Else
+ | For | In
+
+ (* operators *)
+ | Binary | Unary
+
+ (* var definition *)
+ | Var
+</pre>
+</dd>
+
+<dt>lexer.ml:</dt>
+<dd class="doc_code">
+<pre>
+(*===----------------------------------------------------------------------===
+ * Lexer
+ *===----------------------------------------------------------------------===*)
+
+let rec lex = parser
+ (* Skip any whitespace. *)
+ | [&lt; ' (' ' | '\n' | '\r' | '\t'); stream &gt;] -&gt; lex stream
+
+ (* identifier: [a-zA-Z][a-zA-Z0-9] *)
+ | [&lt; ' ('A' .. 'Z' | 'a' .. 'z' as c); stream &gt;] -&gt;
+ let buffer = Buffer.create 1 in
+ Buffer.add_char buffer c;
+ lex_ident buffer stream
+
+ (* number: [0-9.]+ *)
+ | [&lt; ' ('0' .. '9' as c); stream &gt;] -&gt;
+ let buffer = Buffer.create 1 in
+ Buffer.add_char buffer c;
+ lex_number buffer stream
+
+ (* Comment until end of line. *)
+ | [&lt; ' ('#'); stream &gt;] -&gt;
+ lex_comment stream
+
+ (* Otherwise, just return the character as its ascii value. *)
+ | [&lt; 'c; stream &gt;] -&gt;
+ [&lt; 'Token.Kwd c; lex stream &gt;]
+
+ (* end of stream. *)
+ | [&lt; &gt;] -&gt; [&lt; &gt;]
+
+and lex_number buffer = parser
+ | [&lt; ' ('0' .. '9' | '.' as c); stream &gt;] -&gt;
+ Buffer.add_char buffer c;
+ lex_number buffer stream
+ | [&lt; stream=lex &gt;] -&gt;
+ [&lt; 'Token.Number (float_of_string (Buffer.contents buffer)); stream &gt;]
+
+and lex_ident buffer = parser
+ | [&lt; ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream &gt;] -&gt;
+ Buffer.add_char buffer c;
+ lex_ident buffer stream
+ | [&lt; stream=lex &gt;] -&gt;
+ match Buffer.contents buffer with
+ | "def" -&gt; [&lt; 'Token.Def; stream &gt;]
+ | "extern" -&gt; [&lt; 'Token.Extern; stream &gt;]
+ | "if" -&gt; [&lt; 'Token.If; stream &gt;]
+ | "then" -&gt; [&lt; 'Token.Then; stream &gt;]
+ | "else" -&gt; [&lt; 'Token.Else; stream &gt;]
+ | "for" -&gt; [&lt; 'Token.For; stream &gt;]
+ | "in" -&gt; [&lt; 'Token.In; stream &gt;]
+ | "binary" -&gt; [&lt; 'Token.Binary; stream &gt;]
+ | "unary" -&gt; [&lt; 'Token.Unary; stream &gt;]
+ | "var" -&gt; [&lt; 'Token.Var; stream &gt;]
+ | id -&gt; [&lt; 'Token.Ident id; stream &gt;]
+
+and lex_comment = parser
+ | [&lt; ' ('\n'); stream=lex &gt;] -&gt; stream
+ | [&lt; 'c; e=lex_comment &gt;] -&gt; e
+ | [&lt; &gt;] -&gt; [&lt; &gt;]
+</pre>
+</dd>
+
+<dt>ast.ml:</dt>
+<dd class="doc_code">
+<pre>
+(*===----------------------------------------------------------------------===
+ * Abstract Syntax Tree (aka Parse Tree)
+ *===----------------------------------------------------------------------===*)
+
+(* expr - Base type for all expression nodes. *)
+type expr =
+ (* variant for numeric literals like "1.0". *)
+ | Number of float
+
+ (* variant for referencing a variable, like "a". *)
+ | Variable of string
+
+ (* variant for a unary operator. *)
+ | Unary of char * expr
+
+ (* variant for a binary operator. *)
+ | Binary of char * expr * expr
+
+ (* variant for function calls. *)
+ | Call of string * expr array
+
+ (* variant for if/then/else. *)
+ | If of expr * expr * expr
+
+ (* variant for for/in. *)
+ | For of string * expr * expr * expr option * expr
