aboutsummaryrefslogtreecommitdiffstats
path: root/lib/ExecutionEngine
diff options
context:
space:
mode:
Diffstat (limited to 'lib/ExecutionEngine')
-rw-r--r--lib/ExecutionEngine/CMakeLists.txt1
-rw-r--r--lib/ExecutionEngine/ExecutionEngine.cpp176
-rw-r--r--lib/ExecutionEngine/ExecutionEngineBindings.cpp192
-rw-r--r--lib/ExecutionEngine/Interpreter/Execution.cpp848
-rw-r--r--lib/ExecutionEngine/Interpreter/Interpreter.h1
-rw-r--r--lib/ExecutionEngine/JIT/Android.mk1
-rw-r--r--lib/ExecutionEngine/JIT/CMakeLists.txt1
-rw-r--r--lib/ExecutionEngine/JIT/JITDwarfEmitter.cpp596
-rw-r--r--lib/ExecutionEngine/JIT/JITDwarfEmitter.h77
-rw-r--r--lib/ExecutionEngine/JIT/JITEmitter.cpp52
-rw-r--r--lib/ExecutionEngine/JIT/JITMemoryManager.cpp37
-rw-r--r--lib/ExecutionEngine/MCJIT/MCJIT.cpp93
-rw-r--r--lib/ExecutionEngine/MCJIT/MCJIT.h23
-rw-r--r--lib/ExecutionEngine/MCJIT/SectionMemoryManager.cpp69
-rw-r--r--lib/ExecutionEngine/RTDyldMemoryManager.cpp118
-rw-r--r--lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp170
-rw-r--r--lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp445
-rw-r--r--lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.h48
-rw-r--r--lib/ExecutionEngine/RuntimeDyld/RuntimeDyldImpl.h76
-rw-r--r--lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.cpp178
-rw-r--r--lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.h30
-rw-r--r--lib/ExecutionEngine/TargetSelect.cpp8
22 files changed, 1999 insertions, 1241 deletions
diff --git a/lib/ExecutionEngine/CMakeLists.txt b/lib/ExecutionEngine/CMakeLists.txt
index cb11bfe..3102c7b 100644
--- a/lib/ExecutionEngine/CMakeLists.txt
+++ b/lib/ExecutionEngine/CMakeLists.txt
@@ -3,6 +3,7 @@
add_llvm_library(LLVMExecutionEngine
ExecutionEngine.cpp
ExecutionEngineBindings.cpp
+ RTDyldMemoryManager.cpp
TargetSelect.cpp
)
diff --git a/lib/ExecutionEngine/ExecutionEngine.cpp b/lib/ExecutionEngine/ExecutionEngine.cpp
index 3d59d25..c463e9f 100644
--- a/lib/ExecutionEngine/ExecutionEngine.cpp
+++ b/lib/ExecutionEngine/ExecutionEngine.cpp
@@ -14,6 +14,7 @@
#define DEBUG_TYPE "jit"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
+#include "llvm/ExecutionEngine/JITMemoryManager.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ExecutionEngine/GenericValue.h"
@@ -47,7 +48,7 @@ ExecutionEngine *(*ExecutionEngine::JITCtor)(
ExecutionEngine *(*ExecutionEngine::MCJITCtor)(
Module *M,
std::string *ErrorStr,
- JITMemoryManager *JMM,
+ RTDyldMemoryManager *MCJMM,
bool GVsWithCode,
TargetMachine *TM) = 0;
ExecutionEngine *(*ExecutionEngine::InterpCtor)(Module *M,
@@ -117,7 +118,7 @@ char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) {
}
bool ExecutionEngine::removeModule(Module *M) {
- for(SmallVector<Module *, 1>::iterator I = Modules.begin(),
+ for(SmallVectorImpl<Module *>::iterator I = Modules.begin(),
E = Modules.end(); I != E; ++I) {
Module *Found = *I;
if (Found == M) {
@@ -455,10 +456,12 @@ ExecutionEngine *EngineBuilder::create(TargetMachine *TM) {
if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr))
return 0;
+ assert(!(JMM && MCJMM));
+
// If the user specified a memory manager but didn't specify which engine to
// create, we assume they only want the JIT, and we fail if they only want
// the interpreter.
