diff options
Diffstat (limited to 'include/llvm/Analysis/Dominators.h')
-rw-r--r-- | include/llvm/Analysis/Dominators.h | 940 |
1 files changed, 0 insertions, 940 deletions
diff --git a/include/llvm/Analysis/Dominators.h b/include/llvm/Analysis/Dominators.h deleted file mode 100644 index 3aa0beb..0000000 --- a/include/llvm/Analysis/Dominators.h +++ /dev/null @@ -1,940 +0,0 @@ -//===- llvm/Analysis/Dominators.h - Dominator Info Calculation --*- C++ -*-===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file defines the DominatorTree class, which provides fast and efficient -// dominance queries. -// -//===----------------------------------------------------------------------===// - -#ifndef LLVM_ANALYSIS_DOMINATORS_H -#define LLVM_ANALYSIS_DOMINATORS_H - -#include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/DepthFirstIterator.h" -#include "llvm/ADT/GraphTraits.h" -#include "llvm/ADT/SmallPtrSet.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/IR/Function.h" -#include "llvm/Pass.h" -#include "llvm/Support/CFG.h" -#include "llvm/Support/Compiler.h" -#include "llvm/Support/raw_ostream.h" -#include <algorithm> - -namespace llvm { - -//===----------------------------------------------------------------------===// -/// DominatorBase - Base class that other, more interesting dominator analyses -/// inherit from. -/// -template <class NodeT> -class DominatorBase { -protected: - std::vector<NodeT*> Roots; - const bool IsPostDominators; - inline explicit DominatorBase(bool isPostDom) : - Roots(), IsPostDominators(isPostDom) {} -public: - - /// getRoots - Return the root blocks of the current CFG. This may include - /// multiple blocks if we are computing post dominators. For forward - /// dominators, this will always be a single block (the entry node). - /// - inline const std::vector<NodeT*> &getRoots() const { return Roots; } - - /// isPostDominator - Returns true if analysis based of postdoms - /// - bool isPostDominator() const { return IsPostDominators; } -}; - - -//===----------------------------------------------------------------------===// -// DomTreeNode - Dominator Tree Node -template<class NodeT> class DominatorTreeBase; -struct PostDominatorTree; -class MachineBasicBlock; - -template <class NodeT> -class DomTreeNodeBase { - NodeT *TheBB; - DomTreeNodeBase<NodeT> *IDom; - std::vector<DomTreeNodeBase<NodeT> *> Children; - int DFSNumIn, DFSNumOut; - - template<class N> friend class DominatorTreeBase; - friend struct PostDominatorTree; -public: - typedef typename std::vector<DomTreeNodeBase<NodeT> *>::iterator iterator; - typedef typename std::vector<DomTreeNodeBase<NodeT> *>::const_iterator - const_iterator; - - iterator begin() { return Children.begin(); } - iterator end() { return Children.end(); } - const_iterator begin() const { return Children.begin(); } - const_iterator end() const { return Children.end(); } - - NodeT *getBlock() const { return TheBB; } - DomTreeNodeBase<NodeT> *getIDom() const { return IDom; } - const std::vector<DomTreeNodeBase<NodeT>*> &getChildren() const { - return Children; - } - - DomTreeNodeBase(NodeT *BB, DomTreeNodeBase<NodeT> *iDom) - : TheBB(BB), IDom(iDom), DFSNumIn(-1), DFSNumOut(-1) { } - - DomTreeNodeBase<NodeT> *addChild(DomTreeNodeBase<NodeT> *C) { - Children.push_back(C); - return C; - } - - size_t getNumChildren() const { - return Children.size(); - } - - void clearAllChildren() { - Children.clear(); - } - - bool compare(const DomTreeNodeBase<NodeT> *Other) const { - if (getNumChildren() != Other->getNumChildren()) - return true; - - SmallPtrSet<const NodeT *, 4> OtherChildren; - for (const_iterator I = Other->begin(), E = Other->end(); I != E; ++I) { - const NodeT *Nd = (*I)->getBlock(); - OtherChildren.insert(Nd); - } - - for (const_iterator I = begin(), E = end(); I != E; ++I) { - const NodeT *N = (*I)->getBlock(); - if (OtherChildren.count(N) == 0) - return true; - } - return false; - } - - void setIDom(DomTreeNodeBase<NodeT> *NewIDom) { - assert(IDom && "No immediate dominator?"); - if (IDom != NewIDom) { - typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I = - std::find(IDom->Children.begin(), IDom->Children.end(), this); - assert(I != IDom->Children.end() && - "Not in immediate dominator children set!"); - // I am no longer your child... - IDom->Children.erase(I); - - // Switch to new dominator - IDom = NewIDom; - IDom->Children.push_back(this); - } - } - - /// getDFSNumIn/getDFSNumOut - These are an internal implementation detail, do - /// not call them. - unsigned getDFSNumIn() const { return DFSNumIn; } - unsigned getDFSNumOut() const { return DFSNumOut; } -private: - // Return true if this node is dominated by other. Use this only if DFS info - // is valid. - bool DominatedBy(const DomTreeNodeBase<NodeT> *other) const { - return this->DFSNumIn >= other->DFSNumIn && - this->DFSNumOut <= other->DFSNumOut; - } -}; - -EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase<BasicBlock>); -EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase<MachineBasicBlock>); - -template<class NodeT> -inline raw_ostream &operator<<(raw_ostream &o, - const DomTreeNodeBase<NodeT> *Node) { - if (Node->getBlock()) - WriteAsOperand(o, Node->getBlock(), false); - else - o << " <<exit node>>"; - - o << " {" << Node->getDFSNumIn() << "," << Node->getDFSNumOut() << "}"; - - return o << "\n"; -} - -template<class NodeT> -inline void PrintDomTree(const DomTreeNodeBase<NodeT> *N, raw_ostream &o, - unsigned Lev) { - o.indent(2*Lev) << "[" << Lev << "] " << N; - for (typename DomTreeNodeBase<NodeT>::const_iterator I = N->begin(), - E = N->end(); I != E; ++I) - PrintDomTree<NodeT>(*I, o, Lev+1); -} - -typedef DomTreeNodeBase<BasicBlock> DomTreeNode; - -//===----------------------------------------------------------------------===// -/// DominatorTree - Calculate the immediate dominator tree for a function. -/// - -template<class FuncT, class N> -void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT, - FuncT& F); - -template<class NodeT> -class DominatorTreeBase : public DominatorBase<NodeT> { - bool dominatedBySlowTreeWalk(const DomTreeNodeBase<NodeT> *A, - const DomTreeNodeBase<NodeT> *B) const { - assert(A != B); - assert(isReachableFromEntry(B)); - assert(isReachableFromEntry(A)); - - const DomTreeNodeBase<NodeT> *IDom; - while ((IDom = B->getIDom()) != 0 && IDom != A && IDom != B) - B = IDom; // Walk up the tree - return IDom != 0; - } - -protected: - typedef DenseMap<NodeT*, DomTreeNodeBase<NodeT>*> DomTreeNodeMapType; - DomTreeNodeMapType DomTreeNodes; - DomTreeNodeBase<NodeT> *RootNode; - - bool DFSInfoValid; - unsigned int SlowQueries; - // Information record used during immediate dominators computation. - struct InfoRec { - unsigned DFSNum; - unsigned Parent; - unsigned Semi; - NodeT *Label; - - InfoRec() : DFSNum(0), Parent(0), Semi(0), Label(0) {} - }; - - DenseMap<NodeT*, NodeT*> IDoms; - - // Vertex - Map the DFS number to the BasicBlock* - std::vector<NodeT*> Vertex; - - // Info - Collection of information used during the computation of idoms. - DenseMap<NodeT*, InfoRec> Info; - - void reset() { - for (typename DomTreeNodeMapType::iterator I = this->DomTreeNodes.begin(), - E = DomTreeNodes.end(); I != E; ++I) - delete I->second; - DomTreeNodes.clear(); - IDoms.clear(); - this->Roots.clear(); - Vertex.clear(); - RootNode = 0; - } - - // NewBB is split and now it has one successor. Update dominator tree to - // reflect this change. - template<class N, class GraphT> - void Split(DominatorTreeBase<typename GraphT::NodeType>& DT, - typename GraphT::NodeType* NewBB) { - assert(std::distance(GraphT::child_begin(NewBB), - GraphT::child_end(NewBB)) == 1 && - "NewBB should have a single successor!"); - typename GraphT::NodeType* NewBBSucc = *GraphT::child_begin(NewBB); - - std::vector<typename GraphT::NodeType*> PredBlocks; - typedef GraphTraits<Inverse<N> > InvTraits; - for (typename InvTraits::ChildIteratorType PI = - InvTraits::child_begin(NewBB), - PE = InvTraits::child_end(NewBB); PI != PE; ++PI) - PredBlocks.push_back(*PI); - - assert(!PredBlocks.empty() && "No predblocks?"); - - bool NewBBDominatesNewBBSucc = true; - for (typename InvTraits::ChildIteratorType PI = - InvTraits::child_begin(NewBBSucc), - E = InvTraits::child_end(NewBBSucc); PI != E; ++PI) { - typename InvTraits::NodeType *ND = *PI; - if (ND != NewBB && !DT.dominates(NewBBSucc, ND) && - DT.isReachableFromEntry(ND)) { - NewBBDominatesNewBBSucc = false; - break; - } - } - - // Find NewBB's immediate dominator and create new dominator tree node for - // NewBB. - NodeT *NewBBIDom = 0; - unsigned i = 0; - for (i = 0; i < PredBlocks.size(); ++i) - if (DT.isReachableFromEntry(PredBlocks[i])) { - NewBBIDom = PredBlocks[i]; - break; - } - - // It's possible that none of the predecessors of NewBB are reachable; - // in that case, NewBB itself is unreachable, so nothing needs to be - // changed. - if (!NewBBIDom) - return; - - for (i = i + 1; i < PredBlocks.size(); ++i) { - if (DT.isReachableFromEntry(PredBlocks[i])) - NewBBIDom = DT.findNearestCommonDominator(NewBBIDom, PredBlocks[i]); - } - - // Create the new dominator tree node... and set the idom of NewBB. - DomTreeNodeBase<NodeT> *NewBBNode = DT.addNewBlock(NewBB, NewBBIDom); - - // If NewBB strictly dominates other blocks, then it is now the immediate - // dominator of NewBBSucc. Update the dominator tree as appropriate. - if (NewBBDominatesNewBBSucc) { - DomTreeNodeBase<NodeT> *NewBBSuccNode = DT.getNode(NewBBSucc); - DT.changeImmediateDominator(NewBBSuccNode, NewBBNode); - } - } - -public: - explicit DominatorTreeBase(bool isPostDom) - : DominatorBase<NodeT>(isPostDom), DFSInfoValid(false), SlowQueries(0) {} - virtual ~DominatorTreeBase() { reset(); } - - /// compare - Return false if the other dominator tree base matches this - /// dominator tree base. Otherwise return true. - bool compare(DominatorTreeBase &Other) const { - - const DomTreeNodeMapType &OtherDomTreeNodes = Other.DomTreeNodes; - if (DomTreeNodes.size() != OtherDomTreeNodes.size()) - return true; - - for (typename DomTreeNodeMapType::const_iterator - I = this->DomTreeNodes.begin(), - E = this->DomTreeNodes.end(); I != E; ++I) { - NodeT *BB = I->first; - typename DomTreeNodeMapType::const_iterator OI = OtherDomTreeNodes.find(BB); - if (OI == OtherDomTreeNodes.end()) - return true; - - DomTreeNodeBase<NodeT>* MyNd = I->second; - DomTreeNodeBase<NodeT>* OtherNd = OI->second; - - if (MyNd->compare(OtherNd)) - return true; - } - - return false; - } - - virtual void releaseMemory() { reset(); } - - /// getNode - return the (Post)DominatorTree node for the specified basic - /// block. This is the same as using operator[] on this class. - /// - inline DomTreeNodeBase<NodeT> *getNode(NodeT *BB) const { - return DomTreeNodes.lookup(BB); - } - - /// getRootNode - This returns the entry node for the CFG of the function. If - /// this tree represents the post-dominance relations for a function, however, - /// this root may be a node with the block == NULL. This is the case when - /// there are multiple exit nodes from a particular function. Consumers of - /// post-dominance