+
+ (* variant for var/in. *)
+ | Var of (string * expr option) array * expr
+
+(* proto - This type represents the "prototype" for a function, which captures
+ * its name, and its argument names (thus implicitly the number of arguments the
+ * function takes). *)
+type proto =
+ | Prototype of string * string array
+ | BinOpPrototype of string * string array * int
+
+(* func - This type represents a function definition itself. *)
+type func = Function of proto * expr
+</pre>
+</dd>
+
+<dt>parser.ml:</dt>
+<dd class="doc_code">
+<pre>
+(*===---------------------------------------------------------------------===
+ * Parser
+ *===---------------------------------------------------------------------===*)
+
+(* binop_precedence - This holds the precedence for each binary operator that is
+ * defined *)
+let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10
+
+(* precedence - Get the precedence of the pending binary operator token. *)
+let precedence c = try Hashtbl.find binop_precedence c with Not_found -&gt; -1
+
+(* primary
+ * ::= identifier
+ * ::= numberexpr
+ * ::= parenexpr
+ * ::= ifexpr
+ * ::= forexpr
+ * ::= varexpr *)
+let rec parse_primary = parser
+ (* numberexpr ::= number *)
+ | [&lt; 'Token.Number n &gt;] -&gt; Ast.Number n
+
+ (* parenexpr ::= '(' expression ')' *)
+ | [&lt; 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" &gt;] -&gt; e
+
+ (* identifierexpr
+ * ::= identifier
+ * ::= identifier '(' argumentexpr ')' *)
+ | [&lt; 'Token.Ident id; stream &gt;] -&gt;
+ let rec parse_args accumulator = parser
+ | [&lt; e=parse_expr; stream &gt;] -&gt;
+ begin parser
+ | [&lt; 'Token.Kwd ','; e=parse_args (e :: accumulator) &gt;] -&gt; e
+ | [&lt; &gt;] -&gt; e :: accumulator
+ end stream
+ | [&lt; &gt;] -&gt; accumulator
+ in
+ let rec parse_ident id = parser
+ (* Call. *)
+ | [&lt; 'Token.Kwd '(';
+ args=parse_args [];
+ 'Token.Kwd ')' ?? "expected ')'"&gt;] -&gt;
+ Ast.Call (id, Array.of_list (List.rev args))
+
+ (* Simple variable ref. *)
+ | [&lt; &gt;] -&gt; Ast.Variable id
+ in
+ parse_ident id stream
+
+ (* ifexpr ::= 'if' expr 'then' expr 'else' expr *)
+ | [&lt; 'Token.If; c=parse_expr;
+ 'Token.Then ?? "expected 'then'"; t=parse_expr;
+ 'Token.Else ?? "expected 'else'"; e=parse_expr &gt;] -&gt;
+ Ast.If (c, t, e)
+
+ (* forexpr
+ ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression *)
+ | [&lt; 'Token.For;
+ 'Token.Ident id ?? "expected identifier after for";
+ 'Token.Kwd '=' ?? "expected '=' after for";
+ stream &gt;] -&gt;
+ begin parser
+ | [&lt;
+ start=parse_expr;
+ 'Token.Kwd ',' ?? "expected ',' after for";
+ end_=parse_expr;
+ stream &gt;] -&gt;
+ let step =
+ begin parser
+ | [&lt; 'Token.Kwd ','; step=parse_expr &gt;] -&gt; Some step
+ | [&lt; &gt;] -&gt; None
+ end stream
+ in
+ begin parser
+ | [&lt; 'Token.In; body=parse_expr &gt;] -&gt;
+ Ast.For (id, start, end_, step, body)
+ | [&lt; &gt;] -&gt;
+ raise (Stream.Error "expected 'in' after for")
+ end stream
+ | [&lt; &gt;] -&gt;
+ raise (Stream.Error "expected '=' after for")
+ end stream
+
+ (* varexpr
+ * ::= 'var' identifier ('=' expression?