- if (JMM) {
+ if (JMM || MCJMM) {
if (WhichEngine & EngineKind::JIT)
WhichEngine = EngineKind::JIT;
else {
@@ -467,6 +470,14 @@ ExecutionEngine *EngineBuilder::create(TargetMachine *TM) {
return 0;
}
}
+
+ if (MCJMM && ! UseMCJIT) {
+ if (ErrorStr)
+ *ErrorStr =
+ "Cannot create a legacy JIT with a runtime dyld memory "
+ "manager.";
+ return 0;
+ }
// Unless the interpreter was explicitly selected or the JIT is not linked,
// try making a JIT.
@@ -480,7 +491,7 @@ ExecutionEngine *EngineBuilder::create(TargetMachine *TM) {
if (UseMCJIT && ExecutionEngine::MCJITCtor) {
ExecutionEngine *EE =
- ExecutionEngine::MCJITCtor(M, ErrorStr, JMM,
+ ExecutionEngine::MCJITCtor(M, ErrorStr, MCJMM ? MCJMM : JMM,
AllocateGVsWithCode, TheTM.take());
if (EE) return EE;
} else if (ExecutionEngine::JITCtor) {
@@ -535,6 +546,8 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
if (isa<UndefValue>(C)) {
GenericValue Result;
switch (C->getType()->getTypeID()) {
+ default:
+ break;
case Type::IntegerTyID:
case Type::X86_FP80TyID:
case Type::FP128TyID:
@@ -543,7 +556,16 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
// with the correct bit width.
Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0);
break;
- default:
+ case Type::VectorTyID:
+ // if the whole vector is 'undef' just reserve memory for the value.
+ const VectorType* VTy = dyn_cast<VectorType>(C->getType());
+ const Type *ElemTy = VTy->getElementType();
+ unsigned int elemNum = VTy->getNumElements();
+ Result.AggregateVal.resize(elemNum);
+ if (ElemTy->isIntegerTy())
+ for (unsigned int i = 0; i < elemNum; ++i)
+ Result.AggregateVal[i].IntVal =
+ APInt(ElemTy->getPrimitiveSizeInBits(), 0);
break;
}
return Result;
@@ -825,6 +847,101 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
else
llvm_unreachable("Unknown constant pointer type!");
break;
+ case Type::VectorTyID: {
+ unsigned elemNum;
+ Type* ElemTy;
+ const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C);
+ const ConstantVector *CV = dyn_cast<ConstantVector>(C);
+ const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(C);
+
+ if (CDV) {
+ elemNum = CDV->getNumElements();
+ ElemTy = CDV->getElementType();
+ } else if (CV || CAZ) {
+ VectorType* VTy = dyn_cast<VectorType>(C->getType());
+ elemNum = VTy->getNumElements();
+ ElemTy = VTy->getElementType();
+ } else {
+ llvm_unreachable("Unknown constant vector type!");
+ }
+
+ Result.AggregateVal.resize(elemNum);
+ // Check if vector holds floats.
+ if(ElemTy->isFloatTy()) {
+ if (CAZ) {
+ GenericValue floatZero;
+ floatZero.FloatVal = 0.f;
+ std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(),
+ floatZero);
+ break;
+ }
+ if(CV) {
+ for (unsigned i = 0; i < elemNum; ++i)
+ if (!isa<UndefValue>(CV->getOperand(i)))
+ Result.AggregateVal[i].FloatVal = cast<ConstantFP>(
+ CV->getOperand(i))->getValueAPF().convertToFloat();
+ break;
+ }
+ if(CDV)
+ for (unsigned i = 0; i < elemNum; ++i)
+ Result.AggregateVal[i].FloatVal = CDV->getElementAsFloat(i);
+
+ break;
+ }
+ // Check if vector holds doubles.
+ if (ElemTy->isDoubleTy()) {
+ if (CAZ) {
+ GenericValue doubleZero;
+ doubleZero.DoubleVal = 0.0;
+ std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(),
+ doubleZero);
+ break;
+ }
+ if(CV) {
+ for (unsigned i = 0; i < elemNum; ++i)
+ if (!isa<UndefValue>(CV->getOperand(i)))
+ Result.AggregateVal[i].DoubleVal = cast<ConstantFP>(
+ CV->getOperand(i))->getValueAPF().convertToDouble();
+ break;
+ }
+ if(CDV)
+ for (unsigned i = 0; i < elemNum; ++i)
+ Result.AggregateVal[i].DoubleVal = CDV->getElementAsDouble(i);
+
+ break;
+ }
+ // Check if vector holds integers.
