aboutsummaryrefslogtreecommitdiffstats
path: root/include/llvm/Transforms
diff options
context:
space:
mode:
Diffstat (limited to 'include/llvm/Transforms')
-rw-r--r--include/llvm/Transforms/Utils/SSAUpdater.h22
-rw-r--r--include/llvm/Transforms/Utils/SSAUpdaterImpl.h463
2 files changed, 467 insertions, 18 deletions
diff --git a/include/llvm/Transforms/Utils/SSAUpdater.h b/include/llvm/Transforms/Utils/SSAUpdater.h
index 5b77ed6..ca98466 100644
--- a/include/llvm/Transforms/Utils/SSAUpdater.h
+++ b/include/llvm/Transforms/Utils/SSAUpdater.h
@@ -19,8 +19,8 @@ namespace llvm {
class BasicBlock;
class Use;
class PHINode;
- template<typename T>
- class SmallVectorImpl;
+ template<typename T> class SmallVectorImpl;
+ template<typename T> class SSAUpdaterTraits;
class BumpPtrAllocator;
/// SSAUpdater - This class updates SSA form for a set of values defined in
@@ -28,9 +28,7 @@ namespace llvm {
/// transformation wants to rewrite a set of uses of one value with uses of a
/// set of values.
class SSAUpdater {
-public:
- class BBInfo;
- typedef SmallVectorImpl<BBInfo*> BlockListTy;
+ friend class SSAUpdaterTraits<SSAUpdater>;
private:
/// AvailableVals - This keeps track of which value to use on a per-block
@@ -42,14 +40,10 @@ private:
/// and a type for PHI nodes.
Value *PrototypeValue;
- /// BBMap - The GetValueAtEndOfBlock method maintains this mapping from
- /// basic blocks to BBInfo structures.
- /// typedef DenseMap<BasicBlock*, BBInfo*> BBMapTy;
- void *BM;
-
/// InsertedPHIs - If this is non-null, the SSAUpdater adds all PHI nodes that
/// it creates to the vector.
SmallVectorImpl<PHINode*> *InsertedPHIs;
+
public:
/// SSAUpdater constructor. If InsertedPHIs is specified, it will be filled
/// in with all PHI Nodes created by rewriting.
@@ -102,14 +96,6 @@ public:
private:
Value *GetValueAtEndOfBlockInternal(BasicBlock *BB);
- void BuildBlockList(BasicBlock *BB, BlockListTy *BlockList,
- BumpPtrAllocator *Allocator);
- void FindDominators(BlockListTy *BlockList);
- void FindPHIPlacement(BlockListTy *BlockList);
- void FindAvailableVals(BlockListTy *BlockList);
- void FindExistingPHI(BasicBlock *BB, BlockListTy *BlockList);
- bool CheckIfPHIMatches(PHINode *PHI);
- void RecordMatchingPHI(PHINode *PHI);
void operator=(const SSAUpdater&); // DO NOT IMPLEMENT
SSAUpdater(const SSAUpdater&); // DO NOT IMPLEMENT
diff --git a/include/llvm/Transforms/Utils/SSAUpdaterImpl.h b/include/llvm/Transforms/Utils/SSAUpdaterImpl.h
new file mode 100644
index 0000000..8253796
--- /dev/null
+++ b/include/llvm/Transforms/Utils/SSAUpdaterImpl.h
@@ -0,0 +1,463 @@
+//===-- SSAUpdaterImpl.h - SSA Updater Implementation -----------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file provides a template that implements the core algorithm for the
+// SSAUpdater and MachineSSAUpdater.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TRANSFORMS_UTILS_SSAUPDATERIMPL_H
+#define LLVM_TRANSFORMS_UTILS_SSAUPDATERIMPL_H
+
+namespace llvm {
+
+template<typename T> class SSAUpdaterTraits;
+
+template<typename UpdaterT>
+class SSAUpdaterImpl {
+private:
+ UpdaterT *Updater;
+
+ typedef SSAUpdaterTraits<UpdaterT> Traits;
+ typedef typename Traits::BlkT BlkT;
+ typedef typename Traits::ValT ValT;
+ typedef typename Traits::PhiT PhiT;
+
+ /// BBInfo - Per-basic block information used internally by SSAUpdaterImpl.
+ /// The predecessors of each block are cached here since pred_iterator is
+ /// slow and we need to iterate over the blocks at least a few times.
+ class BBInfo {
+ public:
+ BlkT *BB; // Back-pointer to the corresponding block.