+ * (',' identifier ('=' expression)?)* 'in' expression *)
+ | [&lt; 'Token.Var;
+ (* At least one variable name is required. *)
+ 'Token.Ident id ?? "expected identifier after var";
+ init=parse_var_init;
+ var_names=parse_var_names [(id, init)];
+ (* At this point, we have to have 'in'. *)
+ 'Token.In ?? "expected 'in' keyword after 'var'";
+ body=parse_expr &gt;] -&gt;
+ Ast.Var (Array.of_list (List.rev var_names), body)
+
+ | [&lt; &gt;] -&gt; raise (Stream.Error "unknown token when expecting an expression.")
+
+(* unary
+ * ::= primary
+ * ::= '!' unary *)
+and parse_unary = parser
+ (* If this is a unary operator, read it. *)
+ | [&lt; 'Token.Kwd op when op != '(' &amp;&amp; op != ')'; operand=parse_expr &gt;] -&gt;
+ Ast.Unary (op, operand)
+
+ (* If the current token is not an operator, it must be a primary expr. *)
+ | [&lt; stream &gt;] -&gt; parse_primary stream
+
+(* binoprhs
+ * ::= ('+' primary)* *)
+and parse_bin_rhs expr_prec lhs stream =
+ match Stream.peek stream with
+ (* If this is a binop, find its precedence. *)
+ | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c -&gt;
+ let token_prec = precedence c in
+
+ (* If this is a binop that binds at least as tightly as the current binop,
+ * consume it, otherwise we are done. *)
+ if token_prec &lt; expr_prec then lhs else begin
+ (* Eat the binop. *)
+ Stream.junk stream;
+
+ (* Parse the primary expression after the binary operator. *)
+ let rhs = parse_unary stream in
+
+ (* Okay, we know this is a binop. *)
+ let rhs =
+ match Stream.peek stream with
+ | Some (Token.Kwd c2) -&gt;
+ (* If BinOp binds less tightly with rhs than the operator after
+ * rhs, let the pending operator take rhs as its lhs. *)
+ let next_prec = precedence c2 in
+ if token_prec &lt; next_prec
+ then parse_bin_rhs (token_prec + 1) rhs stream
+ else rhs
+ | _ -&gt; rhs
+ in
+
+ (* Merge lhs/rhs. *)
+ let lhs = Ast.Binary (c, lhs, rhs) in
+ parse_bin_rhs expr_prec lhs stream
+ end
+ | _ -&gt; lhs
+
+and parse_var_init = parser
+ (* read in the optional initializer. *)
+ | [&lt; 'Token.Kwd '='; e=parse_expr &gt;] -&gt; Some e
+ | [&lt; &gt;] -&gt; None
+
+and parse_var_names accumulator = parser
+ | [&lt; 'Token.Kwd ',';
+ 'Token.Ident id ?? "expected identifier list after var";
+ init=parse_var_init;
+ e=parse_var_names ((id, init) :: accumulator) &gt;] -&gt; e
+ | [&lt; &gt;] -&gt; accumulator
+
+(* expression
+ * ::= primary binoprhs *)
+and parse_expr = parser
+ | [&lt; lhs=parse_unary; stream &gt;] -&gt; parse_bin_rhs 0 lhs stream
+
+(* prototype
+ * ::= id '(' id* ')'
+ * ::= binary LETTER number? (id, id)
+ * ::= unary LETTER number? (id) *)
+let parse_prototype =
+ let rec parse_args accumulator = parser
+ | [&lt; 'Token.Ident id; e=parse_args (id::accumulator) &gt;] -&gt; e
+ | [&lt; &gt;] -&gt; accumulator
+ in
+ let parse_operator = parser
+ | [&lt; 'Token.Unary &gt;] -&gt; "unary", 1
+ | [&lt; 'Token.Binary &gt;] -&gt; "binary", 2
+ in
+ let parse_binary_precedence = parser
+ | [&lt; 'Token.Number n &gt;] -&gt; int_of_float n
+ | [&lt; &gt;] -&gt; 30
+ in
+ parser
+ | [&lt; 'Token.Ident id;
+ 'Token.Kwd '(' ?? "expected '(' in prototype";
+ args=parse_args [];
+ 'Token.Kwd ')' ?? "expected ')' in prototype" &gt;] -&gt;
+ (* success. *)
+ Ast.Prototype (id, Array.of_list (List.rev args))
+ | [&lt; (prefix, kind)=parse_operator;
+ 'Token.Kwd op ?? "expected an operator";
+ (* Read the precedence if present. *)
+ binary_precedence=parse_binary_precedence;
+ 'Token.Kwd '(' ?? "expected '(' in prototype";
+ args=parse_args [];
