aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Analysis/ValueTracking.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Analysis/ValueTracking.cpp')
-rw-r--r--lib/Analysis/ValueTracking.cpp213
1 files changed, 178 insertions, 35 deletions
diff --git a/lib/Analysis/ValueTracking.cpp b/lib/Analysis/ValueTracking.cpp
index 4d94f61..ef19e06 100644
--- a/lib/Analysis/ValueTracking.cpp
+++ b/lib/Analysis/ValueTracking.cpp
@@ -63,13 +63,14 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
assert(V && "No Value?");
assert(Depth <= MaxDepth && "Limit Search Depth");
unsigned BitWidth = Mask.getBitWidth();
- assert((V->getType()->isIntOrIntVectorTy() || V->getType()->isPointerTy())
- && "Not integer or pointer type!");
+ assert((V->getType()->isIntOrIntVectorTy() ||
+ V->getType()->getScalarType()->isPointerTy()) &&
+ "Not integer or pointer type!");
assert((!TD ||
TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
(!V->getType()->isIntOrIntVectorTy() ||
V->getType()->getScalarSizeInBits() == BitWidth) &&
- KnownZero.getBitWidth() == BitWidth &&
+ KnownZero.getBitWidth() == BitWidth &&
KnownOne.getBitWidth() == BitWidth &&
"V, Mask, KnownOne and KnownZero should have same BitWidth");
@@ -103,14 +104,16 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
unsigned Align = GV->getAlignment();
if (Align == 0 && TD && GV->getType()->getElementType()->isSized()) {
- Type *ObjectType = GV->getType()->getElementType();
- // If the object is defined in the current Module, we'll be giving
- // it the preferred alignment. Otherwise, we have to assume that it
- // may only have the minimum ABI alignment.
- if (!GV->isDeclaration() && !GV->mayBeOverridden())
- Align = TD->getPrefTypeAlignment(ObjectType);
- else
- Align = TD->getABITypeAlignment(ObjectType);
+ if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
+ Type *ObjectType = GVar->getType()->getElementType();
+ // If the object is defined in the current Module, we'll be giving
+ // it the preferred alignment. Otherwise, we have to assume that it
+ // may only have the minimum ABI alignment.
+ if (!GVar->isDeclaration() && !GVar->isWeakForLinker())
+ Align = TD->getPreferredAlignment(GVar);
+ else
+ Align = TD->getABITypeAlignment(ObjectType);
+ }
}
if (Align > 0)
KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
@@ -201,9 +204,36 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero, KnownOne, TD,Depth+1);
ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
Depth+1);
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
-
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
+
+ bool isKnownNegative = false;
+ bool isKnownNonNegative = false;
+ // If the multiplication is known not to overflow, compute the sign bit.
+ if (Mask.isNegative() &&
+ cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap()) {
+ Value *Op1 = I->getOperand(1), *Op2 = I->getOperand(0);
+ if (Op1 == Op2) {
+ // The product of a number with itself is non-negative.
+ isKnownNonNegative = true;
+ } else {
+ bool isKnownNonNegative1 = KnownZero.isNegative();
+ bool isKnownNonNegative2 = KnownZero2.isNegative();
+ bool isKnownNegative1 = KnownOne.isNegative();
+ bool isKnownNegative2 = KnownOne2.isNegative();
+ // The product of two numbers with the same sign is non-negative.
+ isKnownNonNegative = (isKnownNegative1 && isKnownNegative2) ||
+ (isKnownNonNegative1 && isKnownNonNegative2);
+ // The product of a negative number and a non-negative number is either
+ // negative or zero.
+ if (!isKnownNonNegative)
+ isKnownNegative = (isKnownNegative1 && isKnownNonNegative2 &&
+ isKnownNonZero(Op2, TD, Depth)) ||
+ (isKnownNegative2 && isKnownNonNegative1 &&
+ isKnownNonZero(Op1, TD, Depth));
+ }
+ }
+
// If low bits are zero in either operand, output low known-0 bits.
// Also compute a conserative estimate for high known-0 bits.
// More trickiness is possible, but this is sufficient for the
@@ -220,6 +250,17 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
APInt::getHighBitsSet(BitWidth, LeadZ);
KnownZero &= Mask;
+
+ // Only make use of no-wrap flags if we failed to compute the sign bit
+ // directly. This matters if the multiplication always overflows, in
+ // which case we prefer to follow the result of the direct computation,
+ // though as the program is invoking undefined behaviour we can choose
+ // whatever we like here.
+ if (isKnownNonNegative && !KnownOne.isNegative())
+ KnownZero.setBit(BitWidth - 1);
+ else if (isKnownNegative && !KnownZero.isNegative())
+ KnownOne.setBit(BitWidth - 1);
+
return;
}
case Instruction::UDiv: {
@@ -712,10 +753,15 @@ void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
/// bit set when defined. For vectors return true if every element is known to
/// be a power of two when defined. Supports values with integer or pointer
/// types and vectors of integers.
-bool llvm::isPowerOfTwo(Value *V, const TargetData *TD, unsigned Depth) {
- if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
- return CI->getValue().isPowerOf2();
- // TODO: Handle vector constants.