+ if (ElemTy->isIntegerTy()) {
+ if (CAZ) {
+ GenericValue intZero;
+ intZero.IntVal = APInt(ElemTy->getScalarSizeInBits(), 0ull);
+ std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(),
+ intZero);
+ break;
+ }
+ if(CV) {
+ for (unsigned i = 0; i < elemNum; ++i)
+ if (!isa<UndefValue>(CV->getOperand(i)))
+ Result.AggregateVal[i].IntVal = cast<ConstantInt>(
+ CV->getOperand(i))->getValue();
+ else {
+ Result.AggregateVal[i].IntVal =
+ APInt(CV->getOperand(i)->getType()->getPrimitiveSizeInBits(), 0);
+ }
+ break;
+ }
+ if(CDV)
+ for (unsigned i = 0; i < elemNum; ++i)
+ Result.AggregateVal[i].IntVal = APInt(
+ CDV->getElementType()->getPrimitiveSizeInBits(),
+ CDV->getElementAsInteger(i));
+
+ break;
+ }
+ llvm_unreachable("Unknown constant pointer type!");
+ }
+ break;
+
default:
SmallString<256> Msg;
raw_svector_ostream OS(Msg);
@@ -842,7 +959,7 @@ static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!");
const uint8_t *Src = (const uint8_t *)IntVal.getRawData();
- if (sys::isLittleEndianHost()) {
+ if (sys::IsLittleEndianHost) {
// Little-endian host - the source is ordered from LSB to MSB. Order the
// destination from LSB to MSB: Do a straight copy.
memcpy(Dst, Src, StoreBytes);
@@ -866,6 +983,9 @@ void ExecutionEngine::StoreValueToMemory(const GenericValue &Val,
const unsigned StoreBytes = getDataLayout()->getTypeStoreSize(Ty);
switch (Ty->getTypeID()) {
+ default:
+ dbgs() << "Cannot store value of type " << *Ty << "!\n";
+ break;
case Type::IntegerTyID:
StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes);
break;
@@ -885,11 +1005,22 @@ void ExecutionEngine::StoreValueToMemory(const GenericValue &Val,
*((PointerTy*)Ptr) = Val.PointerVal;
break;
- default:
- dbgs() << "Cannot store value of type " << *Ty << "!\n";
+ case Type::VectorTyID:
+ for (unsigned i = 0; i < Val.AggregateVal.size(); ++i) {
+ if (cast<VectorType>(Ty)->getElementType()->isDoubleTy())
+ *(((double*)Ptr)+i) = Val.AggregateVal[i].DoubleVal;
+ if (cast<VectorType>(Ty)->getElementType()->isFloatTy())
+ *(((float*)Ptr)+i) = Val.AggregateVal[i].FloatVal;
+ if (cast<VectorType>(Ty)->getElementType()->isIntegerTy()) {
+ unsigned numOfBytes =(Val.AggregateVal[i].IntVal.getBitWidth()+7)/8;
+ StoreIntToMemory(Val.AggregateVal[i].IntVal,
+ (uint8_t*)Ptr + numOfBytes*i, numOfBytes);
+ }
+ }
+ break;
}
- if (sys::isLittleEndianHost() != getDataLayout()->isLittleEndian())
+ if (sys::IsLittleEndianHost != getDataLayout()->isLittleEndian())
// Host and target are different endian - reverse the stored bytes.
std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr);
}
@@ -901,7 +1032,7 @@ static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) {
uint8_t *Dst = reinterpret_cast<uint8_t *>(
const_cast<uint64_t *>(IntVal.getRawData()));
- if (sys::isLittleEndianHost())
+ if (sys::IsLittleEndianHost)
// Little-endian host - the destination must be ordered from LSB to MSB.
// The source is ordered from LSB to MSB: Do a straight copy.
