aboutsummaryrefslogtreecommitdiffstats
path: root/include/llvm/IR/Operator.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/llvm/IR/Operator.h')
-rw-r--r--include/llvm/IR/Operator.h478
1 files changed, 478 insertions, 0 deletions
diff --git a/include/llvm/IR/Operator.h b/include/llvm/IR/Operator.h
new file mode 100644
index 0000000..577b41a
--- /dev/null
+++ b/include/llvm/IR/Operator.h
@@ -0,0 +1,478 @@
+//===-- llvm/Operator.h - Operator utility subclass -------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines various classes for working with Instructions and
+// ConstantExprs.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_OPERATOR_H
+#define LLVM_OPERATOR_H
+
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Type.h"
+#include "llvm/Support/GetElementPtrTypeIterator.h"
+
+namespace llvm {
+
+class GetElementPtrInst;
+class BinaryOperator;
+class ConstantExpr;
+
+/// Operator - This is a utility class that provides an abstraction for the
+/// common functionality between Instructions and ConstantExprs.
+///
+class Operator : public User {
+private:
+ // Do not implement any of these. The Operator class is intended to be used
+ // as a utility, and is never itself instantiated.
+ void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
+ void *operator new(size_t s) LLVM_DELETED_FUNCTION;
+ Operator() LLVM_DELETED_FUNCTION;
+
+protected:
+ // NOTE: Cannot use LLVM_DELETED_FUNCTION because it's not legal to delete
+ // an overridden method that's not deleted in the base class. Cannot leave
+ // this unimplemented because that leads to an ODR-violation.
+ ~Operator();
+
+public:
+ /// getOpcode - Return the opcode for this Instruction or ConstantExpr.
+ ///
+ unsigned getOpcode() const {
+ if (const Instruction *I = dyn_cast<Instruction>(this))
+ return I->getOpcode();
+ return cast<ConstantExpr>(this)->getOpcode();
+ }
+
+ /// getOpcode - If V is an Instruction or ConstantExpr, return its
+ /// opcode. Otherwise return UserOp1.
+ ///
+ static unsigned getOpcode(const Value *V) {
+ if (const Instruction *I = dyn_cast<Instruction>(V))
+ return I->getOpcode();
+ if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
+ return CE->getOpcode();
+ return Instruction::UserOp1;
+ }
+
+ static inline bool classof(const Instruction *) { return true; }
+ static inline bool classof(const ConstantExpr *) { return true; }
+ static inline bool classof(const Value *V) {
+ return isa<Instruction>(V) || isa<ConstantExpr>(V);
+ }
+};
+
+/// OverflowingBinaryOperator - Utility class for integer arithmetic operators
+/// which may exhibit overflow - Add, Sub, and Mul. It does not include SDiv,
+/// despite that operator having the potential for overflow.
+///
+class OverflowingBinaryOperator : public Operator {
+public:
+ enum {
+ NoUnsignedWrap = (1 << 0),
+ NoSignedWrap = (1 << 1)
+ };
+
+private:
+ friend class BinaryOperator;
+ friend class ConstantExpr;
+ void setHasNoUnsignedWrap(bool B) {
+ SubclassOptionalData =
+ (SubclassOptionalData & ~NoUnsignedWrap) | (B * NoUnsignedWrap);
+ }
+ void setHasNoSignedWrap(bool B) {
+ SubclassOptionalData =
+ (SubclassOptionalData & ~NoSignedWrap) | (B * NoSignedWrap);
+ }
+
+public:
+ /// hasNoUnsignedWrap - Test whether this operation is known to never
+ /// undergo unsigned overflow, aka the nuw property.
+ bool hasNoUnsignedWrap() const {
+ return SubclassOptionalData & NoUnsignedWrap;
+ }
+
+ /// hasNoSignedWrap - Test whether this operation is known to never
+ /// undergo signed overflow, aka the nsw property.