+ ValT AvailableVal; // Value to use in this block.
+ BBInfo *DefBB; // Block that defines the available value.
+ int BlkNum; // Postorder number.
+ BBInfo *IDom; // Immediate dominator.
+ unsigned NumPreds; // Number of predecessor blocks.
+ BBInfo **Preds; // Array[NumPreds] of predecessor blocks.
+ PhiT *PHITag; // Marker for existing PHIs that match.
+
+ BBInfo(BlkT *ThisBB, ValT V)
+ : BB(ThisBB), AvailableVal(V), DefBB(V ? this : 0), BlkNum(0), IDom(0),
+ NumPreds(0), Preds(0), PHITag(0) { }
+ };
+
+ typedef DenseMap<BlkT*, ValT> AvailableValsTy;
+ AvailableValsTy *AvailableVals;
+
+ SmallVectorImpl<PhiT*> *InsertedPHIs;
+
+ typedef SmallVectorImpl<BBInfo*> BlockListTy;
+ typedef DenseMap<BlkT*, BBInfo*> BBMapTy;
+ BBMapTy BBMap;
+ BumpPtrAllocator Allocator;
+
+public:
+ explicit SSAUpdaterImpl(UpdaterT *U, AvailableValsTy *A,
+ SmallVectorImpl<PhiT*> *Ins) :
+ Updater(U), AvailableVals(A), InsertedPHIs(Ins) { }
+
+ /// GetValue - Check to see if AvailableVals has an entry for the specified
+ /// BB and if so, return it. If not, construct SSA form by first
+ /// calculating the required placement of PHIs and then inserting new PHIs
+ /// where needed.
+ ValT GetValue(BlkT *BB) {
+ SmallVector<BBInfo*, 100> BlockList;
+ BuildBlockList(BB, &BlockList);
+
+ // Special case: bail out if BB is unreachable.
+ if (BlockList.size() == 0) {
+ ValT V = Traits::GetUndefVal(BB, Updater);
+ (*AvailableVals)[BB] = V;
+ return V;
+ }
+
+ FindDominators(&BlockList);
+ FindPHIPlacement(&BlockList);
+ FindAvailableVals(&BlockList);
+
+ return BBMap[BB]->DefBB->AvailableVal;
+ }
+
+ /// BuildBlockList - Starting from the specified basic block, traverse back
+ /// through its predecessors until reaching blocks with known values.
+ /// Create BBInfo structures for the blocks and append them to the block
+ /// list.
+ void BuildBlockList(BlkT *BB, BlockListTy *BlockList) {
+ SmallVector<BBInfo*, 10> RootList;
+ SmallVector<BBInfo*, 64> WorkList;
+
+ BBInfo *Info = new (Allocator) BBInfo(BB, 0);
+ BBMap[BB] = Info;
+ WorkList.push_back(Info);
+
+ // Search backward from BB, creating BBInfos along the way and stopping
+ // when reaching blocks that define the value. Record those defining
+ // blocks on the RootList.
+ SmallVector<BlkT*, 10> Preds;
+ while (!WorkList.empty()) {
+ Info = WorkList.pop_back_val();
+ Preds.clear();
+ Traits::FindPredecessorBlocks(Info->BB, &Preds);
+ Info->NumPreds = Preds.size();
+ Info->Preds = static_cast<BBInfo**>
+ (Allocator.Allocate(Info->NumPreds * sizeof(BBInfo*),
+ AlignOf<BBInfo*>::Alignment));
+
+ // Treat an unreachable predecessor as a definition with 'undef'.
+ if (Info->NumPreds == 0) {
+ Info->AvailableVal = Traits::GetUndefVal(Info->BB, Updater);
+ Info->DefBB = Info;
+ RootList.push_back(Info);
+ continue;
+ }
+
+ for (unsigned p = 0; p != Info->NumPreds; ++p) {
+ BlkT *Pred = Preds[p];
+ // Check if BBMap already has a BBInfo for the predecessor block.
+ typename BBMapTy::value_type &BBMapBucket =
+ BBMap.FindAndConstruct(Pred);
+ if (BBMapBucket.second) {
+ Info->Preds[p] = BBMapBucket.second;
+ continue;
+ }
+
+ // Create a new BBInfo for the predecessor.