memcpy(Dst, Src, LoadBytes);
@@ -951,6 +1082,31 @@ void ExecutionEngine::LoadValueFromMemory(GenericValue &Result,
Result.IntVal = APInt(80, y);
break;
}
+ case Type::VectorTyID: {
+ const VectorType *VT = cast<VectorType>(Ty);
+ const Type *ElemT = VT->getElementType();
+ const unsigned numElems = VT->getNumElements();
+ if (ElemT->isFloatTy()) {
+ Result.AggregateVal.resize(numElems);
+ for (unsigned i = 0; i < numElems; ++i)
+ Result.AggregateVal[i].FloatVal = *((float*)Ptr+i);
+ }
+ if (ElemT->isDoubleTy()) {
+ Result.AggregateVal.resize(numElems);
+ for (unsigned i = 0; i < numElems; ++i)
+ Result.AggregateVal[i].DoubleVal = *((double*)Ptr+i);
+ }
+ if (ElemT->isIntegerTy()) {
+ GenericValue intZero;
+ const unsigned elemBitWidth = cast<IntegerType>(ElemT)->getBitWidth();
+ intZero.IntVal = APInt(elemBitWidth, 0);
+ Result.AggregateVal.resize(numElems, intZero);
+ for (unsigned i = 0; i < numElems; ++i)
+ LoadIntFromMemory(Result.AggregateVal[i].IntVal,
+ (uint8_t*)Ptr+((elemBitWidth+7)/8)*i, (elemBitWidth+7)/8);
+ }
+ break;
+ }
default:
SmallString<256> Msg;
raw_svector_ostream OS(Msg);
diff --git a/lib/ExecutionEngine/ExecutionEngineBindings.cpp b/lib/ExecutionEngine/ExecutionEngineBindings.cpp
index f4e8246..88e73bf 100644
--- a/lib/ExecutionEngine/ExecutionEngineBindings.cpp
+++ b/lib/ExecutionEngine/ExecutionEngineBindings.cpp
@@ -15,11 +15,34 @@
#include "llvm-c/ExecutionEngine.h"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/ExecutionEngine/GenericValue.h"
+#include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Module.h"
#include "llvm/Support/ErrorHandling.h"
#include <cstring>
using namespace llvm;
+// Wrapping the C bindings types.
+DEFINE_SIMPLE_CONVERSION_FUNCTIONS(GenericValue, LLVMGenericValueRef)
+
+inline DataLayout *unwrap(LLVMTargetDataRef P) {
+ return reinterpret_cast<DataLayout*>(P);
+}
+
+inline LLVMTargetDataRef wrap(const DataLayout *P) {
+ return reinterpret_cast<LLVMTargetDataRef>(const_cast<DataLayout*>(P));
+}
+
+inline TargetLibraryInfo *unwrap(LLVMTargetLibraryInfoRef P) {
+ return reinterpret_cast<TargetLibraryInfo*>(P);
+}
+
+inline LLVMTargetLibraryInfoRef wrap(const TargetLibraryInfo *P) {
+ TargetLibraryInfo *X = const_cast<TargetLibraryInfo*>(P);
+ return reinterpret_cast<LLVMTargetLibraryInfoRef>(X);
+}
+
/*===-- Operations on generic values --------------------------------------===*/
LLVMGenericValueRef LLVMCreateGenericValueOfInt(LLVMTypeRef Ty,
@@ -132,6 +155,59 @@ LLVMBool LLVMCreateJITCompilerForModule(LLVMExecutionEngineRef *OutJIT,
return 1;
}
+void LLVMInitializeMCJITCompilerOptions(LLVMMCJITCompilerOptions *PassedOptions,
+ size_t SizeOfPassedOptions) {
+ LLVMMCJITCompilerOptions options;
+ memset(&options, 0, sizeof(options)); // Most fields are zero by default.
+ options.CodeModel = LLVMCodeModelJITDefault;
+
+ memcpy(PassedOptions, &options,
+ std::min(sizeof(options), SizeOfPassedOptions));
+}
+
+LLVMBool LLVMCreateMCJITCompilerForModule(
+ LLVMExecutionEngineRef *OutJIT, LLVMModuleRef M,
+ LLVMMCJITCompilerOptions *PassedOptions, size_t SizeOfPassedOptions,
+ char **OutError) {
+ LLVMMCJITCompilerOptions options;
+ // If the user passed a larger sized options struct, then they were compiled
+ // against a newer LLVM. Tell them that something is wrong.
+ if (SizeOfPassedOptions > sizeof(options)) {
+ *OutError = strdup(
+ "Refusing to use options struct that is larger than my own; assuming "
+ "LLVM library mismatch.");
+ return 1;
+ }
+
+ // Defend against the user having an old version of the API by ensuring that
+ // any fields they didn't see are cleared. We must defend against fields being
+ // set to the bitwise equivalent of zero, and assume that this means "do the
+ // default" as if that option hadn't been available.
