diff options
Diffstat (limited to 'include/llvm/Transforms')
-rw-r--r-- | include/llvm/Transforms/Utils/SSAUpdater.h | 22 | ||||
-rw-r--r-- | include/llvm/Transforms/Utils/SSAUpdaterImpl.h | 463 |
2 files changed, 467 insertions, 18 deletions
diff --git a/include/llvm/Transforms/Utils/SSAUpdater.h b/include/llvm/Transforms/Utils/SSAUpdater.h index 5b77ed6..ca98466 100644 --- a/include/llvm/Transforms/Utils/SSAUpdater.h +++ b/include/llvm/Transforms/Utils/SSAUpdater.h @@ -19,8 +19,8 @@ namespace llvm { class BasicBlock; class Use; class PHINode; - template<typename T> - class SmallVectorImpl; + template<typename T> class SmallVectorImpl; + template<typename T> class SSAUpdaterTraits; class BumpPtrAllocator; /// SSAUpdater - This class updates SSA form for a set of values defined in @@ -28,9 +28,7 @@ namespace llvm { /// transformation wants to rewrite a set of uses of one value with uses of a /// set of values. class SSAUpdater { -public: - class BBInfo; - typedef SmallVectorImpl<BBInfo*> BlockListTy; + friend class SSAUpdaterTraits<SSAUpdater>; private: /// AvailableVals - This keeps track of which value to use on a per-block @@ -42,14 +40,10 @@ private: /// and a type for PHI nodes. Value *PrototypeValue; - /// BBMap - The GetValueAtEndOfBlock method maintains this mapping from - /// basic blocks to BBInfo structures. - /// typedef DenseMap<BasicBlock*, BBInfo*> BBMapTy; - void *BM; - /// InsertedPHIs - If this is non-null, the SSAUpdater adds all PHI nodes that /// it creates to the vector. SmallVectorImpl<PHINode*> *InsertedPHIs; + public: /// SSAUpdater constructor. If InsertedPHIs is specified, it will be filled /// in with all PHI Nodes created by rewriting. @@ -102,14 +96,6 @@ public: private: Value *GetValueAtEndOfBlockInternal(BasicBlock *BB); - void BuildBlockList(BasicBlock *BB, BlockListTy *BlockList, - BumpPtrAllocator *Allocator); - void FindDominators(BlockListTy *BlockList); - void FindPHIPlacement(BlockListTy *BlockList); - void FindAvailableVals(BlockListTy *BlockList); - void FindExistingPHI(BasicBlock *BB, BlockListTy *BlockList); - bool CheckIfPHIMatches(PHINode *PHI); - void RecordMatchingPHI(PHINode *PHI); void operator=(const SSAUpdater&); // DO NOT IMPLEMENT SSAUpdater(const SSAUpdater&); // DO NOT IMPLEMENT diff --git a/include/llvm/Transforms/Utils/SSAUpdaterImpl.h b/include/llvm/Transforms/Utils/SSAUpdaterImpl.h new file mode 100644 index 0000000..8253796 --- /dev/null +++ b/include/llvm/Transforms/Utils/SSAUpdaterImpl.h @@ -0,0 +1,463 @@ +//===-- SSAUpdaterImpl.h - SSA Updater Implementation -----------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file provides a template that implements the core algorithm for the +// SSAUpdater and MachineSSAUpdater. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_TRANSFORMS_UTILS_SSAUPDATERIMPL_H +#define LLVM_TRANSFORMS_UTILS_SSAUPDATERIMPL_H + +namespace llvm { + +template<typename T> class SSAUpdaterTraits; + +template<typename UpdaterT> +class SSAUpdaterImpl { +private: + UpdaterT *Updater; + + typedef SSAUpdaterTraits<UpdaterT> Traits; + typedef typename Traits::BlkT BlkT; + typedef typename Traits::ValT ValT; + typedef typename Traits::PhiT PhiT; + + /// BBInfo - Per-basic block information used internally by SSAUpdaterImpl. + /// The predecessors of each block are cached here since pred_iterator is + /// slow and we need to iterate over the blocks at least a few times. + class BBInfo { + public: + BlkT *BB; // Back-pointer to the corresponding block. + ValT AvailableVal; // Value to use in this block. + BBInfo *DefBB; // Block that defines the available value. + int BlkNum; // Postorder number. + BBInfo *IDom; // Immediate dominator. + unsigned NumPreds; // Number of predecessor blocks. + BBInfo **Preds; // Array[NumPreds] of predecessor blocks. + PhiT *PHITag; // Marker for existing PHIs that match. + + BBInfo(BlkT *ThisBB, ValT V) + : BB(ThisBB), AvailableVal(V), DefBB(V ? this : 0), BlkNum(0), IDom(0), + NumPreds(0), Preds(0), PHITag(0) { } + }; + + typedef DenseMap<BlkT*, ValT> AvailableValsTy; + AvailableValsTy *AvailableVals; + + SmallVectorImpl<PhiT*> *InsertedPHIs; + + typedef SmallVectorImpl<BBInfo*> BlockListTy; + typedef DenseMap<BlkT*, BBInfo*> BBMapTy; + BBMapTy BBMap; + BumpPtrAllocator Allocator; + +public: + explicit SSAUpdaterImpl(UpdaterT *U, AvailableValsTy *A, + SmallVectorImpl<PhiT*> *Ins) : + Updater(U), AvailableVals(A), InsertedPHIs(Ins) { } + + /// GetValue - Check to see if AvailableVals has an entry for the specified + /// BB and if so, return it. If not, construct SSA form by first + /// calculating the required placement of PHIs and then inserting new PHIs + /// where needed. + ValT GetValue(BlkT *BB) { + SmallVector<BBInfo*, 100> BlockList; + BuildBlockList(BB, &BlockList); + + // Special case: bail out if BB is unreachable. + if (BlockList.size() == 0) { + ValT V = Traits::GetUndefVal(BB, Updater); + (*AvailableVals)[BB] = V; + return V; + } + + FindDominators(&BlockList); + FindPHIPlacement(&BlockList); + FindAvailableVals(&BlockList); + + return BBMap[BB]->DefBB->AvailableVal; + } + + /// BuildBlockList - Starting from the specified basic block, traverse back + /// through its predecessors until reaching blocks with known values. + /// Create BBInfo structures for the blocks and append them to the block + /// list. + void BuildBlockList(BlkT *BB, BlockListTy *BlockList) { + SmallVector<BBInfo*, 10> RootList; + SmallVector<BBInfo*, 64> WorkList; + + BBInfo *Info = new (Allocator) BBInfo(BB, 0); + BBMap[BB] = Info; + WorkList.push_back(Info); + + // Search backward from BB, creating BBInfos along the way and stopping + // when reaching blocks that define the value. Record those defining + // blocks on the RootList. + SmallVector<BlkT*, 10> Preds; + while (!WorkList.empty()) { + Info = WorkList.pop_back_val(); + Preds.clear(); + Traits::FindPredecessorBlocks(Info->BB, &Preds); + Info->NumPreds = Preds.size(); + Info->Preds = static_cast<BBInfo**> + (Allocator.Allocate(Info->NumPreds * sizeof(BBInfo*), + AlignOf<BBInfo*>::Alignment)); + + // Treat an unreachable predecessor as a definition with 'undef'. + if (Info->NumPreds == 0) { + Info->AvailableVal = Traits::GetUndefVal(Info->BB, Updater); + Info->DefBB = Info; + RootList.push_back(Info); + continue; + } + + for (unsigned p = 0; p != Info->NumPreds; ++p) { + BlkT *Pred = Preds[p]; + // Check if BBMap already has a BBInfo for the predecessor block. + typename BBMapTy::value_type &BBMapBucket = + BBMap.FindAndConstruct(Pred); + if (BBMapBucket.second) { + Info->Preds[p] = BBMapBucket.second; + continue; + } + + // Create a new BBInfo for the predecessor. + ValT PredVal = AvailableVals->lookup(Pred); + BBInfo *PredInfo = new (Allocator) BBInfo(Pred, PredVal); + BBMapBucket.second = PredInfo; + Info->Preds[p] = PredInfo; + + if (PredInfo->AvailableVal) { + RootList.push_back(PredInfo); + continue; + } + WorkList.push_back(PredInfo); + } + } + + // Now