+ 'Token.Kwd ')' ?? "expected ')' in prototype" &gt;] -&gt;
+ let name = prefix ^ (String.make 1 op) in
+ let args = Array.of_list (List.rev args) in
+
+ (* Verify right number of arguments for operator. *)
+ if Array.length args != kind
+ then raise (Stream.Error "invalid number of operands for operator")
+ else
+ if kind == 1 then
+ Ast.Prototype (name, args)
+ else
+ Ast.BinOpPrototype (name, args, binary_precedence)
+ | [&lt; &gt;] -&gt;
+ raise (Stream.Error "expected function name in prototype")
+
+(* definition ::= 'def' prototype expression *)
+let parse_definition = parser
+ | [&lt; 'Token.Def; p=parse_prototype; e=parse_expr &gt;] -&gt;
+ Ast.Function (p, e)
+
+(* toplevelexpr ::= expression *)
+let parse_toplevel = parser
+ | [&lt; e=parse_expr &gt;] -&gt;
+ (* Make an anonymous proto. *)
+ Ast.Function (Ast.Prototype ("", [||]), e)
+
+(* external ::= 'extern' prototype *)
+let parse_extern = parser
+ | [&lt; 'Token.Extern; e=parse_prototype &gt;] -&gt; e
+</pre>
+</dd>
+
+<dt>codegen.ml:</dt>
+<dd class="doc_code">
+<pre>
+(*===----------------------------------------------------------------------===
+ * Code Generation
+ *===----------------------------------------------------------------------===*)
+
+open Llvm
+
+exception Error of string
+
+let the_module = create_module "my cool jit"
+let builder = builder ()
+let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10
+
+(* Create an alloca instruction in the entry block of the function. This
+ * is used for mutable variables etc. *)
+let create_entry_block_alloca the_function var_name =
+ let builder = builder_at (instr_begin (entry_block the_function)) in
+ build_alloca double_type var_name builder
+
+let rec codegen_expr = function
+ | Ast.Number n -&gt; const_float double_type n
+ | Ast.Variable name -&gt;
+ let v = try Hashtbl.find named_values name with
+ | Not_found -&gt; raise (Error "unknown variable name")
+ in
+ (* Load the value. *)
+ build_load v name builder
+ | Ast.Unary (op, operand) -&gt;
+ let operand = codegen_expr operand in
+ let callee = "unary" ^ (String.make 1 op) in
+ let callee =
+ match lookup_function callee the_module with
+ | Some callee -&gt; callee
+ | None -&gt; raise (Error "unknown unary operator")
+ in
+ build_call callee [|operand|] "unop" builder
+ | Ast.Binary (op, lhs, rhs) -&gt;
+ begin match op with
+ | '=' -&gt;
+ (* Special case '=' because we don't want to emit the LHS as an
+ * expression. *)
+ let name =
+ match lhs with
+ | Ast.Variable name -&gt; name
+ | _ -&gt; raise (Error "destination of '=' must be a variable")
+ in
+
+ (* Codegen the rhs. *)
+ let val_ = codegen_expr rhs in
+
+ (* Lookup the name. *)
+ let variable = try Hashtbl.find named_values name with
+ | Not_found -&gt; raise (Error "unknown variable name")
+ in
+ ignore(build_store val_ variable builder);
+ val_
+ | _ -&gt;
+ let lhs_val = codegen_expr lhs in
+ let rhs_val = codegen_expr rhs in
+ begin
+ match op with
+ | '+' -&gt; build_add lhs_val rhs_val "addtmp" builder
+ | '-' -&gt; build_sub lhs_val rhs_val "subtmp" builder
+ | '*' -&gt; build_mul lhs_val rhs_val "multmp" builder
+ | '&lt;' -&gt;
+ (* Convert bool 0/1 to double 0.0 or 1.0 *)
+ let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in
+ build_uitofp i double_type "booltmp" builder
+ | _ -&gt;
+ (* If it wasn't a builtin binary operator, it must be a user defined
+ * one. Emit a call to it. *)
+ let callee = "binary" ^ (String.make 1 op) in
+ let callee =
+ match lookup_function callee the_module with
+ | Some callee -&gt; callee
+ | None -&gt; raise (Error "binary operator not found!")