+ bool hasNoSignedWrap() const {
+ return (SubclassOptionalData & NoSignedWrap) != 0;
+ }
+
+ static inline bool classof(const Instruction *I) {
+ return I->getOpcode() == Instruction::Add ||
+ I->getOpcode() == Instruction::Sub ||
+ I->getOpcode() == Instruction::Mul ||
+ I->getOpcode() == Instruction::Shl;
+ }
+ static inline bool classof(const ConstantExpr *CE) {
+ return CE->getOpcode() == Instruction::Add ||
+ CE->getOpcode() == Instruction::Sub ||
+ CE->getOpcode() == Instruction::Mul ||
+ CE->getOpcode() == Instruction::Shl;
+ }
+ static inline bool classof(const Value *V) {
+ return (isa<Instruction>(V) && classof(cast<Instruction>(V))) ||
+ (isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V)));
+ }
+};
+
+/// PossiblyExactOperator - A udiv or sdiv instruction, which can be marked as
+/// "exact", indicating that no bits are destroyed.
+class PossiblyExactOperator : public Operator {
+public:
+ enum {
+ IsExact = (1 << 0)
+ };
+
+private:
+ friend class BinaryOperator;
+ friend class ConstantExpr;
+ void setIsExact(bool B) {
+ SubclassOptionalData = (SubclassOptionalData & ~IsExact) | (B * IsExact);
+ }
+
+public:
+ /// isExact - Test whether this division is known to be exact, with
+ /// zero remainder.
+ bool isExact() const {
+ return SubclassOptionalData & IsExact;
+ }
+
+ static bool isPossiblyExactOpcode(unsigned OpC) {
+ return OpC == Instruction::SDiv ||
+ OpC == Instruction::UDiv ||
+ OpC == Instruction::AShr ||
+ OpC == Instruction::LShr;
+ }
+ static inline bool classof(const ConstantExpr *CE) {
+ return isPossiblyExactOpcode(CE->getOpcode());
+ }
+ static inline bool classof(const Instruction *I) {
+ return isPossiblyExactOpcode(I->getOpcode());
+ }
+ static inline bool classof(const Value *V) {
+ return (isa<Instruction>(V) && classof(cast<Instruction>(V))) ||
+ (isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V)));
+ }
+};
+
+/// Convenience struct for specifying and reasoning about fast-math flags.
+class FastMathFlags {
+private:
+ friend class FPMathOperator;
+ unsigned Flags;
+ FastMathFlags(unsigned F) : Flags(F) { }
+
+public:
+ enum {
+ UnsafeAlgebra = (1 << 0),
+ NoNaNs = (1 << 1),
+ NoInfs = (1 << 2),
+ NoSignedZeros = (1 << 3),
+ AllowReciprocal = (1 << 4)
+ };
+
+ FastMathFlags() : Flags(0)
+ { }
+
+ /// Whether any flag is set
+ bool any() { return Flags != 0; }
+
+ /// Set all the flags to false
+ void clear() { Flags = 0; }
+
+ /// Flag queries
+ bool noNaNs() { return 0 != (Flags & NoNaNs); }
+ bool noInfs() { return 0 != (Flags & NoInfs); }
+ bool noSignedZeros() { return 0 != (Flags & NoSignedZeros); }
+ bool allowReciprocal() { return 0 != (Flags & AllowReciprocal); }
+ bool unsafeAlgebra() { return 0 != (Flags & UnsafeAlgebra); }
+
+ /// Flag setters
+ void setNoNaNs() { Flags |= NoNaNs; }
+ void setNoInfs() { Flags |= NoInfs; }
+ void setNoSignedZeros() { Flags |= NoSignedZeros; }
+ void setAllowReciprocal() { Flags |= AllowReciprocal; }
+ void setUnsafeAlgebra() {
+ Flags |= UnsafeAlgebra;
+ setNoNaNs();
+ setNoInfs();
+ setNoSignedZeros();
+ setAllowReciprocal();
+ }
+};
+
+
+/// FPMathOperator - Utility class for floating point operations which can have
+/// information about relaxed accuracy requirements attached to them.
