aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Analysis/ValueTracking.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Analysis/ValueTracking.cpp')
-rw-r--r--lib/Analysis/ValueTracking.cpp264
1 files changed, 129 insertions, 135 deletions
diff --git a/lib/Analysis/ValueTracking.cpp b/lib/Analysis/ValueTracking.cpp
index 72617a0..4f48753 100644
--- a/lib/Analysis/ValueTracking.cpp
+++ b/lib/Analysis/ValueTracking.cpp
@@ -16,6 +16,7 @@
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/MemoryBuiltins.h"
+#include "llvm/IR/CallSite.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
@@ -44,10 +45,10 @@ static unsigned getBitWidth(Type *Ty, const DataLayout *TD) {
return TD ? TD->getPointerTypeSizeInBits(Ty) : 0;
}
-static void ComputeMaskedBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
- APInt &KnownZero, APInt &KnownOne,
- APInt &KnownZero2, APInt &KnownOne2,
- const DataLayout *TD, unsigned Depth) {
+static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
+ APInt &KnownZero, APInt &KnownOne,
+ APInt &KnownZero2, APInt &KnownOne2,
+ const DataLayout *TD, unsigned Depth) {
if (!Add) {
if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
// We know that the top bits of C-X are clear if X contains less bits
@@ -58,7 +59,7 @@ static void ComputeMaskedBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
// NLZ can't be BitWidth with no sign bit
APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
- llvm::ComputeMaskedBits(Op1, KnownZero2, KnownOne2, TD, Depth+1);
+ llvm::computeKnownBits(Op1, KnownZero2, KnownOne2, TD, Depth+1);
// If all of the MaskV bits are known to be zero, then we know the
// output top bits are zero, because we now know that the output is
@@ -79,13 +80,10 @@ static void ComputeMaskedBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
// result. For an add, this works with either operand. For a subtract,
// this only works if the known zeros are in the right operand.
APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
- llvm::ComputeMaskedBits(Op0, LHSKnownZero, LHSKnownOne, TD, Depth+1);
- assert((LHSKnownZero & LHSKnownOne) == 0 &&
- "Bits known to be one AND zero?");
+ llvm::computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, TD, Depth+1);
unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes();
- llvm::ComputeMaskedBits(Op1, KnownZero2, KnownOne2, TD, Depth+1);
- assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
+ llvm::computeKnownBits(Op1, KnownZero2, KnownOne2, TD, Depth+1);
unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes();
// Determine which operand has more trailing zeros, and use that
@@ -130,15 +128,13 @@ static void ComputeMaskedBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
}
}
-static void ComputeMaskedBitsMul(Value *Op0, Value *Op1, bool NSW,
- APInt &KnownZero, APInt &KnownOne,
- APInt &KnownZero2, APInt &KnownOne2,
- const DataLayout *TD, unsigned Depth) {
+static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW,
+ APInt &KnownZero, APInt &KnownOne,
+ APInt &KnownZero2, APInt &KnownOne2,
+ const DataLayout *TD, unsigned Depth) {
unsigned BitWidth = KnownZero.getBitWidth();
- ComputeMaskedBits(Op1, KnownZero, KnownOne, TD, Depth+1);
- ComputeMaskedBits(Op0, KnownZero2, KnownOne2, TD, Depth+1);
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
+ computeKnownBits(Op1, KnownZero, KnownOne, TD, Depth+1);
+ computeKnownBits(Op0, KnownZero2, KnownOne2, TD, Depth+1);
bool isKnownNegative = false;
bool isKnownNonNegative = false;
@@ -192,7 +188,7 @@ static void ComputeMaskedBitsMul(Value *Op0, Value *Op1, bool NSW,
KnownOne.setBit(BitWidth - 1);
}
-void llvm::computeMaskedBitsLoad(const MDNode &Ranges, APInt &KnownZero) {
+void llvm::computeKnownBitsLoad(const MDNode &Ranges, APInt &KnownZero) {
unsigned BitWidth = KnownZero.getBitWidth();
unsigned NumRanges = Ranges.getNumOperands() / 2;
assert(NumRanges >= 1);
@@ -211,8 +207,9 @@ void llvm::computeMaskedBitsLoad(const MDNode &Ranges, APInt &KnownZero) {
KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros);
}
-/// ComputeMaskedBits - Determine which of the bits are known to be either zero
-/// or one and return them in the KnownZero/KnownOne bit sets.