+ ValT PredVal = AvailableVals->lookup(Pred);
+ BBInfo *PredInfo = new (Allocator) BBInfo(Pred, PredVal);
+ BBMapBucket.second = PredInfo;
+ Info->Preds[p] = PredInfo;
+
+ if (PredInfo->AvailableVal) {
+ RootList.push_back(PredInfo);
+ continue;
+ }
+ WorkList.push_back(PredInfo);
+ }
+ }
+
+ // Now that we know what blocks are backwards-reachable from the starting
+ // block, do a forward depth-first traversal to assign postorder numbers
+ // to those blocks.
+ BBInfo *PseudoEntry = new (Allocator) BBInfo(0, 0);
+ unsigned BlkNum = 1;
+
+ // Initialize the worklist with the roots from the backward traversal.
+ while (!RootList.empty()) {
+ Info = RootList.pop_back_val();
+ Info->IDom = PseudoEntry;
+ Info->BlkNum = -1;
+ WorkList.push_back(Info);
+ }
+
+ while (!WorkList.empty()) {
+ Info = WorkList.back();
+
+ if (Info->BlkNum == -2) {
+ // All the successors have been handled; assign the postorder number.
+ Info->BlkNum = BlkNum++;
+ // If not a root, put it on the BlockList.
+ if (!Info->AvailableVal)
+ BlockList->push_back(Info);
+ WorkList.pop_back();
+ continue;
+ }
+
+ // Leave this entry on the worklist, but set its BlkNum to mark that its
+ // successors have been put on the worklist. When it returns to the top
+ // the list, after handling its successors, it will be assigned a
+ // number.
+ Info->BlkNum = -2;
+
+ // Add unvisited successors to the work list.
+ for (typename Traits::BlkSucc_iterator SI =
+ Traits::BlkSucc_begin(Info->BB),
+ E = Traits::BlkSucc_end(Info->BB); SI != E; ++SI) {
+ BBInfo *SuccInfo = BBMap[*SI];
+ if (!SuccInfo || SuccInfo->BlkNum)
+ continue;
+ SuccInfo->BlkNum = -1;
+ WorkList.push_back(SuccInfo);
+ }
+ }
+ PseudoEntry->BlkNum = BlkNum;
+ }
+
+ /// IntersectDominators - This is the dataflow lattice "meet" operation for
+ /// finding dominators. Given two basic blocks, it walks up the dominator
+ /// tree until it finds a common dominator of both. It uses the postorder
+ /// number of the blocks to determine how to do that.
+ BBInfo *IntersectDominators(BBInfo *Blk1, BBInfo *Blk2) {
+ while (Blk1 != Blk2) {
+ while (Blk1->BlkNum < Blk2->BlkNum) {
+ Blk1 = Blk1->IDom;
+ if (!Blk1)
+ return Blk2;
+ }
+ while (Blk2->BlkNum < Blk1->BlkNum) {
+ Blk2 = Blk2->IDom;
+ if (!Blk2)
+ return Blk1;
+ }
+ }
+ return Blk1;
+ }
+
+ /// FindDominators - Calculate the dominator tree for the subset of the CFG
+ /// corresponding to the basic blocks on the BlockList. This uses the
+ /// algorithm from: "A Simple, Fast Dominance Algorithm" by Cooper, Harvey
+ /// and Kennedy, published in Software--Practice and Experience, 2001,
+ /// 4:1-10. Because the CFG subset does not include any edges leading into
+ /// blocks that define the value, the results are not the usual dominator
+ /// tree. The CFG subset has a single pseudo-entry node with edges to a set
+ /// of root nodes for blocks that define the value. The dominators for this
+ /// subset CFG are not the standard dominators but they are adequate for
+ /// placing PHIs within the subset CFG.
+ void FindDominators(BlockListTy *BlockList) {
+ bool Changed;
+ do {
+ Changed = false;
+ // Iterate over the list in reverse order, i.e., forward on CFG edges.
+ for (typename BlockListTy::reverse_iterator I = BlockList->rbegin(),
+ E = BlockList->rend(); I != E; ++I) {
+ BBInfo *Info = *I;
+
+ // Start with the first predecessor.
+ assert(Info->NumPreds > 0 && "unreachable block");
+ BBInfo *NewIDom = Info->Preds[0];
+
+ // Iterate through the block's other predecessors.
+ for (unsigned p = 1; p != Info->NumPreds; ++p) {
+ BBInfo *Pred = Info->Preds[p];
+ NewIDom = IntersectDominators(NewIDom, Pred);
+ }
+
+ // Check if the IDom value has changed.