+class FPMathOperator : public Operator {
+private:
+ friend class Instruction;
+
+ void setHasUnsafeAlgebra(bool B) {
+ SubclassOptionalData =
+ (SubclassOptionalData & ~FastMathFlags::UnsafeAlgebra) |
+ (B * FastMathFlags::UnsafeAlgebra);
+
+ // Unsafe algebra implies all the others
+ if (B) {
+ setHasNoNaNs(true);
+ setHasNoInfs(true);
+ setHasNoSignedZeros(true);
+ setHasAllowReciprocal(true);
+ }
+ }
+ void setHasNoNaNs(bool B) {
+ SubclassOptionalData =
+ (SubclassOptionalData & ~FastMathFlags::NoNaNs) |
+ (B * FastMathFlags::NoNaNs);
+ }
+ void setHasNoInfs(bool B) {
+ SubclassOptionalData =
+ (SubclassOptionalData & ~FastMathFlags::NoInfs) |
+ (B * FastMathFlags::NoInfs);
+ }
+ void setHasNoSignedZeros(bool B) {
+ SubclassOptionalData =
+ (SubclassOptionalData & ~FastMathFlags::NoSignedZeros) |
+ (B * FastMathFlags::NoSignedZeros);
+ }
+ void setHasAllowReciprocal(bool B) {
+ SubclassOptionalData =
+ (SubclassOptionalData & ~FastMathFlags::AllowReciprocal) |
+ (B * FastMathFlags::AllowReciprocal);
+ }
+
+ /// Convenience function for setting all the fast-math flags
+ void setFastMathFlags(FastMathFlags FMF) {
+ SubclassOptionalData |= FMF.Flags;
+ }
+
+public:
+ /// Test whether this operation is permitted to be
+ /// algebraically transformed, aka the 'A' fast-math property.
+ bool hasUnsafeAlgebra() const {
+ return (SubclassOptionalData & FastMathFlags::UnsafeAlgebra) != 0;
+ }
+
+ /// Test whether this operation's arguments and results are to be
+ /// treated as non-NaN, aka the 'N' fast-math property.
+ bool hasNoNaNs() const {
+ return (SubclassOptionalData & FastMathFlags::NoNaNs) != 0;
+ }
+
+ /// Test whether this operation's arguments and results are to be
+ /// treated as NoN-Inf, aka the 'I' fast-math property.
+ bool hasNoInfs() const {
+ return (SubclassOptionalData & FastMathFlags::NoInfs) != 0;
+ }
+
+ /// Test whether this operation can treat the sign of zero
+ /// as insignificant, aka the 'S' fast-math property.
+ bool hasNoSignedZeros() const {
+ return (SubclassOptionalData & FastMathFlags::NoSignedZeros) != 0;
+ }
+
+ /// Test whether this operation is permitted to use
+ /// reciprocal instead of division, aka the 'R' fast-math property.
+ bool hasAllowReciprocal() const {
+ return (SubclassOptionalData & FastMathFlags::AllowReciprocal) != 0;
+ }
+
+ /// Convenience function for getting all the fast-math flags
+ FastMathFlags getFastMathFlags() const {
+ return FastMathFlags(SubclassOptionalData);
+ }
+
+ /// \brief Get the maximum error permitted by this operation in ULPs. An
+ /// accuracy of 0.0 means that the operation should be performed with the
+ /// default precision.
+ float getFPAccuracy() const;
+
+ static inline bool classof(const Instruction *I) {
+ return I->getType()->isFPOrFPVectorTy();
+ }
+ static inline bool classof(const Value *V) {
+ return isa<Instruction>(V) && classof(cast<Instruction>(V));
+ }
+};
+
+
+/// ConcreteOperator - A helper template for defining operators for individual
+/// opcodes.
+template<typename SuperClass, unsigned Opc>
+class ConcreteOperator : public SuperClass {
+public:
+ static inline bool classof(const Instruction *I) {
+ return I->getOpcode() == Opc;
+ }
+ static inline bool classof(const ConstantExpr *CE) {
+ return CE->getOpcode() == Opc;
+ }
+ static inline bool classof(const Value *V) {
+ return (isa<Instruction>(V) && classof(cast<Instruction>(V))) ||
+ (isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V)));
+ }
+};
+
+class AddOperator
+ : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Add> {
+};
+class SubOperator
+ : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Sub> {
+};
+class MulOperator
+ : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Mul> {
+};
+class ShlOperator
+ : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Shl> {
+};
+
+
+class SDivOperator
+ : public ConcreteOperator<PossiblyExactOperator, Instruction::SDiv> {
+};
+class UDivOperator
+ : public ConcreteOperator<PossiblyExactOperator, Instruction::UDiv> {
+};
+class AShrOperator
+ : public ConcreteOperator<PossiblyExactOperator, Instruction::AShr> {
+};
+class LShrOperator
+ : public ConcreteOperator<PossiblyExactOperator, Instruction::LShr> {
+};
+
+
+
+class GEPOperator
+ : public ConcreteOperator<Operator, Instruction::GetElementPtr> {
+ enum {
+ IsInBounds = (1 << 0)
+ };
+
+ friend class GetElementPtrInst;
+ friend class ConstantExpr;
+ void setIsInBounds(bool B) {
+ SubclassOptionalData =
+ (SubclassOptionalData & ~IsInBounds) | (B * IsInBounds);
+ }
+
+public:
+ /// isInBounds - Test whether this is an inbounds GEP, as defined
+ /// by LangRef.html.