+bool llvm::isPowerOfTwo(Value *V, const TargetData *TD, bool OrZero,
+ unsigned Depth) {
+ if (Constant *C = dyn_cast<Constant>(V)) {
+ if (C->isNullValue())
+ return OrZero;
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
+ return CI->getValue().isPowerOf2();
+ // TODO: Handle vector constants.
+ }
// 1 << X is clearly a power of two if the one is not shifted off the end. If
// it is shifted off the end then the result is undefined.
@@ -731,12 +777,29 @@ bool llvm::isPowerOfTwo(Value *V, const TargetData *TD, unsigned Depth) {
if (Depth++ == MaxDepth)
return false;
+ Value *X = 0, *Y = 0;
+ // A shift of a power of two is a power of two or zero.
+ if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
+ match(V, m_Shr(m_Value(X), m_Value()))))
+ return isPowerOfTwo(X, TD, /*OrZero*/true, Depth);
+
if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
- return isPowerOfTwo(ZI->getOperand(0), TD, Depth);
+ return isPowerOfTwo(ZI->getOperand(0), TD, OrZero, Depth);
if (SelectInst *SI = dyn_cast<SelectInst>(V))
- return isPowerOfTwo(SI->getTrueValue(), TD, Depth) &&
- isPowerOfTwo(SI->getFalseValue(), TD, Depth);
+ return isPowerOfTwo(SI->getTrueValue(), TD, OrZero, Depth) &&
+ isPowerOfTwo(SI->getFalseValue(), TD, OrZero, Depth);
+
+ if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
+ // A power of two and'd with anything is a power of two or zero.
+ if (isPowerOfTwo(X, TD, /*OrZero*/true, Depth) ||
+ isPowerOfTwo(Y, TD, /*OrZero*/true, Depth))
+ return true;
+ // X & (-X) is always a power of two or zero.
+ if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
+ return true;
+ return false;
+ }
// An exact divide or right shift can only shift off zero bits, so the result
// is a power of two only if the first operand is a power of two and not
@@ -745,7 +808,7 @@ bool llvm::isPowerOfTwo(Value *V, const TargetData *TD, unsigned Depth) {
match(V, m_UDiv(m_Value(), m_Value()))) {
PossiblyExactOperator *PEO = cast<PossiblyExactOperator>(V);
if (PEO->isExact())
- return isPowerOfTwo(PEO->getOperand(0), TD, Depth);
+ return isPowerOfTwo(PEO->getOperand(0), TD, OrZero, Depth);
}
return false;
@@ -767,7 +830,7 @@ bool llvm::isKnownNonZero(Value *V, const TargetData *TD, unsigned Depth) {
}
// The remaining tests are all recursive, so bail out if we hit the limit.
- if (Depth++ == MaxDepth)
+ if (Depth++ >= MaxDepth)
return false;
unsigned BitWidth = getBitWidth(V->getType(), TD);
@@ -785,7 +848,7 @@ bool llvm::isKnownNonZero(Value *V, const TargetData *TD, unsigned Depth) {
// if the lowest bit is shifted off the end.
if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
// shl nuw can't remove any non-zero bits.
- BinaryOperator *BO = cast<BinaryOperator>(V);
+ OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
if (BO->hasNoUnsignedWrap())
return isKnownNonZero(X, TD, Depth);
@@ -799,7 +862,7 @@ bool llvm::isKnownNonZero(Value *V, const TargetData *TD, unsigned Depth) {
// defined if the sign bit is shifted off the end.
else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
// shr exact can only shift out zero bits.
- BinaryOperator *BO = cast<BinaryOperator>(V);
+ PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
if (BO->isExact())
return isKnownNonZero(X, TD, Depth);
@@ -810,7 +873,7 @@ bool llvm::isKnownNonZero(Value *V, const TargetData *TD, unsigned Depth) {
}
// div exact can only produce a zero if the dividend is zero.
else if (match(V, m_IDiv(m_Value(X), m_Value()))) {
- BinaryOperator *BO = cast<BinaryOperator>(V);
+ PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
if (BO->isExact())
return isKnownNonZero(X, TD, Depth);
}
@@ -846,9 +909,18 @@ bool llvm::isKnownNonZero(Value *V, const TargetData *TD, unsigned Depth) {
}
// The sum of a non-negative number and a power of two is not zero.
- if (XKnownNonNegative && isPowerOfTwo(Y, TD, Depth))
+ if (XKnownNonNegative && isPowerOfTwo(Y, TD, /*OrZero*/false, Depth))
return true;
- if (YKnownNonNegative && isPowerOfTwo(X, TD, Depth))
+ if (YKnownNonNegative && isPowerOfTwo(X, TD, /*OrZero*/false, Depth))
+ return true;
+ }
+ // X * Y.
+ else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
+ OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
+ // If X and Y are non-zero then so is X * Y as long as the multiplication
+ // does not overflow.
+ if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
+ isKnownNonZero(X, TD, Depth) && isKnownNonZero(Y, TD, Depth))
return true;
}
// (C ? X : Y) != 0 if X != 0 and Y != 0.