+
+/// Determine which bits of V are known to be either zero or one and return
+/// them in the KnownZero/KnownOne bit sets.
///
/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
/// we cannot optimize based on the assumption that it is zero without changing
@@ -226,8 +223,8 @@ void llvm::computeMaskedBitsLoad(const MDNode &Ranges, APInt &KnownZero) {
/// where V is a vector, known zero, and known one values are the
/// same width as the vector element, and the bit is set only if it is true
/// for all of the elements in the vector.
-void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
- const DataLayout *TD, unsigned Depth) {
+void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
+ const DataLayout *TD, unsigned Depth) {
assert(V && "No Value?");
assert(Depth <= MaxDepth && "Limit Search Depth");
unsigned BitWidth = KnownZero.getBitWidth();
@@ -241,7 +238,7 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
V->getType()->getScalarSizeInBits() == BitWidth) &&
KnownZero.getBitWidth() == BitWidth &&
KnownOne.getBitWidth() == BitWidth &&
- "V, Mask, KnownOne and KnownZero should have same BitWidth");
+ "V, KnownOne and KnownZero should have same BitWidth");
if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
// We know all of the bits for a constant!
@@ -303,7 +300,7 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
if (GA->mayBeOverridden()) {
KnownZero.clearAllBits(); KnownOne.clearAllBits();
} else {
- ComputeMaskedBits(GA->getAliasee(), KnownZero, KnownOne, TD, Depth+1);
+ computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, TD, Depth+1);
}
return;
}
@@ -341,49 +338,43 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
default: break;
case Instruction::Load:
if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
- computeMaskedBitsLoad(*MD, KnownZero);
- return;
+ computeKnownBitsLoad(*MD, KnownZero);
+ break;
case Instruction::And: {
// If either the LHS or the RHS are Zero, the result is zero.
- ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
- ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
+ computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
+ computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
// Output known-1 bits are only known if set in both the LHS & RHS.
KnownOne &= KnownOne2;
// Output known-0 are known to be clear if zero in either the LHS | RHS.
KnownZero |= KnownZero2;
- return;
+ break;
}
case Instruction::Or: {
- ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
- ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
+ computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
+ computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
// Output known-0 bits are only known if clear in both the LHS & RHS.
KnownZero &= KnownZero2;
// Output known-1 are known to be set if set in either the LHS | RHS.
KnownOne |= KnownOne2;
- return;
+ break;
}
case Instruction::Xor: {
- ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
- ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
+ computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
+ computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
// Output known-0 bits are known if clear or set in both the LHS & RHS.
APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
// Output known-1 are known to be set if set in only one of the LHS, RHS.
KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
KnownZero = KnownZeroOut;
- return;
+ break;
}
case Instruction::Mul: {
bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
- ComputeMaskedBitsMul(I->getOperand(0), I->getOperand(1), NSW,
+ computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW,
KnownZero, KnownOne, KnownZero2, KnownOne2, TD, Depth);
break;
}
@@ -391,42 +382,40 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
// For the purposes of computing leading zeros we can conservatively
// treat a udiv as a logical right shift by the power of 2 known to
// be less than the denominator.
- ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
+ computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
unsigned LeadZ = KnownZero2.countLeadingOnes();
KnownOne2.clearAllBits();
KnownZero2.clearAllBits();
- ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1);
+ computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1);
unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
if (RHSUnknownLeadingOnes != BitWidth)
LeadZ = std::min(BitWidth,
LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
- return;
+ break;
}
case Instruction::Select:
- ComputeMaskedBits(I->getOperand(2), KnownZero, KnownOne, TD, Depth+1);
- ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD,
+ computeKnownBits(I->getOperand(2), KnownZero, KnownOne, TD, Depth+1);
+ computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD,
Depth+1);
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// Only known if known in both the LHS and RHS.
KnownOne &= KnownOne2;
KnownZero &= KnownZero2;
- return;
+ break;
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::SIToFP:
case Instruction::UIToFP:
- return; // Can't work with floating point.
+ break; // Can't work with floating point.
case Instruction::PtrToInt:
case Instruction::IntToPtr:
// We can't handle these if we don't know the pointer size.
- if (!TD) return;
+ if (!TD) break;
// FALL THROUGH and handle them the same as zext/trunc.
case Instruction::ZExt:
case Instruction::Trunc: {
@@ -439,19 +428,19 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
SrcBitWidth = TD->getTypeSizeInBits(SrcTy->getScalarType());
} else {
SrcBitWidth = SrcTy->getScalarSizeInBits();
- if (!SrcBitWidth) return;
+ if (!SrcBitWidth) break;
}
assert(SrcBitWidth && "SrcBitWidth can't be zero");
KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
- ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
+ computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
KnownZero = KnownZero.zextOrTrunc(BitWidth);
KnownOne = KnownOne.zextOrTrunc(BitWidth);
// Any top bits are known to be zero.
if (BitWidth > SrcBitWidth)
KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
- return;
+ break;
}
case Instruction::BitCast: {
Type *SrcTy = I->getOperand(0)->getType();
@@ -459,8 +448,8 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
// TODO: For now, not handling conversions like:
// (bitcast i64 %x to <2 x i32>)
!I->getType()->isVectorTy()) {
- ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
- return;
+ computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
+ break;
}
break;
}
@@ -470,8 +459,7 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
KnownZero = KnownZero.trunc(SrcBitWidth);
KnownOne = KnownOne.trunc(SrcBitWidth);
- ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
KnownZero = KnownZero.zext(BitWidth);
KnownOne = KnownOne.zext(BitWidth);
@@ -481,18 +469,17 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
- return;
+ break;
}
case Instruction::Shl:
// (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
- ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
KnownZero <<= ShiftAmt;
KnownOne <<= ShiftAmt;
KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
- return;
+ break;
}
break;
case Instruction::LShr:
@@ -502,13 +489,12 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
// Unsigned shift right.
- ComputeMaskedBits(I->getOperand(0), KnownZero,KnownOne, TD, Depth+1);
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ computeKnownBits(I->getOperand(0), KnownZero,KnownOne, TD, Depth+1);
KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
// high bits known zero.
KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
- return;
+ break;
}
break;
case Instruction::AShr:
@@ -518,8 +504,7 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
// Signed shift right.
- ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
@@ -528,19 +513,19 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
KnownZero |= HighBits;
else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one.
KnownOne |= HighBits;
- return;
+ break;
}
break;
case Instruction::Sub: {
bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
- ComputeMaskedBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
+ computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
Depth);
break;
}
case Instruction::Add: {
bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
- ComputeMaskedBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
+ computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
Depth);
break;
@@ -550,7 +535,7 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
APInt RA = Rem->getValue().abs();
if (RA.isPowerOf2()) {
APInt LowBits = RA - 1;
- ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
+ computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
// The low bits of the first operand are unchanged by the srem.