+ bool isInBounds() const {
+ return SubclassOptionalData & IsInBounds;
+ }
+
+ inline op_iterator idx_begin() { return op_begin()+1; }
+ inline const_op_iterator idx_begin() const { return op_begin()+1; }
+ inline op_iterator idx_end() { return op_end(); }
+ inline const_op_iterator idx_end() const { return op_end(); }
+
+ Value *getPointerOperand() {
+ return getOperand(0);
+ }
+ const Value *getPointerOperand() const {
+ return getOperand(0);
+ }
+ static unsigned getPointerOperandIndex() {
+ return 0U; // get index for modifying correct operand
+ }
+
+ /// getPointerOperandType - Method to return the pointer operand as a
+ /// PointerType.
+ Type *getPointerOperandType() const {
+ return getPointerOperand()->getType();
+ }
+
+ /// getPointerAddressSpace - Method to return the address space of the
+ /// pointer operand.
+ unsigned getPointerAddressSpace() const {
+ return cast<PointerType>(getPointerOperandType())->getAddressSpace();
+ }
+
+ unsigned getNumIndices() const { // Note: always non-negative
+ return getNumOperands() - 1;
+ }
+
+ bool hasIndices() const {
+ return getNumOperands() > 1;
+ }
+
+ /// hasAllZeroIndices - Return true if all of the indices of this GEP are
+ /// zeros. If so, the result pointer and the first operand have the same
+ /// value, just potentially different types.
+ bool hasAllZeroIndices() const {
+ for (const_op_iterator I = idx_begin(), E = idx_end(); I != E; ++I) {
+ if (ConstantInt *C = dyn_cast<ConstantInt>(I))
+ if (C->isZero())
+ continue;
+ return false;
+ }
+ return true;
+ }
+
+ /// hasAllConstantIndices - Return true if all of the indices of this GEP are
+ /// constant integers. If so, the result pointer and the first operand have
+ /// a constant offset between them.
+ bool hasAllConstantIndices() const {
+ for (const_op_iterator I = idx_begin(), E = idx_end(); I != E; ++I) {
+ if (!isa<ConstantInt>(I))
+ return false;
+ }
+ return true;
+ }
+
+ /// \brief Accumulate the constant address offset of this GEP if possible.
+ ///
+ /// This routine accepts an APInt into which it will accumulate the constant
+ /// offset of this GEP if the GEP is in fact constant. If the GEP is not
+ /// all-constant, it returns false and the value of the offset APInt is
+ /// undefined (it is *not* preserved!). The APInt passed into this routine
+ /// must be at least as wide as the IntPtr type for the address space of
+ /// the base GEP pointer.
+ bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const {
+ assert(Offset.getBitWidth() ==
+ DL.getPointerSizeInBits(getPointerAddressSpace()) &&
+ "The offset must have exactly as many bits as our pointer.");
+
+ for (gep_type_iterator GTI = gep_type_begin(this), GTE = gep_type_end(this);
+ GTI != GTE; ++GTI) {
+ ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
+ if (!OpC)
+ return false;
+ if (OpC->isZero())
+ continue;
+
+ // Handle a struct index, which adds its field offset to the pointer.
+ if (StructType *STy = dyn_cast<StructType>(*GTI)) {
+ unsigned ElementIdx = OpC->getZExtValue();
+ const StructLayout *SL = DL.getStructLayout(STy);
+ Offset += APInt(Offset.getBitWidth(),
+ SL->getElementOffset(ElementIdx));
+ continue;
+ }
+
+ // For array or vector indices, scale the index by the size of the type.
+ APInt Index = OpC->getValue().sextOrTrunc(Offset.getBitWidth());
+ Offset += Index * APInt(Offset.getBitWidth(),
+ DL.getTypeAllocSize(GTI.getIndexedType()));
+ }
+ return true;
+ }
+
+};
+
+} // End llvm namespace
+
+#endif