information must be capable of dealing with this - /// possibility. - /// - DomTreeNodeBase<NodeT> *getRootNode() { return RootNode; } - const DomTreeNodeBase<NodeT> *getRootNode() const { return RootNode; } - - /// Get all nodes dominated by R, including R itself. Return true on success. - void getDescendants(NodeT *R, SmallVectorImpl<NodeT *> &Result) const { - const DomTreeNodeBase<NodeT> *RN = getNode(R); - SmallVector<const DomTreeNodeBase<NodeT> *, 8> WL; - WL.push_back(RN); - Result.clear(); - - while (!WL.empty()) { - const DomTreeNodeBase<NodeT> *N = WL.pop_back_val(); - Result.push_back(N->getBlock()); - WL.append(N->begin(), N->end()); - } - } - - /// properlyDominates - Returns true iff A dominates B and A != B. - /// Note that this is not a constant time operation! - /// - bool properlyDominates(const DomTreeNodeBase<NodeT> *A, - const DomTreeNodeBase<NodeT> *B) { - if (A == 0 || B == 0) - return false; - if (A == B) - return false; - return dominates(A, B); - } - - bool properlyDominates(const NodeT *A, const NodeT *B); - - /// isReachableFromEntry - Return true if A is dominated by the entry - /// block of the function containing it. - bool isReachableFromEntry(const NodeT* A) const { - assert(!this->isPostDominator() && - "This is not implemented for post dominators"); - return isReachableFromEntry(getNode(const_cast<NodeT *>(A))); - } - - inline bool isReachableFromEntry(const DomTreeNodeBase<NodeT> *A) const { - return A; - } - - /// dominates - Returns true iff A dominates B. Note that this is not a - /// constant time operation! - /// - inline bool dominates(const DomTreeNodeBase<NodeT> *A, - const DomTreeNodeBase<NodeT> *B) { - // A node trivially dominates itself. - if (B == A) - return true; - - // An unreachable node is dominated by anything. - if (!isReachableFromEntry(B)) - return true; - - // And dominates nothing. - if (!isReachableFromEntry(A)) - return false; - - // Compare the result of the tree walk and the dfs numbers, if expensive - // checks are enabled. -#ifdef XDEBUG - assert((!DFSInfoValid || - (dominatedBySlowTreeWalk(A, B) == B->DominatedBy(A))) && - "Tree walk disagrees with dfs numbers!"); -#endif - - if (DFSInfoValid) - return B->DominatedBy(A); - - // If we end up with too many slow queries, just update the - // DFS numbers on the theory that we are going to keep querying. - SlowQueries++; - if (SlowQueries > 32) { - updateDFSNumbers(); - return B->DominatedBy(A); - } - - return dominatedBySlowTreeWalk(A, B); - } - - bool dominates(const NodeT *A, const NodeT *B); - - NodeT *getRoot() const { - assert(this->Roots.size() == 1 && "Should always have entry node!"); - return this->Roots[0]; - } - - /// findNearestCommonDominator - Find nearest common dominator basic block - /// for basic block A and B. If there is no such block then return NULL. - NodeT *findNearestCommonDominator(NodeT *A, NodeT *B) { - assert(A->getParent() == B->getParent() && - "Two blocks are not in same function"); - - // If either A or B is a entry block then it is nearest common dominator - // (for forward-dominators). - if (!this->isPostDominator()) { - NodeT &Entry = A->getParent()->front(); - if (A == &Entry || B == &Entry) - return &Entry; - } - - // If B dominates A then B is nearest common dominator. - if (dominates(B, A)) - return B; - - // If A dominates B then A is nearest common dominator. - if (dominates(A, B)) - return A; - - DomTreeNodeBase<NodeT> *NodeA = getNode(A); - DomTreeNodeBase<NodeT> *NodeB = getNode(B); - - // Collect NodeA dominators set. - SmallPtrSet<DomTreeNodeBase<NodeT>*, 16> NodeADoms; - NodeADoms.insert(NodeA); - DomTreeNodeBase<NodeT> *IDomA = NodeA->getIDom(); - while (IDomA) { - NodeADoms.insert(IDomA); - IDomA = IDomA->getIDom(); - } - - // Walk NodeB immediate dominators chain and find common dominator node. - DomTreeNodeBase<NodeT> *IDomB = NodeB->getIDom(); - while (IDomB) { - if (NodeADoms.count(IDomB) != 0) - return IDomB->getBlock(); - - IDomB = IDomB->getIDom(); - } - - return NULL; - } - - const NodeT *findNearestCommonDominator(const NodeT *A, const NodeT *B) { - // Cast away the const qualifiers here. This is ok since - // const is re-introduced on the return type. - return findNearestCommonDominator(const_cast<NodeT *>(A), - const_cast<NodeT *>(B)); - } - - //===--------------------------------------------------------------------===// - // API to update (Post)DominatorTree information based on modifications to - // the CFG... - - /// addNewBlock - Add a new node to the dominator tree information. This - /// creates a new node as a child of DomBB dominator node,linking it into - /// the children list of the immediate dominator. - DomTreeNodeBase<NodeT> *addNewBlock(NodeT *BB, NodeT *DomBB) { - assert(getNode(BB) == 0 && "Block already in dominator tree!"); - DomTreeNodeBase<NodeT> *IDomNode = getNode(DomBB); - assert(IDomNode && "Not immediate dominator specified for block!"); - DFSInfoValid = false; - return DomTreeNodes[BB] = - IDomNode->addChild(new DomTreeNodeBase<NodeT>(BB, IDomNode)); - } - - /// changeImmediateDominator - This method is used to update the dominator - /// tree information when a node's immediate dominator changes. - /// - void changeImmediateDominator(DomTreeNodeBase<NodeT> *N, - DomTreeNodeBase<NodeT> *NewIDom) { - assert(N && NewIDom && "Cannot change null node pointers!"); - DFSInfoValid = false; - N->setIDom(NewIDom); - } - - void changeImmediateDominator(NodeT *BB, NodeT *NewBB) { - changeImmediateDominator(getNode(BB), getNode(NewBB)); - } - - /// eraseNode - Removes a node from the dominator tree. Block must not - /// dominate any other blocks. Removes node from its immediate dominator's - /// children list. Deletes dominator node associated with basic block BB. - void eraseNode(NodeT *BB) { - DomTreeNodeBase<NodeT> *Node = getNode(BB); - assert(Node && "Removing node that isn't in dominator tree."); - assert(Node->getChildren().empty() && "Node is not a leaf node."); - - // Remove node from immediate dominator's children list. - DomTreeNodeBase<NodeT> *IDom = Node->getIDom(); - if (IDom) { - typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I = - std::find(IDom->Children.begin(), IDom->Children.end(), Node); - assert(I != IDom->Children.end() && - "Not in immediate dominator children set!"); - // I am no longer your child... - IDom->Children.erase(I); - } - - DomTreeNodes.erase(BB); - delete Node; - } - - /// removeNode - Removes a node from the dominator tree. Block must not - /// dominate any other blocks. Invalidates any node pointing to removed - /// block. - void removeNode(NodeT *BB) { - assert(getNode(BB) && "Removing node that isn't in dominator tree."); - DomTreeNodes.erase(BB); - } - - /// splitBlock - BB is split and now it has one successor. Update dominator - /// tree to reflect this change. - void splitBlock(NodeT* NewBB) { - if (this->IsPostDominators) - this->Split<Inverse<NodeT*>, GraphTraits<Inverse<NodeT*> > >(*this, NewBB); - else - this->Split<NodeT*, GraphTraits<NodeT*> >(*this, NewBB); - } - - /// print - Convert to human readable form - /// - void print(raw_ostream &o) const { - o << "=============================--------------------------------\n"; - if (this->isPostDominator()) - o << "Inorder PostDominator Tree: "; - else - o << "Inorder Dominator Tree: "; - if (!this->DFSInfoValid) - o << "DFSNumbers invalid: " << SlowQueries << " slow queries."; - o << "\n"; - - // The postdom tree can have a null root if there are no returns. - if (getRootNode()) - PrintDomTree<NodeT>(getRootNode(), o, 1); - } - -protected: - template<class GraphT> - friend typename GraphT::NodeType* Eval( - DominatorTreeBase<typename GraphT::NodeType>& DT, - typename GraphT::NodeType* V, - unsigned LastLinked); - - template<class GraphT> - friend unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType>& DT, - typename GraphT::NodeType* V, - unsigned N); - - template<class FuncT, class N> - friend void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT, - FuncT& F); - - /// updateDFSNumbers - Assign In and Out numbers to the nodes while walking - /// dominator tree in dfs order. - void updateDFSNumbers() { - unsigned DFSNum = 0; - - SmallVector<std::pair<DomTreeNodeBase<NodeT>*, - typename DomTreeNodeBase<NodeT>::iterator>, 32> WorkStack; - - DomTreeNodeBase<NodeT> *ThisRoot = getRootNode(); - - if (!ThisRoot) - return; - - // Even in the case of multiple exits that form the post dominator root - // nodes, do not iterate over all exits, but start from the virtual root - // node. Otherwise bbs, that are not post dominated by any exit but by the - // virtual root node, will never be assigned a DFS number. - WorkStack.push_back(std::make_pair(ThisRoot, ThisRoot->begin())); - ThisRoot->DFSNumIn = DFSNum++; - - while (!WorkStack.empty()) { - DomTreeNodeBase<NodeT> *Node = WorkStack.back().first; - typename DomTreeNodeBase<NodeT>::iterator ChildIt = - WorkStack.back().second; - - // If we visited all of the children of this node, "recurse" back up the - // stack setting the DFOutNum. - if (ChildIt == Node->end()) { - Node->DFSNumOut = DFSNum++; - WorkStack.pop_back(); - } else { - // Otherwise, recursively visit this child. - DomTreeNodeBase<NodeT> *Child = *ChildIt; - ++WorkStack.back().second; - - WorkStack.push_back(std::make_pair(Child, Child->begin())); - Child->DFSNumIn = DFSNum++; - } - } - - SlowQueries = 0; - DFSInfoValid = true; - } - - DomTreeNodeBase<NodeT> *getNodeForBlock(NodeT *BB) { - if (DomTreeNodeBase<NodeT> *Node = getNode(BB)) - return Node; - - // Haven't calculated this node yet? Get or calculate the node for the - // immediate dominator. - NodeT *IDom = getIDom(BB); - - assert(IDom || this->DomTreeNodes[NULL]); - DomTreeNodeBase<NodeT> *IDomNode = getNodeForBlock(IDom); - - // Add a new tree node for this BasicBlock, and link it as a child of - // IDomNode - DomTreeNodeBase<NodeT> *C = new DomTreeNodeBase<NodeT>(BB, IDomNode); - return this->DomTreeNodes[BB] = IDomNode->addChild(C); - } - - inline NodeT *getIDom(NodeT *BB) const { - return IDoms.lookup(BB); - } - - inline void addRoot(NodeT* BB) { - this->Roots.push_back(BB); - } - -public: - /// recalculate - compute a dominator tree for the given function - template<class FT> - void recalculate(FT& F) { - typedef GraphTraits<FT*> TraitsTy; - reset(); - this->Vertex.push_back(0); - - if (!this->IsPostDominators) { - // Initialize root - NodeT *entry = TraitsTy::getEntryNode(&F); - this->Roots.push_back(entry); - this->IDoms[entry] = 0; - this->DomTreeNodes[entry] = 0; - - Calculate<FT, NodeT*>(*this, F); - } else { - // Initialize the roots list - for (typename TraitsTy::nodes_iterator I = TraitsTy::nodes_begin(&F), - E = TraitsTy::nodes_end(&F); I != E; ++I) { - if (TraitsTy::child_begin(I) == TraitsTy::child_end(I)) - addRoot(I); - - // Prepopulate maps so that we don't get iterator invalidation issues later. - this->IDoms[I] = 0; - this->DomTreeNodes[I] = 0; - } - - Calculate<FT, Inverse<NodeT*> >(*this, F); - } - } -}; - -// These two functions are declared out of line as a workaround for building -// with old (< r147295) versions of clang