KnownZero = KnownZero2 & LowBits;
@@ -574,8 +559,8 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
// remainder is zero.
if (KnownZero.isNonNegative()) {
APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
- ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, TD,
- Depth+1);
+ computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, TD,
+ Depth+1);
// If it's known zero, our sign bit is also zero.
if (LHSKnownZero.isNegative())
KnownZero.setBit(BitWidth - 1);
@@ -587,9 +572,8 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
APInt RA = Rem->getValue();
if (RA.isPowerOf2()) {
APInt LowBits = (RA - 1);
- ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD,
- Depth+1);
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD,
+ Depth+1);
KnownZero |= ~LowBits;
KnownOne &= LowBits;
break;
@@ -598,8 +582,8 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
// Since the result is less than or equal to either operand, any leading
// zero bits in either operand must also exist in the result.
- ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
- ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1);
+ computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
+ computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1);
unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
KnownZero2.countLeadingOnes());
@@ -622,8 +606,8 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
// Analyze all of the subscripts of this getelementptr instruction
// to determine if we can prove known low zero bits.
APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
- ComputeMaskedBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, TD,
- Depth+1);
+ computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, TD,
+ Depth+1);
unsigned TrailZ = LocalKnownZero.countTrailingOnes();
gep_type_iterator GTI = gep_type_begin(I);
@@ -631,8 +615,10 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
Value *Index = I->getOperand(i);
if (StructType *STy = dyn_cast<StructType>(*GTI)) {
// Handle struct member offset arithmetic.
- if (!TD)
- return;
+ if (!TD) {
+ TrailZ = 0;
+ break;
+ }
// Handle case when index is vector zeroinitializer
Constant *CIndex = cast<Constant>(Index);
@@ -650,11 +636,14 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
} else {
// Handle array index arithmetic.
Type *IndexedTy = GTI.getIndexedType();
- if (!IndexedTy->isSized()) return;
+ if (!IndexedTy->isSized()) {
+ TrailZ = 0;
+ break;
+ }
unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
- ComputeMaskedBits(Index, LocalKnownZero, LocalKnownOne, TD, Depth+1);
+ computeKnownBits(Index, LocalKnownZero, LocalKnownOne, TD, Depth+1);
TrailZ = std::min(TrailZ,
unsigned(countTrailingZeros(TypeSize) +
LocalKnownZero.countTrailingOnes()));
@@ -696,11 +685,11 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
break;
// Ok, we have a PHI of the form L op= R. Check for low
// zero bits.
- ComputeMaskedBits(R, KnownZero2, KnownOne2, TD, Depth+1);
+ computeKnownBits(R, KnownZero2, KnownOne2, TD, Depth+1);
// We need to take the minimum number of known bits
APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
- ComputeMaskedBits(L, KnownZero3, KnownOne3, TD, Depth+1);
+ computeKnownBits(L, KnownZero3, KnownOne3, TD, Depth+1);
KnownZero = APInt::getLowBitsSet(BitWidth,
std::min(KnownZero2.countTrailingOnes(),
@@ -712,7 +701,7 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
// Unreachable blocks may have zero-operand PHI nodes.
if (P->getNumIncomingValues() == 0)
- return;
+ break;
// Otherwise take the unions of the known bit sets of the operands,
// taking conservative care to avoid excessive recursion.
@@ -731,8 +720,8 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
KnownOne2 = APInt(BitWidth, 0);
// Recurse, but cap the recursion to one level, because we don't
// want to waste time spinning around in loops.