+ LLVMInitializeMCJITCompilerOptions(&options, sizeof(options));
+ memcpy(&options, PassedOptions, SizeOfPassedOptions);
+
+ TargetOptions targetOptions;
+ targetOptions.NoFramePointerElim = options.NoFramePointerElim;
+ targetOptions.EnableFastISel = options.EnableFastISel;
+
+ std::string Error;
+ EngineBuilder builder(unwrap(M));
+ builder.setEngineKind(EngineKind::JIT)
+ .setErrorStr(&Error)
+ .setUseMCJIT(true)
+ .setOptLevel((CodeGenOpt::Level)options.OptLevel)
+ .setCodeModel(unwrap(options.CodeModel))
+ .setTargetOptions(targetOptions);
+ if (options.MCJMM)
+ builder.setMCJITMemoryManager(unwrap(options.MCJMM));
+ if (ExecutionEngine *JIT = builder.create()) {
+ *OutJIT = wrap(JIT);
+ return 0;
+ }
+ *OutError = strdup(Error.c_str());
+ return 1;
+}
+
LLVMBool LLVMCreateExecutionEngine(LLVMExecutionEngineRef *OutEE,
LLVMModuleProviderRef MP,
char **OutError) {
@@ -176,6 +252,8 @@ void LLVMRunStaticDestructors(LLVMExecutionEngineRef EE) {
int LLVMRunFunctionAsMain(LLVMExecutionEngineRef EE, LLVMValueRef F,
unsigned ArgC, const char * const *ArgV,
const char * const *EnvP) {
+ unwrap(EE)->finalizeObject();
+
std::vector<std::string> ArgVec;
for (unsigned I = 0; I != ArgC; ++I)
ArgVec.push_back(ArgV[I]);
@@ -186,6 +264,8 @@ int LLVMRunFunctionAsMain(LLVMExecutionEngineRef EE, LLVMValueRef F,
LLVMGenericValueRef LLVMRunFunction(LLVMExecutionEngineRef EE, LLVMValueRef F,
unsigned NumArgs,
LLVMGenericValueRef *Args) {
+ unwrap(EE)->finalizeObject();
+
std::vector<GenericValue> ArgVec;
ArgVec.reserve(NumArgs);
for (unsigned I = 0; I != NumArgs; ++I)
@@ -234,7 +314,8 @@ LLVMBool LLVMFindFunction(LLVMExecutionEngineRef EE, const char *Name,
return 1;
}
-void *LLVMRecompileAndRelinkFunction(LLVMExecutionEngineRef EE, LLVMValueRef Fn) {
+void *LLVMRecompileAndRelinkFunction(LLVMExecutionEngineRef EE,
+ LLVMValueRef Fn) {
return unwrap(EE)->recompileAndRelinkFunction(unwrap<Function>(Fn));
}
@@ -248,5 +329,114 @@ void LLVMAddGlobalMapping(LLVMExecutionEngineRef EE, LLVMValueRef Global,
}
void *LLVMGetPointerToGlobal(LLVMExecutionEngineRef EE, LLVMValueRef Global) {
+ unwrap(EE)->finalizeObject();
+
return unwrap(EE)->getPointerToGlobal(unwrap<GlobalValue>(Global));
}
+
+/*===-- Operations on memory managers -------------------------------------===*/
+
+namespace {
+
+struct SimpleBindingMMFunctions {
+ uint8_t *(*AllocateCodeSection)(void *Opaque,
+ uintptr_t Size, unsigned Alignment,
+ unsigned SectionID);
+ uint8_t *(*AllocateDataSection)(void *Opaque,
+ uintptr_t Size, unsigned Alignment,
+ unsigned SectionID, LLVMBool IsReadOnly);
+ LLVMBool (*FinalizeMemory)(void *Opaque, char **ErrMsg);
+ void (*Destroy)(void *Opaque);
+};
+
+class SimpleBindingMemoryManager : public RTDyldMemoryManager {
+public:
+ SimpleBindingMemoryManager(const SimpleBindingMMFunctions& Functions,
+ void *Opaque);
+ virtual ~SimpleBindingMemoryManager();
+
+ virtual uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment,
+ unsigned SectionID);
+
+ virtual uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment,
+ unsigned SectionID,
+ bool isReadOnly);
+
+ virtual bool finalizeMemory(std::string *ErrMsg);
+
+private:
+ SimpleBindingMMFunctions Functions;
+ void *Opaque;
+};
+
+SimpleBindingMemoryManager::SimpleBindingMemoryManager(