+ if (NewIDom != Info->IDom) {
+ Info->IDom = NewIDom;
+ Changed = true;
+ }
+ }
+ } while (Changed);
+ }
+
+ /// IsDefInDomFrontier - Search up the dominator tree from Pred to IDom for
+ /// any blocks containing definitions of the value. If one is found, then
+ /// the successor of Pred is in the dominance frontier for the definition,
+ /// and this function returns true.
+ bool IsDefInDomFrontier(const BBInfo *Pred, const BBInfo *IDom) {
+ for (; Pred != IDom; Pred = Pred->IDom) {
+ if (Pred->DefBB == Pred)
+ return true;
+ }
+ return false;
+ }
+
+ /// FindPHIPlacement - PHIs are needed in the iterated dominance frontiers
+ /// of the known definitions. Iteratively add PHIs in the dom frontiers
+ /// until nothing changes. Along the way, keep track of the nearest
+ /// dominating definitions for non-PHI blocks.
+ void FindPHIPlacement(BlockListTy *BlockList) {
+ bool Changed;
+ do {
+ Changed = false;
+ // Iterate over the list in reverse order, i.e., forward on CFG edges.
+ for (typename BlockListTy::reverse_iterator I = BlockList->rbegin(),
+ E = BlockList->rend(); I != E; ++I) {
+ BBInfo *Info = *I;
+
+ // If this block already needs a PHI, there is nothing to do here.
+ if (Info->DefBB == Info)
+ continue;
+
+ // Default to use the same def as the immediate dominator.
+ BBInfo *NewDefBB = Info->IDom->DefBB;
+ for (unsigned p = 0; p != Info->NumPreds; ++p) {
+ if (IsDefInDomFrontier(Info->Preds[p], Info->IDom)) {
+ // Need a PHI here.
+ NewDefBB = Info;
+ break;
+ }
+ }
+
+ // Check if anything changed.
+ if (NewDefBB != Info->DefBB) {
+ Info->DefBB = NewDefBB;
+ Changed = true;
+ }
+ }
+ } while (Changed);
+ }
+
+ /// FindAvailableVal - If this block requires a PHI, first check if an
+ /// existing PHI matches the PHI placement and reaching definitions computed
+ /// earlier, and if not, create a new PHI. Visit all the block's
+ /// predecessors to calculate the available value for each one and fill in
+ /// the incoming values for a new PHI.
+ void FindAvailableVals(BlockListTy *BlockList) {
+ // Go through the worklist in forward order (i.e., backward through the CFG)
+ // and check if existing PHIs can be used. If not, create empty PHIs where
+ // they are needed.
+ for (typename BlockListTy::iterator I = BlockList->begin(),
+ E = BlockList->end(); I != E; ++I) {
+ BBInfo *Info = *I;
+ // Check if there needs to be a PHI in BB.
+ if (Info->DefBB != Info)
+ continue;
+
+ // Look for an existing PHI.
+ FindExistingPHI(Info->BB, BlockList);
+ if (Info->AvailableVal)
+ continue;
+
+ ValT PHI = Traits::CreateEmptyPHI(Info->BB, Info->NumPreds, Updater);
+ Info->AvailableVal = PHI;
+ (*AvailableVals)[Info->BB] = PHI;
+ }
+
+ // Now go back through the worklist in reverse order to fill in the
+ // arguments for any new PHIs added in the forward traversal.
+ for (typename BlockListTy::reverse_iterator I = BlockList->rbegin(),
+ E = BlockList->rend(); I != E; ++I) {
+ BBInfo *Info = *I;
+
+ if (Info->DefBB != Info) {
+ // Record the available value at join nodes to speed up subsequent
+ // uses of this SSAUpdater for the same value.
+ if (Info->NumPreds > 1)
+ (*AvailableVals)[Info->BB] = Info->DefBB->AvailableVal;
+ continue;
+ }
+
+ // Check if this block contains a newly added PHI.
+ PhiT *PHI = Traits::ValueIsNewPHI(Info->AvailableVal, Updater);
+ if (!PHI)
+ continue;
+
+ // Iterate through the block's predecessors.
+ for (unsigned p = 0; p != Info->NumPreds; ++p) {
+ BBInfo *PredInfo = Info->Preds[p];
+ BlkT *Pred = PredInfo->BB;
+ // Skip to the nearest preceding definition.
+ if (PredInfo->DefBB != PredInfo)
+ PredInfo = PredInfo->DefBB;
+ Traits::AddPHIOperand(PHI, PredInfo->AvailableVal, Pred);
+ }
+
+ DEBUG(dbgs() << " Inserted PHI: " << *PHI << "\n");
+
+ // If the client wants to know about all new instructions, tell it.