- ComputeMaskedBits(P->getIncomingValue(i), KnownZero2, KnownOne2, TD,
- MaxDepth-1);
+ computeKnownBits(P->getIncomingValue(i), KnownZero2, KnownOne2, TD,
+ MaxDepth-1);
KnownZero &= KnownZero2;
KnownOne &= KnownOne2;
// If all bits have been ruled out, there's no need to check
@@ -776,30 +765,32 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
default: break;
case Intrinsic::uadd_with_overflow:
case Intrinsic::sadd_with_overflow:
- ComputeMaskedBitsAddSub(true, II->getArgOperand(0),
- II->getArgOperand(1), false, KnownZero,
- KnownOne, KnownZero2, KnownOne2, TD, Depth);
+ computeKnownBitsAddSub(true, II->getArgOperand(0),
+ II->getArgOperand(1), false, KnownZero,
+ KnownOne, KnownZero2, KnownOne2, TD, Depth);
break;
case Intrinsic::usub_with_overflow:
case Intrinsic::ssub_with_overflow:
- ComputeMaskedBitsAddSub(false, II->getArgOperand(0),
- II->getArgOperand(1), false, KnownZero,
- KnownOne, KnownZero2, KnownOne2, TD, Depth);
+ computeKnownBitsAddSub(false, II->getArgOperand(0),
+ II->getArgOperand(1), false, KnownZero,
+ KnownOne, KnownZero2, KnownOne2, TD, Depth);
break;
case Intrinsic::umul_with_overflow:
case Intrinsic::smul_with_overflow:
- ComputeMaskedBitsMul(II->getArgOperand(0), II->getArgOperand(1),
- false, KnownZero, KnownOne,
- KnownZero2, KnownOne2, TD, Depth);
+ computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1),
+ false, KnownZero, KnownOne,
+ KnownZero2, KnownOne2, TD, Depth);
break;
}
}
}
}
+
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
}
/// ComputeSignBit - Determine whether the sign bit is known to be zero or
-/// one. Convenience wrapper around ComputeMaskedBits.
+/// one. Convenience wrapper around computeKnownBits.
void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
const DataLayout *TD, unsigned Depth) {
unsigned BitWidth = getBitWidth(V->getType(), TD);
@@ -810,7 +801,7 @@ void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
}
APInt ZeroBits(BitWidth, 0);
APInt OneBits(BitWidth, 0);
- ComputeMaskedBits(V, ZeroBits, OneBits, TD, Depth);
+ computeKnownBits(V, ZeroBits, OneBits, TD, Depth);
KnownOne = OneBits[BitWidth - 1];
KnownZero = ZeroBits[BitWidth - 1];
}
@@ -842,7 +833,7 @@ bool llvm::isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth) {
if (Depth++ == MaxDepth)
return false;
- Value *X = 0, *Y = 0;
+ Value *X = nullptr, *Y = nullptr;
// A shift of a power of two is a power of two or zero.
if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
match(V, m_Shr(m_Value(X), m_Value()))))
@@ -882,10 +873,10 @@ bool llvm::isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth) {
unsigned BitWidth = V->getType()->getScalarSizeInBits();
APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
- ComputeMaskedBits(X, LHSZeroBits, LHSOneBits, 0, Depth);
+ computeKnownBits(X, LHSZeroBits, LHSOneBits, nullptr, Depth);
APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
- ComputeMaskedBits(Y, RHSZeroBits, RHSOneBits, 0, Depth);
+ computeKnownBits(Y, RHSZeroBits, RHSOneBits, nullptr, Depth);
// If i8 V is a power of two or zero:
// ZeroBits: 1 1 1 0 1 1 1 1
// ~ZeroBits: 0 0 0 1 0 0 0 0
@@ -1005,7 +996,7 @@ bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth) {
unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), TD);
// X | Y != 0 if X != 0 or Y != 0.
- Value *X = 0, *Y = 0;
+ Value *X = nullptr, *Y = nullptr;
if (match(V, m_Or(m_Value(X), m_Value(Y))))
return isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth);
@@ -1023,7 +1014,7 @@ bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth) {
APInt KnownZero(BitWidth, 0);
APInt KnownOne(BitWidth, 0);
- ComputeMaskedBits(X, KnownZero, KnownOne, TD, Depth);
+ computeKnownBits(X, KnownZero, KnownOne, TD, Depth);
if (KnownOne[0])
return true;
}
@@ -1065,12 +1056,12 @@ bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth) {
APInt Mask = APInt::getSignedMaxValue(BitWidth);
// The sign bit of X is set. If some other bit is set then X is not equal
// to INT_MIN.