+ const SimpleBindingMMFunctions& Functions,
+ void *Opaque)
+ : Functions(Functions), Opaque(Opaque) {
+ assert(Functions.AllocateCodeSection &&
+ "No AllocateCodeSection function provided!");
+ assert(Functions.AllocateDataSection &&
+ "No AllocateDataSection function provided!");
+ assert(Functions.FinalizeMemory &&
+ "No FinalizeMemory function provided!");
+ assert(Functions.Destroy &&
+ "No Destroy function provided!");
+}
+
+SimpleBindingMemoryManager::~SimpleBindingMemoryManager() {
+ Functions.Destroy(Opaque);
+}
+
+uint8_t *SimpleBindingMemoryManager::allocateCodeSection(
+ uintptr_t Size, unsigned Alignment, unsigned SectionID) {
+ return Functions.AllocateCodeSection(Opaque, Size, Alignment, SectionID);
+}
+
+uint8_t *SimpleBindingMemoryManager::allocateDataSection(
+ uintptr_t Size, unsigned Alignment, unsigned SectionID, bool isReadOnly) {
+ return Functions.AllocateDataSection(Opaque, Size, Alignment, SectionID,
+ isReadOnly);
+}
+
+bool SimpleBindingMemoryManager::finalizeMemory(std::string *ErrMsg) {
+ char *errMsgCString = 0;
+ bool result = Functions.FinalizeMemory(Opaque, &errMsgCString);
+ assert((result || !errMsgCString) &&
+ "Did not expect an error message if FinalizeMemory succeeded");
+ if (errMsgCString) {
+ if (ErrMsg)
+ *ErrMsg = errMsgCString;
+ free(errMsgCString);
+ }
+ return result;
+}
+
+} // anonymous namespace
+
+LLVMMCJITMemoryManagerRef LLVMCreateSimpleMCJITMemoryManager(
+ void *Opaque,
+ uint8_t *(*AllocateCodeSection)(void *Opaque,
+ uintptr_t Size, unsigned Alignment,
+ unsigned SectionID),
+ uint8_t *(*AllocateDataSection)(void *Opaque,
+ uintptr_t Size, unsigned Alignment,
+ unsigned SectionID, LLVMBool IsReadOnly),
+ LLVMBool (*FinalizeMemory)(void *Opaque, char **ErrMsg),
+ void (*Destroy)(void *Opaque)) {
+
+ if (!AllocateCodeSection || !AllocateDataSection || !FinalizeMemory ||
+ !Destroy)
+ return NULL;
+
+ SimpleBindingMMFunctions functions;
+ functions.AllocateCodeSection = AllocateCodeSection;
+ functions.AllocateDataSection = AllocateDataSection;
+ functions.FinalizeMemory = FinalizeMemory;
+ functions.Destroy = Destroy;
+ return wrap(new SimpleBindingMemoryManager(functions, Opaque));
+}
+
+void LLVMDisposeMCJITMemoryManager(LLVMMCJITMemoryManagerRef MM) {
+ delete unwrap(MM);
+}
+
diff --git a/lib/ExecutionEngine/Interpreter/Execution.cpp b/lib/ExecutionEngine/Interpreter/Execution.cpp
index ec4f7f6..fc3d579 100644
--- a/lib/ExecutionEngine/Interpreter/Execution.cpp
+++ b/lib/ExecutionEngine/Interpreter/Execution.cpp
@@ -114,6 +114,15 @@ static void executeFRemInst(GenericValue &Dest, GenericValue Src1,
Dest.IntVal = APInt(1,Src1.IntVal.OP(Src2.IntVal)); \
break;
+#define IMPLEMENT_VECTOR_INTEGER_ICMP(OP, TY) \
+ case Type::VectorTyID: { \
+ assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); \
+ Dest.AggregateVal.resize( Src1.AggregateVal.size() ); \
+ for( uint32_t _i=0;_i<Src1.AggregateVal.size();_i++) \
+ Dest.AggregateVal[_i].IntVal = APInt(1, \
+ Src1.AggregateVal[_i].IntVal.OP(Src2.AggregateVal[_i].IntVal));\
+ } break;
+
// Handle pointers specially because they must be compared with only as much
// width as the host has. We _do not_ want to be comparing 64 bit values when