+ if (InsertedPHIs) InsertedPHIs->push_back(PHI);
+ }
+ }
+
+ /// FindExistingPHI - Look through the PHI nodes in a block to see if any of
+ /// them match what is needed.
+ void FindExistingPHI(BlkT *BB, BlockListTy *BlockList) {
+ for (typename BlkT::iterator BBI = BB->begin(), BBE = BB->end();
+ BBI != BBE; ++BBI) {
+ PhiT *SomePHI = Traits::InstrIsPHI(BBI);
+ if (!SomePHI)
+ break;
+ if (CheckIfPHIMatches(SomePHI)) {
+ RecordMatchingPHI(SomePHI);
+ break;
+ }
+ // Match failed: clear all the PHITag values.
+ for (typename BlockListTy::iterator I = BlockList->begin(),
+ E = BlockList->end(); I != E; ++I)
+ (*I)->PHITag = 0;
+ }
+ }
+
+ /// CheckIfPHIMatches - Check if a PHI node matches the placement and values
+ /// in the BBMap.
+ bool CheckIfPHIMatches(PhiT *PHI) {
+ SmallVector<PhiT*, 20> WorkList;
+ WorkList.push_back(PHI);
+
+ // Mark that the block containing this PHI has been visited.
+ BBMap[PHI->getParent()]->PHITag = PHI;
+
+ while (!WorkList.empty()) {
+ PHI = WorkList.pop_back_val();
+
+ // Iterate through the PHI's incoming values.
+ for (typename Traits::PHI_iterator I = Traits::PHI_begin(PHI),
+ E = Traits::PHI_end(PHI); I != E; ++I) {
+ ValT IncomingVal = I.getIncomingValue();
+ BBInfo *PredInfo = BBMap[I.getIncomingBlock()];
+ // Skip to the nearest preceding definition.
+ if (PredInfo->DefBB != PredInfo)
+ PredInfo = PredInfo->DefBB;
+
+ // Check if it matches the expected value.
+ if (PredInfo->AvailableVal) {
+ if (IncomingVal == PredInfo->AvailableVal)
+ continue;
+ return false;
+ }
+
+ // Check if the value is a PHI in the correct block.
+ PhiT *IncomingPHIVal = Traits::ValueIsPHI(IncomingVal, Updater);
+ if (!IncomingPHIVal || IncomingPHIVal->getParent() != PredInfo->BB)
+ return false;
+
+ // If this block has already been visited, check if this PHI matches.
+ if (PredInfo->PHITag) {
+ if (IncomingPHIVal == PredInfo->PHITag)
+ continue;
+ return false;
+ }
+ PredInfo->PHITag = IncomingPHIVal;
+
+ WorkList.push_back(IncomingPHIVal);
+ }
+ }
+ return true;
+ }
+
+ /// RecordMatchingPHI - For a PHI node that matches, record it and its input
+ /// PHIs in both the BBMap and the AvailableVals mapping.
+ void RecordMatchingPHI(PhiT *PHI) {
+ SmallVector<PhiT*, 20> WorkList;
+ WorkList.push_back(PHI);
+
+ // Record this PHI.
+ BlkT *BB = PHI->getParent();
+ ValT PHIVal = Traits::GetPHIValue(PHI);
+ (*AvailableVals)[BB] = PHIVal;
+ BBMap[BB]->AvailableVal = PHIVal;
+
+ while (!WorkList.empty()) {
+ PHI = WorkList.pop_back_val();
+
+ // Iterate through the PHI's incoming values.
+ for (typename Traits::PHI_iterator I = Traits::PHI_begin(PHI),
+ E = Traits::PHI_end(PHI); I != E; ++I) {
+ ValT IncomingVal = I.getIncomingValue();
+ PhiT *IncomingPHI = Traits::ValueIsPHI(IncomingVal, Updater);
+ if (!IncomingPHI) continue;
+ BB = IncomingPHI->getParent();
+ BBInfo *Info = BBMap[BB];
+ if (!Info || Info->AvailableVal)
+ continue;
+
+ // Record the PHI and add it to the worklist.
+ (*AvailableVals)[BB] = IncomingVal;
+ Info->AvailableVal = IncomingVal;
+ WorkList.push_back(IncomingPHI);
+ }
+ }
+ }
+};
+
+} // End llvm namespace
+
+#endif