because of pr11642. -template<class NodeT> -bool DominatorTreeBase<NodeT>::dominates(const NodeT *A, const NodeT *B) { - if (A == B) - return true; - - // Cast away the const qualifiers here. This is ok since - // this function doesn't actually return the values returned - // from getNode. - return dominates(getNode(const_cast<NodeT *>(A)), - getNode(const_cast<NodeT *>(B))); -} -template<class NodeT> -bool -DominatorTreeBase<NodeT>::properlyDominates(const NodeT *A, const NodeT *B) { - if (A == B) - return false; - - // Cast away the const qualifiers here. This is ok since - // this function doesn't actually return the values returned - // from getNode. - return dominates(getNode(const_cast<NodeT *>(A)), - getNode(const_cast<NodeT *>(B))); -} - -EXTERN_TEMPLATE_INSTANTIATION(class DominatorTreeBase<BasicBlock>); - -class BasicBlockEdge { - const BasicBlock *Start; - const BasicBlock *End; -public: - BasicBlockEdge(const BasicBlock *Start_, const BasicBlock *End_) : - Start(Start_), End(End_) { } - const BasicBlock *getStart() const { - return Start; - } - const BasicBlock *getEnd() const { - return End; - } - bool isSingleEdge() const; -}; - -//===------------------------------------- -/// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to -/// compute a normal dominator tree. -/// -class DominatorTree : public FunctionPass { -public: - static char ID; // Pass ID, replacement for typeid - DominatorTreeBase<BasicBlock>* DT; - - DominatorTree() : FunctionPass(ID) { - initializeDominatorTreePass(*PassRegistry::getPassRegistry()); - DT = new DominatorTreeBase<BasicBlock>(false); - } - - ~DominatorTree() { - delete DT; - } - - DominatorTreeBase<BasicBlock>& getBase() { return *DT; } - - /// getRoots - Return the root blocks of the current CFG. This may include - /// multiple blocks if we are computing post dominators. For forward - /// dominators, this will always be a single block (the entry node). - /// - inline const std::vector<BasicBlock*> &getRoots() const { - return DT->getRoots(); - } - - inline BasicBlock *getRoot() const { - return DT->getRoot(); - } - - inline DomTreeNode *getRootNode() const { - return DT->getRootNode(); - } - - /// Get all nodes dominated by R, including R itself. Return true on success. - void getDescendants(BasicBlock *R, - SmallVectorImpl<BasicBlock *> &Result) const { - DT->getDescendants(R, Result); - } - - /// compare - Return false if the other dominator tree matches this - /// dominator tree. Otherwise return true. - inline bool compare(DominatorTree &Other) const { - DomTreeNode *R = getRootNode(); - DomTreeNode *OtherR = Other.getRootNode(); - - if (!R || !OtherR || R->getBlock() != OtherR->getBlock()) - return true; - - if (DT->compare(Other.getBase())) - return true; - - return false; - } - - virtual bool runOnFunction(Function &F); - - virtual void verifyAnalysis() const; - - virtual void getAnalysisUsage(AnalysisUsage &AU) const { - AU.setPreservesAll(); - } - - inline bool dominates(const DomTreeNode* A, const DomTreeNode* B) const { - return DT->dominates(A, B); - } - - inline bool dominates(const BasicBlock* A, const BasicBlock* B) const { - return DT->dominates(A, B); - } - - // dominates - Return true if Def dominates a use in User. This performs - // the special checks necessary if Def and User are in the same basic block. - // Note that Def doesn't dominate a use in Def itself! - bool dominates(const Instruction *Def, const Use &U) const; - bool dominates(const Instruction *Def, const Instruction *User) const; - bool dominates(const Instruction *Def, const BasicBlock *BB) const; - bool dominates(const BasicBlockEdge &BBE, const Use &U) const; - bool dominates(const BasicBlockEdge &BBE, const