that we know what blocks are backwards-reachable from the starting + // block, do a forward depth-first traversal to assign postorder numbers + // to those blocks. + BBInfo *PseudoEntry = new (Allocator) BBInfo(0, 0); + unsigned BlkNum = 1; + + // Initialize the worklist with the roots from the backward traversal. + while (!RootList.empty()) { + Info = RootList.pop_back_val(); + Info->IDom = PseudoEntry; + Info->BlkNum = -1; + WorkList.push_back(Info); + } + + while (!WorkList.empty()) { + Info = WorkList.back(); + + if (Info->BlkNum == -2) { + // All the successors have been handled; assign the postorder number. + Info->BlkNum = BlkNum++; + // If not a root, put it on the BlockList. + if (!Info->AvailableVal) + BlockList->push_back(Info); + WorkList.pop_back(); + continue; + } + + // Leave this entry on the worklist, but set its BlkNum to mark that its + // successors have been put on the worklist. When it returns to the top + // the list, after handling its successors, it will be assigned a + // number. + Info->BlkNum = -2; + + // Add unvisited successors to the work list. + for (typename Traits::BlkSucc_iterator SI = + Traits::BlkSucc_begin(Info->BB), + E = Traits::BlkSucc_end(Info->BB); SI != E; ++SI) { + BBInfo *SuccInfo = BBMap[*SI]; + if (!SuccInfo || SuccInfo->BlkNum) + continue; + SuccInfo->BlkNum = -1; + WorkList.push_back(SuccInfo); + } + } + PseudoEntry->BlkNum = BlkNum; + } + + /// IntersectDominators - This is the dataflow lattice "meet" operation for + /// finding dominators. Given two basic blocks, it walks up the dominator + /// tree until it finds a common dominator of both. It uses the postorder + /// number of the blocks to determine how to do that. + BBInfo *IntersectDominators(BBInfo *Blk1, BBInfo *Blk2) { + while (Blk1 != Blk2) { + while (Blk1->BlkNum < Blk2->BlkNum) { + Blk1 = Blk1->IDom; + if (!Blk1) + return Blk2; + } + while (Blk2->BlkNum < Blk1->BlkNum) { + Blk2 = Blk2->IDom; + if (!Blk2) + return Blk1; + } + } + return Blk1; + } + + /// FindDominators - Calculate the dominator tree for the subset of the CFG + /// corresponding to the basic blocks on the BlockList. This uses the + /// algorithm from: "A Simple, Fast Dominance Algorithm" by Cooper, Harvey + /// and Kennedy, published in Software--Practice and Experience, 2001, + /// 4:1-10. Because the CFG subset does not include any edges leading into + /// blocks that define the value, the results are not the usual dominator + /// tree. The CFG subset has a single pseudo-entry node with edges to a set + /// of root nodes for blocks that define the value. The dominators for this + /// subset CFG are not the standard dominators but they are adequate for + /// placing PHIs within the subset CFG. + void FindDominators(BlockListTy *BlockList) { + bool Changed; + do { + Changed = false; + // Iterate over the list in reverse order, i.e., forward on CFG edges. + for (typename BlockListTy::reverse_iterator I = BlockList->rbegin(), + E = BlockList->rend(); I != E; ++I) { + BBInfo *Info = *I; + + // Start with the first predecessor. + assert(Info->NumPreds > 0 && "unreachable block"); + BBInfo *NewIDom = Info->Preds[0]; + + // Iterate through the block's other predecessors. + for (unsigned p = 1; p != Info->NumPreds; ++p) { + BBInfo *Pred = Info->Preds[p]; + NewIDom = IntersectDominators(NewIDom, Pred); + } + + // Check if the IDom value has changed. + if (NewIDom != Info->IDom) { + Info->IDom = NewIDom; + Changed = true; + } + } + } while (Changed); + } + + /// IsDefInDomFrontier - Search up the dominator tree from Pred to IDom for + /// any blocks containing definitions of the value. If one is found, then + /// the successor of Pred is in the dominance frontier for the definition, + /// and this function returns true. + bool IsDefInDomFrontier(const BBInfo *Pred, const BBInfo *IDom) { + for (; Pred != IDom; Pred = Pred->IDom) { + if (Pred->DefBB == Pred) + return true; + } + return false; + } + + /// FindPHIPlacement - PHIs are needed in the iterated dominance frontiers + /// of the known definitions. Iteratively add PHIs in the dom frontiers + /// until nothing changes. Along the way, keep track of the nearest + /// dominating definitions for non-PHI blocks. + void FindPHIPlacement(BlockListTy *BlockList) { + bool Changed; + do { + Changed = false; + // Iterate over the list in reverse order, i.e., forward on CFG edges. + for (typename BlockListTy::reverse_iterator I = BlockList->rbegin(), + E = BlockList->rend(); I != E; ++I) { + BBInfo *Info = *I; + + // If this block already needs a PHI, there is nothing to do here. + if (Info->DefBB == Info) + continue; + + // Default to use the same def as the immediate dominator. + BBInfo *NewDefBB = Info->IDom->DefBB; + for (unsigned p = 0; p != Info->NumPreds; ++p) { + if (IsDefInDomFrontier(Info->Preds[p], Info->IDom)) { + // Need a PHI here. + NewDefBB = Info; + break; + } + } + + // Check if anything changed. + if (NewDefBB != Info->DefBB) { + Info->DefBB = NewDefBB; + Changed = true; + } + } + } while (Changed); + } + + /// FindAvailableVal - If this block requires a PHI, first check if an + /// existing PHI matches the PHI placement and reaching definitions computed + /// earlier, and if not, create a new PHI. Visit all the block's + /// predecessors to calculate the available value for each one and fill in + /// the incoming values for a new PHI. + void FindAvailableVals(BlockListTy *BlockList) { + // Go through the worklist in forward order (i.e., backward through the CFG) + // and check if existing PHIs can be used. If not, create empty PHIs where + // they are needed. + for (typename BlockListTy::iterator I = BlockList->begin(), + E = BlockList->end(); I != E; ++I) { + BBInfo *Info = *I; + // Check if there needs to be a PHI in BB. + if (Info->DefBB != Info) + continue; + + // Look for an existing PHI. + FindExistingPHI(Info->BB, BlockList); + if (Info->AvailableVal) + continue; + + ValT PHI = Traits::CreateEmptyPHI(Info->BB, Info->NumPreds, Updater); + Info->AvailableVal = PHI; + (*AvailableVals)[Info->BB] = PHI; + } + + // Now go back through the worklist in reverse order to fill in the + // arguments for any new PHIs added in the forward traversal. + for (typename BlockListTy::reverse_iterator I = BlockList->rbegin(), + E = BlockList->rend(); I != E; ++I) { + BBInfo *Info = *I; + + if (Info->DefBB != Info) { + // Record the available value at join nodes to speed up subsequent + // uses of this SSAUpdater for the same value. + if (Info->NumPreds > 1) + (*AvailableVals)[Info->BB] = Info->DefBB->AvailableVal; + continue; + } + + // Check if this block contains a newly added PHI. + PhiT *PHI = Traits::ValueIsNewPHI(Info->AvailableVal, Updater); + if (!PHI) + continue; + + // Iterate through the block's predecessors. + for (unsigned p = 0; p != Info->NumPreds; ++p) { + BBInfo *PredInfo = Info->Preds[p]; + BlkT *Pred = PredInfo->BB; + // Skip to the nearest preceding definition. + if (PredInfo->DefBB != PredInfo) + PredInfo = PredInfo->DefBB; + Traits::AddPHIOperand(PHI, PredInfo->AvailableVal, Pred); + } + + DEBUG(dbgs() << " Inserted PHI: " << *PHI << "\n"); + + // If the client wants to know about all new instructions, tell it. + if (InsertedPHIs) InsertedPHIs->push_back(PHI); + } + } + + /// FindExistingPHI - Look through the PHI nodes in a block to see if any of + /// them match what is needed. + void FindExistingPHI(BlkT *BB, BlockListTy *BlockList) { + for (typename BlkT::iterator BBI = BB->begin(), BBE = BB->end(); + BBI != BBE; ++BBI) { + PhiT *SomePHI = Traits::InstrIsPHI(BBI); + if (!SomePHI) + break; + if (CheckIfPHIMatches(SomePHI)) { + RecordMatchingPHI(SomePHI); + break; + } + // Match failed: clear all the PHITag values. + for (typename BlockListTy::iterator I = BlockList->begin(), + E = BlockList->end(); I != E; ++I) + (*I)->PHITag = 0; + } + } + + /// CheckIfPHIMatches - Check if a PHI node matches the placement and values + /// in the BBMap. + bool CheckIfPHIMatches(PhiT *PHI) { + SmallVector<PhiT*, 20> WorkList; + WorkList.push_back(PHI); + + // Mark that the block containing this PHI has been visited. + BBMap[PHI->getParent()]->PHITag = PHI; + + while (!WorkList.empty()) { + PHI = WorkList.pop_back_val(); + + // Iterate through the PHI's incoming values. + for (typename Traits::PHI_iterator I = Traits::PHI_begin(PHI), + E = Traits::PHI_end(PHI); I != E; ++I) { + ValT IncomingVal = I.getIncomingValue(); + BBInfo *PredInfo = BBMap[I.getIncomingBlock()]; + // Skip to the nearest preceding definition. + if (PredInfo->DefBB != PredInfo) + PredInfo = PredInfo->DefBB; + + // Check if it matches the expected value. + if (PredInfo->AvailableVal) { + if (IncomingVal == PredInfo->AvailableVal) + continue; + return false; + } + + // Check if the value is a PHI in the correct block. + PhiT *IncomingPHIVal = Traits::ValueIsPHI(IncomingVal, Updater); + if (!IncomingPHIVal || IncomingPHIVal->getParent() != PredInfo->BB) + return false; + + // If this block has already been visited, check if this PHI matches. + if (PredInfo->PHITag) { + if (IncomingPHIVal == PredInfo->PHITag) + continue; + return false; + } + PredInfo->PHITag = IncomingPHIVal; + + WorkList.push_back(IncomingPHIVal); + } + } + return true; + } + + /// RecordMatchingPHI - For a PHI node that matches, record it and its input + /// PHIs in both the BBMap and the AvailableVals mapping. + void RecordMatchingPHI(PhiT *PHI) { + SmallVector<PhiT*, 20> WorkList; + WorkList.push_back(PHI); + + // Record this PHI. + BlkT *BB = PHI->getParent(); + ValT PHIVal = Traits::GetPHIValue(PHI); + (*AvailableVals)[BB] = PHIVal; + BBMap[BB]->AvailableVal = PHIVal; + + while (!WorkList.empty()) { + PHI = WorkList.pop_back_val(); + + // Iterate through the PHI's incoming values. + for (typename Traits::PHI_iterator I = Traits::PHI_begin(PHI), + E = Traits::PHI_end(PHI); I != E; ++I) { + ValT IncomingVal = I.getIncomingValue(); + PhiT *IncomingPHI = Traits::ValueIsPHI(IncomingVal, Updater); + if (!IncomingPHI) continue; + BB = IncomingPHI->getParent(); + BBInfo *Info = BBMap[BB]; + if (!Info || Info->AvailableVal) + continue; + + // Record the PHI and add it to the worklist. + (*AvailableVals)[BB] = IncomingVal; + Info->AvailableVal = IncomingVal; + WorkList.push_back(IncomingPHI); + } + } + } +}; + +} // End llvm namespace + +#endif |