+ in
+ build_call callee [|lhs_val; rhs_val|] "binop" builder
+ end
+ end
+ | Ast.Call (callee, args) -&gt;
+ (* Look up the name in the module table. *)
+ let callee =
+ match lookup_function callee the_module with
+ | Some callee -&gt; callee
+ | None -&gt; raise (Error "unknown function referenced")
+ in
+ let params = params callee in
+
+ (* If argument mismatch error. *)
+ if Array.length params == Array.length args then () else
+ raise (Error "incorrect # arguments passed");
+ let args = Array.map codegen_expr args in
+ build_call callee args "calltmp" builder
+ | Ast.If (cond, then_, else_) -&gt;
+ let cond = codegen_expr cond in
+
+ (* Convert condition to a bool by comparing equal to 0.0 *)
+ let zero = const_float double_type 0.0 in
+ let cond_val = build_fcmp Fcmp.One cond zero "ifcond" builder in
+
+ (* Grab the first block so that we might later add the conditional branch
+ * to it at the end of the function. *)
+ let start_bb = insertion_block builder in
+ let the_function = block_parent start_bb in
+
+ let then_bb = append_block "then" the_function in
+
+ (* Emit 'then' value. *)
+ position_at_end then_bb builder;
+ let then_val = codegen_expr then_ in
+
+ (* Codegen of 'then' can change the current block, update then_bb for the
+ * phi. We create a new name because one is used for the phi node, and the
+ * other is used for the conditional branch. *)
+ let new_then_bb = insertion_block builder in
+
+ (* Emit 'else' value. *)
+ let else_bb = append_block "else" the_function in
+ position_at_end else_bb builder;
+ let else_val = codegen_expr else_ in
+
+ (* Codegen of 'else' can change the current block, update else_bb for the
+ * phi. *)
+ let new_else_bb = insertion_block builder in
+
+ (* Emit merge block. *)
+ let merge_bb = append_block "ifcont" the_function in
+ position_at_end merge_bb builder;
+ let incoming = [(then_val, new_then_bb); (else_val, new_else_bb)] in
+ let phi = build_phi incoming "iftmp" builder in
+
+ (* Return to the start block to add the conditional branch. *)
+ position_at_end start_bb builder;
+ ignore (build_cond_br cond_val then_bb else_bb builder);
+
+ (* Set a unconditional branch at the end of the 'then' block and the
+ * 'else' block to the 'merge' block. *)
+ position_at_end new_then_bb builder; ignore (build_br merge_bb builder);
+ position_at_end new_else_bb builder; ignore (build_br merge_bb builder);
+
+ (* Finally, set the builder to the end of the merge block. *)
+ position_at_end merge_bb builder;
+
+ phi
+ | Ast.For (var_name, start, end_, step, body) -&gt;
+ (* Output this as:
+ * var = alloca double
+ * ...
+ * start = startexpr
+ * store start -&gt; var
+ * goto loop
+ * loop:
+ * ...
+ * bodyexpr
+ * ...