BasicBlock *BB) const; - - bool properlyDominates(const DomTreeNode *A, const DomTreeNode *B) const { - return DT->properlyDominates(A, B); - } - - bool properlyDominates(const BasicBlock *A, const BasicBlock *B) const { - return DT->properlyDominates(A, B); - } - - /// findNearestCommonDominator - Find nearest common dominator basic block - /// for basic block A and B. If there is no such block then return NULL. - inline BasicBlock *findNearestCommonDominator(BasicBlock *A, BasicBlock *B) { - return DT->findNearestCommonDominator(A, B); - } - - inline const BasicBlock *findNearestCommonDominator(const BasicBlock *A, - const BasicBlock *B) { - return DT->findNearestCommonDominator(A, B); - } - - inline DomTreeNode *operator[](BasicBlock *BB) const { - return DT->getNode(BB); - } - - /// getNode - return the (Post)DominatorTree node for the specified basic - /// block. This is the same as using operator[] on this class. - /// - inline DomTreeNode *getNode(BasicBlock *BB) const { - return DT->getNode(BB); - } - - /// addNewBlock - Add a new node to the dominator tree information. This - /// creates a new node as a child of DomBB dominator node,linking it into - /// the children list of the immediate dominator. - inline DomTreeNode *addNewBlock(BasicBlock *BB, BasicBlock *DomBB) { - return DT->addNewBlock(BB, DomBB); - } - - /// changeImmediateDominator - This method is used to update the dominator - /// tree information when a node's immediate dominator changes. - /// - inline void changeImmediateDominator(BasicBlock *N, BasicBlock* NewIDom) { - DT->changeImmediateDominator(N, NewIDom); - } - - inline void changeImmediateDominator(DomTreeNode *N, DomTreeNode* NewIDom) { - DT->changeImmediateDominator(N, NewIDom); - } - - /// eraseNode - Removes a node from the dominator tree. Block must not - /// dominate any other blocks. Removes node from its immediate dominator's - /// children list. Deletes dominator node associated with basic block BB. - inline void eraseNode(BasicBlock *BB) { - DT->eraseNode(BB); - } - - /// splitBlock - BB is split and now it has one successor. Update dominator - /// tree to reflect this change. - inline void splitBlock(BasicBlock* NewBB) { - DT->splitBlock(NewBB); - } - - bool isReachableFromEntry(const BasicBlock* A) const { - return DT->isReachableFromEntry(A); - } - - bool isReachableFromEntry(const Use &U) const; - - - virtual void releaseMemory() { - DT->releaseMemory(); - } - - virtual void print(raw_ostream &OS, const Module* M= 0) const; -}; - -//===------------------------------------- -/// DominatorTree GraphTraits specialization so the DominatorTree can be -/// iterable by generic graph iterators. -/// -template <> struct GraphTraits<DomTreeNode*> { - typedef DomTreeNode NodeType; - typedef NodeType::iterator ChildIteratorType; - - static NodeType *getEntryNode(NodeType *N) { - return N; - } - static inline ChildIteratorType child_begin(NodeType *N) { - return N->begin(); - } - static inline ChildIteratorType child_end(NodeType *N) { - return N->end(); - } - - typedef df_iterator<DomTreeNode*> nodes_iterator; - - static nodes_iterator nodes_begin(DomTreeNode *N) { - return df_begin(getEntryNode(N)); - } - - static nodes_iterator nodes_end(DomTreeNode *N) { - return df_end(getEntryNode(N)); - } -}; - -template <> struct GraphTraits<DominatorTree*> - : public GraphTraits<DomTreeNode*> { - static NodeType *getEntryNode(DominatorTree *DT) { - return DT->getRootNode(); - } - - static nodes_iterator nodes_begin(DominatorTree *N) { - return df_begin(getEntryNode(N)); - } - - static nodes_iterator nodes_end(DominatorTree *N) { - return df_end(getEntryNode(N)); - } -}; - - -} // End llvm namespace - -#endif |