// running on a 32-bit target, otherwise the upper 32 bits might mess up
@@ -129,6 +138,7 @@ static GenericValue executeICMP_EQ(GenericValue Src1, GenericValue Src2,
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_INTEGER_ICMP(eq,Ty);
+ IMPLEMENT_VECTOR_INTEGER_ICMP(eq,Ty);
IMPLEMENT_POINTER_ICMP(==);
default:
dbgs() << "Unhandled type for ICMP_EQ predicate: " << *Ty << "\n";
@@ -142,6 +152,7 @@ static GenericValue executeICMP_NE(GenericValue Src1, GenericValue Src2,
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_INTEGER_ICMP(ne,Ty);
+ IMPLEMENT_VECTOR_INTEGER_ICMP(ne,Ty);
IMPLEMENT_POINTER_ICMP(!=);
default:
dbgs() << "Unhandled type for ICMP_NE predicate: " << *Ty << "\n";
@@ -155,6 +166,7 @@ static GenericValue executeICMP_ULT(GenericValue Src1, GenericValue Src2,
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_INTEGER_ICMP(ult,Ty);
+ IMPLEMENT_VECTOR_INTEGER_ICMP(ult,Ty);
IMPLEMENT_POINTER_ICMP(<);
default:
dbgs() << "Unhandled type for ICMP_ULT predicate: " << *Ty << "\n";
@@ -168,6 +180,7 @@ static GenericValue executeICMP_SLT(GenericValue Src1, GenericValue Src2,
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_INTEGER_ICMP(slt,Ty);
+ IMPLEMENT_VECTOR_INTEGER_ICMP(slt,Ty);
IMPLEMENT_POINTER_ICMP(<);
default:
dbgs() << "Unhandled type for ICMP_SLT predicate: " << *Ty << "\n";
@@ -181,6 +194,7 @@ static GenericValue executeICMP_UGT(GenericValue Src1, GenericValue Src2,
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_INTEGER_ICMP(ugt,Ty);
+ IMPLEMENT_VECTOR_INTEGER_ICMP(ugt,Ty);
IMPLEMENT_POINTER_ICMP(>);
default:
dbgs() << "Unhandled type for ICMP_UGT predicate: " << *Ty << "\n";
@@ -194,6 +208,7 @@ static GenericValue executeICMP_SGT(GenericValue Src1, GenericValue Src2,
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_INTEGER_ICMP(sgt,Ty);
+ IMPLEMENT_VECTOR_INTEGER_ICMP(sgt,Ty);
IMPLEMENT_POINTER_ICMP(>);
default:
dbgs() << "Unhandled type for ICMP_SGT predicate: " << *Ty << "\n";
@@ -207,6 +222,7 @@ static GenericValue executeICMP_ULE(GenericValue Src1, GenericValue Src2,
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_INTEGER_ICMP(ule,Ty);
+ IMPLEMENT_VECTOR_INTEGER_ICMP(ule,Ty);
IMPLEMENT_POINTER_ICMP(<=);
default:
dbgs() << "Unhandled type for ICMP_ULE predicate: " << *Ty << "\n";
@@ -220,6 +236,7 @@ static GenericValue executeICMP_SLE(GenericValue Src1, GenericValue Src2,
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_INTEGER_ICMP(sle,Ty);
+ IMPLEMENT_VECTOR_INTEGER_ICMP(sle,Ty);
IMPLEMENT_POINTER_ICMP(<=);
default:
dbgs() << "Unhandled type for ICMP_SLE predicate: " << *Ty << "\n";
@@ -233,6 +250,7 @@ static GenericValue executeICMP_UGE(GenericValue Src1, GenericValue Src2,
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_INTEGER_ICMP(uge,Ty);
+ IMPLEMENT_VECTOR_INTEGER_ICMP(uge,Ty);
IMPLEMENT_POINTER_ICMP(>=);
default:
dbgs() << "Unhandled type for ICMP_UGE predicate: " << *Ty << "\n";
@@ -246,6 +264,7 @@ static GenericValue executeICMP_SGE(GenericValue Src1, GenericValue Src2,
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_INTEGER_ICMP(sge,Ty);
+ IMPLEMENT_VECTOR_INTEGER_ICMP(sge,Ty);
IMPLEMENT_POINTER_ICMP(>=);
default:
dbgs() << "Unhandled type for ICMP_SGE predicate: " << *Ty << "\n";