- ComputeMaskedBits(X, KnownZero, KnownOne, TD, Depth);
+ computeKnownBits(X, KnownZero, KnownOne, TD, Depth);
if ((KnownOne & Mask) != 0)
return true;
// The sign bit of Y is set. If some other bit is set then Y is not equal
// to INT_MIN.
- ComputeMaskedBits(Y, KnownZero, KnownOne, TD, Depth);
+ computeKnownBits(Y, KnownZero, KnownOne, TD, Depth);
if ((KnownOne & Mask) != 0)
return true;
}
@@ -1100,7 +1091,7 @@ bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth) {
if (!BitWidth) return false;
APInt KnownZero(BitWidth, 0);
APInt KnownOne(BitWidth, 0);
- ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
+ computeKnownBits(V, KnownZero, KnownOne, TD, Depth);
return KnownOne != 0;
}
@@ -1116,8 +1107,7 @@ bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth) {
bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
const DataLayout *TD, unsigned Depth) {
APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
- ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ computeKnownBits(V, KnownZero, KnownOne, TD, Depth);
return (KnownZero & Mask) == Mask;
}
@@ -1142,7 +1132,7 @@ unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD,
unsigned Tmp, Tmp2;
unsigned FirstAnswer = 1;
- // Note that ConstantInt is handled by the general ComputeMaskedBits case
+ // Note that ConstantInt is handled by the general computeKnownBits case
// below.
if (Depth == 6)
@@ -1187,7 +1177,7 @@ unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD,
FirstAnswer = std::min(Tmp, Tmp2);
// We computed what we know about the sign bits as our first
// answer. Now proceed to the generic code that uses
- // ComputeMaskedBits, and pick whichever answer is better.
+ // computeKnownBits, and pick whichever answer is better.
}
break;
@@ -1207,7 +1197,7 @@ unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD,
if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1)))
if (CRHS->isAllOnesValue()) {
APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
- ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
+ computeKnownBits(U->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
// If the input is known to be 0 or 1, the output is 0/-1, which is all
// sign bits set.
@@ -1232,7 +1222,7 @@ unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD,
if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0)))
if (CLHS->isNullValue()) {
APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
- ComputeMaskedBits(U->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
+ computeKnownBits(U->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
// If the input is known to be 0 or 1, the output is 0/-1, which is all
// sign bits set.
if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
@@ -1278,7 +1268,7 @@ unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD,
// use this information.
APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
APInt Mask;
- ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
+ computeKnownBits(V, KnownZero, KnownOne, TD, Depth);
if (KnownZero.isNegative()) { // sign bit is 0
Mask = KnownZero;
@@ -1364,7 +1354,7 @@ bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Op1 = ConstantInt::get(V->getContext(), API);
}
- Value *Mul0 = NULL;
+ Value *Mul0 = nullptr;
if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
if (Constant *Op1C = dyn_cast<Constant>(Op1))
if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
@@ -1388,7 +1378,7 @@ bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
}
}
- Value *Mul1 = NULL;
+ Value *Mul1 = nullptr;
if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
if (Constant *Op0C = dyn_cast<Constant>(Op0))
if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
@@ -1432,7 +1422,7 @@ bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
return 1; // Limit search depth.
const Operator *I = dyn_cast<Operator>(V);
- if (I == 0) return false;
+ if (!I) return false;
// Check if the nsz fast-math flag is set
if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
@@ -1513,7 +1503,7 @@ Value *llvm::isBytewiseValue(Value *V) {
// If the top/bottom halves aren't the same, reject it.
if (Val != Val2)
- return 0;
+ return nullptr;
}
return ConstantInt::get(V->getContext(), Val);
}
@@ -1525,11 +1515,11 @@ Value *llvm::isBytewiseValue(Value *V) {
Value *Elt = CA->getElementAsConstant(0);
Value *Val = isBytewiseValue(Elt);
if (!Val)
- return 0;
+ return nullptr;
for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
if (CA->getElementAsConstant(I) != Elt)
- return 0;
+ return nullptr;
return Val;
}
@@ -1540,7 +1530,7 @@ Value *llvm::isBytewiseValue(Value *V) {
// %c = or i16 %a, %b
// but until there is an example that actually needs this, it doesn't seem
// worth worrying about.