+ * loopend:
+ * step = stepexpr
+ * endcond = endexpr
+ *
+ * curvar = load var
+ * nextvar = curvar + step
+ * store nextvar -&gt; var
+ * br endcond, loop, endloop
+ * outloop: *)
+
+ let the_function = block_parent (insertion_block builder) in
+
+ (* Create an alloca for the variable in the entry block. *)
+ let alloca = create_entry_block_alloca the_function var_name in
+
+ (* Emit the start code first, without 'variable' in scope. *)
+ let start_val = codegen_expr start in
+
+ (* Store the value into the alloca. *)
+ ignore(build_store start_val alloca builder);
+
+ (* Make the new basic block for the loop header, inserting after current
+ * block. *)
+ let loop_bb = append_block "loop" the_function in
+
+ (* Insert an explicit fall through from the current block to the
+ * loop_bb. *)
+ ignore (build_br loop_bb builder);
+
+ (* Start insertion in loop_bb. *)
+ position_at_end loop_bb builder;
+
+ (* Within the loop, the variable is defined equal to the PHI node. If it
+ * shadows an existing variable, we have to restore it, so save it
+ * now. *)
+ let old_val =
+ try Some (Hashtbl.find named_values var_name) with Not_found -&gt; None
+ in
+ Hashtbl.add named_values var_name alloca;
+
+ (* Emit the body of the loop. This, like any other expr, can change the
+ * current BB. Note that we ignore the value computed by the body, but
+ * don't allow an error *)
+ ignore (codegen_expr body);
+
+ (* Emit the step value. *)
+ let step_val =
+ match step with
+ | Some step -&gt; codegen_expr step
+ (* If not specified, use 1.0. *)
+ | None -&gt; const_float double_type 1.0
+ in
+
+ (* Compute the end condition. *)
+ let end_cond = codegen_expr end_ in
+
+ (* Reload, increment, and restore the alloca. This handles the case where
+ * the body of the loop mutates the variable. *)
+ let cur_var = build_load alloca var_name builder in
+ let next_var = build_add cur_var step_val "nextvar" builder in
+ ignore(build_store next_var alloca builder);
+
+ (* Convert condition to a bool by comparing equal to 0.0. *)
+ let zero = const_float double_type 0.0 in
+ let end_cond = build_fcmp Fcmp.One end_cond zero "loopcond" builder in
+
+ (* Create the "after loop" block and insert it. *)
+ let after_bb = append_block "afterloop" the_function in
+
+ (* Insert the conditional branch into the end of loop_end_bb. *)
+ ignore (build_cond_br end_cond loop_bb after_bb builder);
+
+ (* Any new code will be inserted in after_bb. *)
+ position_at_end after_bb builder;
+
+ (* Restore the unshadowed variable. *)
+ begin match old_val with
+ | Some old_val -&gt; Hashtbl.add named_values var_name old_val
+ | None -&gt; ()
+ end;
+
+ (* for expr always returns 0.0. *)
+ const_null double_type
+ | Ast.Var (var_names, body) -&gt;
+ let old_bindings = ref [] in
+
+ let the_function = block_parent (insertion_block builder) in
+
+ (* Register all variables and emit their initializer. *)
+ Array.iter (fun (var_name, init) -&gt;
+ (* Emit the initializer before adding the variable to scope, this
+ * prevents the initializer from referencing the variable itself, and
+ * permits stuff like this:
+ * var a = 1 in
+ * var a = a in ... # refers to outer 'a'. *)
+ let init_val =
+ match init with
+ | Some init -&gt; codegen_expr init
+ (* If not specified, use 0.0. *)
+ | None -&gt; const_float double_type 0.0
+ in
+
+ let alloca = create_entry_block_alloca the_function var_name in
+ ignore(build_store init_val alloca builder);
+
+ (* Remember the old variable binding so that we can restore the binding
+ * when we unrecurse. *)
+ begin
+ try
+ let old_value = Hashtbl.find named_values var_name in
+ old_bindings := (var_name, old_value) :: !old_bindings;
+ with Not_found -&gt; ()
+ end;
+
+ (* Remember this binding. *)
+ Hashtbl.add named_values var_name alloca;
+ ) var_names;
+
+ (* Codegen the body, now that all vars are in scope. *)
+ let body_val = codegen_expr body in
+
+ (* Pop all our variables from scope. *)
+ List.iter (fun (var_name, old_value) -&gt;
+ Hashtbl.add named_values var_name old_value
+ ) !old_bindings;
+
+ (* Return the body computation. *)
+ body_val
+
+let codegen_proto = function
+ | Ast.Prototype (name, args) | Ast.BinOpPrototype (name, args, _) -&gt;
+ (* Make the function type: double(double,double) etc. *)
+ let doubles = Array.make (Array.length args) double_type in