@@ -1298,6 +1370,8 @@ Value *llvm::isBytewiseValue(Value *V) {
return Val;
}
+
+ // FIXME: Vector types (e.g., <4 x i32> <i32 -1, i32 -1, i32 -1, i32 -1>).
// Conceptually, we could handle things like:
// %a = zext i8 %X to i16
@@ -1486,7 +1560,8 @@ Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
const TargetData &TD) {
Operator *PtrOp = dyn_cast<Operator>(Ptr);
- if (PtrOp == 0) return Ptr;
+ if (PtrOp == 0 || Ptr->getType()->isVectorTy())
+ return Ptr;
// Just look through bitcasts.
if (PtrOp->getOpcode() == Instruction::BitCast)
@@ -1525,8 +1600,7 @@ Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
/// null-terminated C string pointed to by V. If successful, it returns true
/// and returns the string in Str. If unsuccessful, it returns false.
bool llvm::GetConstantStringInfo(const Value *V, std::string &Str,
- uint64_t Offset,
- bool StopAtNul) {
+ uint64_t Offset, bool StopAtNul) {
// If V is NULL then return false;
if (V == NULL) return false;
@@ -1536,7 +1610,7 @@ bool llvm::GetConstantStringInfo(const Value *V, std::string &Str,
// If the value is not a GEP instruction nor a constant expression with a
// GEP instruction, then return false because ConstantArray can't occur
- // any other way
+ // any other way.
const User *GEP = 0;
if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
GEP = GEPI;
@@ -1576,7 +1650,7 @@ bool llvm::GetConstantStringInfo(const Value *V, std::string &Str,
return GetConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset,
StopAtNul);
}
-
+
// The GEP instruction, constant or instruction, must reference a global
// variable that is a constant and is initialized. The referenced constant
// initializer is the array that we'll use for optimization.
@@ -1585,8 +1659,8 @@ bool llvm::GetConstantStringInfo(const Value *V, std::string &Str,
return false;
const Constant *GlobalInit = GV->getInitializer();
- // Handle the ConstantAggregateZero case
- if (isa<ConstantAggregateZero>(GlobalInit)) {
+ // Handle the all-zeros case
+ if (GlobalInit->isNullValue()) {
// This is a degenerate case. The initializer is constant zero so the
// length of the string must be zero.
Str.clear();
@@ -1667,6 +1741,14 @@ static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) {
return Len1;
}
+ // As a special-case, "@string = constant i8 0" is also a string with zero
+ // length, not wrapped in a bitcast or GEP.
+ if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
+ if (GV->isConstant() && GV->hasDefinitiveInitializer())
+ if (GV->getInitializer()->isNullValue()) return 1;
+ return 0;
+ }
+
// If the value is not a GEP instruction nor a constant expression with a
// GEP instruction, then return unknown.
User *GEP = 0;
@@ -1793,3 +1875,64 @@ bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
}
return true;
}
+
+bool llvm::isSafeToSpeculativelyExecute(const Instruction *Inst,
+ const TargetData *TD) {
+ for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
+ if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
+ if (C->canTrap())
+ return false;
+
+ switch (Inst->getOpcode()) {
+ default:
+ return true;
+ case Instruction::UDiv:
+ case Instruction::URem:
+ // x / y is undefined if y == 0, but calcuations like x / 3 are safe.
+ return isKnownNonZero(Inst->getOperand(1), TD);
+ case Instruction::SDiv:
+ case Instruction::SRem: {
+ Value *Op = Inst->getOperand(1);
+ // x / y is undefined if y == 0
+ if (!isKnownNonZero(Op, TD))
+ return false;
+ // x / y might be undefined if y == -1
+ unsigned BitWidth = getBitWidth(Op->getType(), TD);
+ if (BitWidth == 0)
+ return false;
+ APInt KnownZero(BitWidth, 0);
+ APInt KnownOne(BitWidth, 0);
+ ComputeMaskedBits(Op, APInt::getAllOnesValue(BitWidth),
+ KnownZero, KnownOne, TD);
+ return !!KnownZero;
+ }
+ case Instruction::Load: {
+ const LoadInst *LI = cast<LoadInst>(Inst);
+ if (!LI->isUnordered())
+ return false;
+ return LI->getPointerOperand()->isDereferenceablePointer();
+ }
+ case Instruction::Call:
+ return false; // The called function could have undefined behavior or
+ // side-effects.
+ // FIXME: We should special-case some intrinsics (bswap,
+ // overflow-checking arithmetic, etc.)
+ case Instruction::VAArg:
+ case Instruction::Alloca:
+ case Instruction::Invoke:
+ case Instruction::PHI:
+ case Instruction::Store:
+ case Instruction::Ret:
+ case Instruction::Br:
+ case Instruction::IndirectBr:
+ case Instruction::Switch:
+ case Instruction::Unwind:
+ case Instruction::Unreachable:
+ case Instruction::Fence:
+ case Instruction::LandingPad:
+ case Instruction::AtomicRMW:
+ case Instruction::AtomicCmpXchg:
+ case Instruction::Resume:
+ return false; // Misc instructions which have effects
+ }
+}