- return 0;
+ return nullptr;
}
@@ -1590,7 +1580,7 @@ static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
Value *V = FindInsertedValue(From, Idxs);
if (!V)
- return NULL;
+ return nullptr;
// Insert the value in the new (sub) aggregrate
return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
@@ -1641,7 +1631,7 @@ Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
if (Constant *C = dyn_cast<Constant>(V)) {
C = C->getAggregateElement(idx_range[0]);
- if (C == 0) return 0;
+ if (!C) return nullptr;
return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
}
@@ -1654,7 +1644,7 @@ Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
if (req_idx == idx_range.end()) {
// We can't handle this without inserting insertvalues
if (!InsertBefore)
- return 0;
+ return nullptr;
// The requested index identifies a part of a nested aggregate. Handle
// this specially. For example,
@@ -1708,7 +1698,7 @@ Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
}
// Otherwise, we don't know (such as, extracting from a function return value
// or load instruction)
- return 0;
+ return nullptr;
}
/// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if
@@ -1769,13 +1759,13 @@ bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
// Make sure the index-ee is a pointer to array of i8.
PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
- if (AT == 0 || !AT->getElementType()->isIntegerTy(8))
+ if (!AT || !AT->getElementType()->isIntegerTy(8))
return false;
// Check to make sure that the first operand of the GEP is an integer and
// has value 0 so that we are sure we're indexing into the initializer.
const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
- if (FirstIdx == 0 || !FirstIdx->isZero())
+ if (!FirstIdx || !FirstIdx->isZero())
return false;
// If the second index isn't a ConstantInt, then this is a variable index
@@ -1807,7 +1797,7 @@ bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
// Must be a Constant Array
const ConstantDataArray *Array =
dyn_cast<ConstantDataArray>(GV->getInitializer());
- if (Array == 0 || !Array->isString())
+ if (!Array || !Array->isString())
return false;
// Get the number of elements in the array
@@ -1913,7 +1903,7 @@ llvm::GetUnderlyingObject(Value *V, const DataLayout *TD, unsigned MaxLookup) {
// See if InstructionSimplify knows any relevant tricks.
if (Instruction *I = dyn_cast<Instruction>(V))
// TODO: Acquire a DominatorTree and use it.
- if (Value *Simplified = SimplifyInstruction(I, TD, 0)) {
+ if (Value *Simplified = SimplifyInstruction(I, TD, nullptr)) {
V = Simplified;
continue;
}
@@ -2001,7 +1991,7 @@ bool llvm::isSafeToSpeculativelyExecute(const Value *V,
return false;
APInt KnownZero(BitWidth, 0);
APInt KnownOne(BitWidth, 0);
- ComputeMaskedBits(Op, KnownZero, KnownOne, TD);
+ computeKnownBits(Op, KnownZero, KnownOne, TD);
return !!KnownZero;
}
case Instruction::Load: {
@@ -2076,14 +2066,18 @@ bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) {
// Alloca never returns null, malloc might.
if (isa<AllocaInst>(V)) return true;
- // A byval or inalloca argument is never null.
+ // A byval, inalloca, or nonnull argument is never null.
if (const Argument *A = dyn_cast<Argument>(V))
- return A->hasByValOrInAllocaAttr();
+ return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
// Global values are not null unless extern weak.
if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
return !GV->hasExternalWeakLinkage();
+ if (ImmutableCallSite CS = V)
+ if (CS.paramHasAttr(0, Attribute::NonNull))
+ return true;
+
// operator new never returns null.
if (isOperatorNewLikeFn(V, TLI, /*LookThroughBitCast=*/true))
return true;