+ let ft = function_type double_type doubles in
+ let f =
+ match lookup_function name the_module with
+ | None -&gt; declare_function name ft the_module
+
+ (* If 'f' conflicted, there was already something named 'name'. If it
+ * has a body, don't allow redefinition or reextern. *)
+ | Some f -&gt;
+ (* If 'f' already has a body, reject this. *)
+ if block_begin f &lt;&gt; At_end f then
+ raise (Error "redefinition of function");
+
+ (* If 'f' took a different number of arguments, reject. *)
+ if element_type (type_of f) &lt;&gt; ft then
+ raise (Error "redefinition of function with different # args");
+ f
+ in
+
+ (* Set names for all arguments. *)
+ Array.iteri (fun i a -&gt;
+ let n = args.(i) in
+ set_value_name n a;
+ Hashtbl.add named_values n a;
+ ) (params f);
+ f
+
+(* Create an alloca for each argument and register the argument in the symbol
+ * table so that references to it will succeed. *)
+let create_argument_allocas the_function proto =
+ let args = match proto with
+ | Ast.Prototype (_, args) | Ast.BinOpPrototype (_, args, _) -&gt; args
+ in
+ Array.iteri (fun i ai -&gt;
+ let var_name = args.(i) in
+ (* Create an alloca for this variable. *)
+ let alloca = create_entry_block_alloca the_function var_name in
+
+ (* Store the initial value into the alloca. *)
+ ignore(build_store ai alloca builder);
+
+ (* Add arguments to variable symbol table. *)
+ Hashtbl.add named_values var_name alloca;
+ ) (params the_function)
+
+let codegen_func the_fpm = function
+ | Ast.Function (proto, body) -&gt;
+ Hashtbl.clear named_values;
+ let the_function = codegen_proto proto in
+
+ (* If this is an operator, install it. *)
+ begin match proto with
+ | Ast.BinOpPrototype (name, args, prec) -&gt;
+ let op = name.[String.length name - 1] in
+ Hashtbl.add Parser.binop_precedence op prec;
+ | _ -&gt; ()
+ end;
+
+ (* Create a new basic block to start insertion into. *)
+ let bb = append_block "entry" the_function in
+ position_at_end bb builder;
+
+ try
+ (* Add all arguments to the symbol table and create their allocas. *)
+ create_argument_allocas the_function proto;
+
+ let ret_val = codegen_expr body in
+
+ (* Finish off the function. *)
+ let _ = build_ret ret_val builder in
+
+ (* Validate the generated code, checking for consistency. *)
+ Llvm_analysis.assert_valid_function the_function;
+
+ (* Optimize the function. *)
+ let _ = PassManager.run_function the_function the_fpm in
+
+ the_function
+ with e -&gt;
+ delete_function the_function;
+ raise e
+</pre>
+</dd>
+
+<dt>toplevel.ml:</dt>
+<dd class="doc_code">
+<pre>
+(*===----------------------------------------------------------------------===
+ * Top-Level parsing and JIT Driver
+ *===----------------------------------------------------------------------===*)
+
+open Llvm
+open Llvm_executionengine
+
+(* top ::= definition | external | expression | ';' *)
+let rec main_loop the_fpm the_execution_engine stream =
+ match Stream.peek stream with
+ | None -&gt; ()
+
+ (* ignore top-level semicolons. *)
+ | Some (Token.Kwd ';') -&gt;
+ Stream.junk stream;
+ main_loop the_fpm the_execution_engine stream
+
+ | Some token -&gt;
+ begin
+ try match token with
+ | Token.Def -&gt;
+ let e = Parser.parse_definition stream in
+ print_endline "parsed a function definition.";
+ dump_value (Codegen.codegen_func the_fpm e);
+ | Token.Extern -&gt;
+ let e = Parser.parse_extern stream in
+ print_endline "parsed an extern.";
+ dump_value (Codegen.codegen_proto e);
+ | _ -&gt;
+ (* Evaluate a top-level expression into an anonymous function. *)
+ let e = Parser.parse_toplevel stream in
+ print_endline "parsed a top-level expr";
+ let the_function = Codegen.codegen_func the_fpm e in
+ dump_value the_function;
+
+ (* JIT the function, returning a function pointer. *)
+ let result = ExecutionEngine.run_function the_function [||]
+ the_execution_engine in
+
+ print_string "Evaluated to ";
+ print_float (GenericValue.as_float double_type result);
+ print_newline ();
+ with Stream.Error s | Codegen.Error s -&gt;
+ (* Skip token for error recovery. *)
+ Stream.junk stream;
+ print_endline s;
+ end;
+ print_string "ready&gt; "; flush stdout;
+ main_loop the_fpm the_execution_engine stream
+</pre>
+</dd>
+
+<dt>toy.ml:</dt>
+<dd class="doc_code">
+<pre>
+(*===----------------------------------------------------------------------===
+ * Main driver code.
+ *===----------------------------------------------------------------------===*)
+
+open Llvm
+open Llvm_executionengine
+open Llvm_target
+open Llvm_scalar_opts
+
+let main () =
+ (* Install standard binary operators.
+ * 1 is the lowest precedence. *)
+ Hashtbl.add Parser.binop_precedence '=' 2;
+ Hashtbl.add Parser.binop_precedence '&lt;' 10;
+ Hashtbl.add Parser.binop_precedence '+' 20;
+ Hashtbl.add Parser.binop_precedence '-' 20;
+ Hashtbl.add Parser.binop_precedence '*' 40; (* highest. *)
+
+ (* Prime the first token. *)
+ print_string "ready&gt; "; flush stdout;
+ let stream = Lexer.lex (Stream.of_channel stdin) in
+
+ (* Create the JIT. *)
+ let the_module_provider = ModuleProvider.create Codegen.the_module in
+ let the_execution_engine = ExecutionEngine.create the_module_provider in
+ let the_fpm = PassManager.create_function the_module_provider in
+
+ (* Set up the optimizer pipeline. Start with registering info about how the
+ * target lays out data structures. *)
+ TargetData.add (ExecutionEngine.target_data the_execution_engine) the_fpm;
+
+ (* Promote allocas to registers. *)
+ add_memory_to_register_promotion the_fpm;
+
+ (* Do simple "peephole" optimizations and bit-twiddling optzn. *)
+ add_instruction_combining the_fpm;
+
+ (* reassociate expressions. *)
+ add_reassociation the_fpm;
+
+ (* Eliminate Common SubExpressions. *)
+ add_gvn the_fpm;
+
+ (* Simplify the control flow graph (deleting unreachable blocks, etc). *)
+ add_cfg_simplification the_fpm;
+
+ (* Run the main "interpreter loop" now. *)
+ Toplevel.main_loop the_fpm the_execution_engine stream;
+
+ (* Print out all the generated code. *)
+ dump_module Codegen.the_module
+;;
+
+main ()
+</pre>
+</dd>
+
+<dt>bindings.c</dt>
+<dd class="doc_code">
+<pre>
+#include &lt;stdio.h&gt;
+
+/* putchard - putchar that takes a double and returns 0. */
+extern double putchard(double X) {
+ putchar((char)X);
+ return 0;
+}
+
+/* printd - printf that takes a double prints it as "%f\n", returning 0. */
+extern double printd(double X) {
+ printf("%f\n", X);
+ return 0;
+}
+</pre>
+</dd>
+</dl>
+
+<a href="LangImpl8.html">Next: Conclusion and other useful LLVM tidbits</a>
+</div>
+
+<!-- *********************************************************************** -->
+<hr>
+<address>
+ <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
+ src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
+ <a href="http://validator.w3.org/check/referer"><img
+ src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
+
+ <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
+ <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
+ <a href="mailto:idadesub@users.sourceforge.net">Erick Tryzelaar</a><br>
+ Last modified: $Date: 2007-10-17 11:05:13 -0700 (Wed, 17 Oct 2007) $
+</address>
+</body>
+</html>