@@ -285,12 +304,29 @@ void Interpreter::visitICmpInst(ICmpInst &I) {
Dest.IntVal = APInt(1,Src1.TY##Val OP Src2.TY##Val); \
break
+#define IMPLEMENT_VECTOR_FCMP_T(OP, TY) \
+ assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); \
+ Dest.AggregateVal.resize( Src1.AggregateVal.size() ); \
+ for( uint32_t _i=0;_i<Src1.AggregateVal.size();_i++) \
+ Dest.AggregateVal[_i].IntVal = APInt(1, \
+ Src1.AggregateVal[_i].TY##Val OP Src2.AggregateVal[_i].TY##Val);\
+ break;
+
+#define IMPLEMENT_VECTOR_FCMP(OP) \
+ case Type::VectorTyID: \
+ if(dyn_cast<VectorType>(Ty)->getElementType()->isFloatTy()) { \
+ IMPLEMENT_VECTOR_FCMP_T(OP, Float); \
+ } else { \
+ IMPLEMENT_VECTOR_FCMP_T(OP, Double); \
+ }
+
static GenericValue executeFCMP_OEQ(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_FCMP(==, Float);
IMPLEMENT_FCMP(==, Double);
+ IMPLEMENT_VECTOR_FCMP(==);
default:
dbgs() << "Unhandled type for FCmp EQ instruction: " << *Ty << "\n";
llvm_unreachable(0);
@@ -298,17 +334,65 @@ static GenericValue executeFCMP_OEQ(GenericValue Src1, GenericValue Src2,
return Dest;
}
+#define IMPLEMENT_SCALAR_NANS(TY, X,Y) \
+ if (TY->isFloatTy()) { \
+ if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \
+ Dest.IntVal = APInt(1,false); \
+ return Dest; \
+ } \
+ } else { \
+ if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \
+ Dest.IntVal = APInt(1,false); \
+ return Dest; \
+ } \
+ }
+
+#define MASK_VECTOR_NANS_T(X,Y, TZ, FLAG) \
+ assert(X.AggregateVal.size() == Y.AggregateVal.size()); \
+ Dest.AggregateVal.resize( X.AggregateVal.size() ); \
+ for( uint32_t _i=0;_i<X.AggregateVal.size();_i++) { \
+ if (X.AggregateVal[_i].TZ##Val != X.AggregateVal[_i].TZ##Val || \
+ Y.AggregateVal[_i].TZ##Val != Y.AggregateVal[_i].TZ##Val) \
+ Dest.AggregateVal[_i].IntVal = APInt(1,FLAG); \
+ else { \
+ Dest.AggregateVal[_i].IntVal = APInt(1,!FLAG); \
+ } \
+ }
+
+#define MASK_VECTOR_NANS(TY, X,Y, FLAG) \
+ if (TY->isVectorTy()) { \
+ if (dyn_cast<VectorType>(TY)->getElementType()->isFloatTy()) { \
+ MASK_VECTOR_NANS_T(X, Y, Float, FLAG) \
+ } else { \
+ MASK_VECTOR_NANS_T(X, Y, Double, FLAG) \
+ } \
+ } \
+
+
+
static GenericValue executeFCMP_ONE(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
+ Type *Ty)
+{
GenericValue Dest;
+ // if input is scalar value and Src1 or Src2 is NaN return false
+ IMPLEMENT_SCALAR_NANS(Ty, Src1, Src2)
+ // if vector input detect NaNs and fill mask
+ MASK_VECTOR_NANS(Ty, Src1, Src2, false)
+ GenericValue DestMask = Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_FCMP(!=, Float);
IMPLEMENT_FCMP(!=, Double);
-
- default:
- dbgs() << "Unhandled type for FCmp NE instruction: " << *Ty << "\n";
- llvm_unreachable(0);
+ IMPLEMENT_VECTOR_FCMP(!=);
+ default:
+ dbgs() << "Unhandled type for FCmp NE instruction: " << *Ty << "\n";
+ llvm_unreachable(0);
}
+ // in vector case mask out NaN elements
+ if (Ty->isVectorTy())
+ for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++)
+ if (DestMask.AggregateVal[_i].IntVal == false)
+ Dest.AggregateVal[_i].IntVal = APInt(1,false);
+
return Dest;
}
@@ -318,6 +402,7 @@ static GenericValue executeFCMP_OLE(GenericValue Src1, GenericValue Src2,
switch (Ty->getTypeID()) {
IMPLEMENT_FCMP(<=, Float);
IMPLEMENT_FCMP(<=, Double);
+ IMPLEMENT_VECTOR_FCMP(<=);
default:
dbgs() << "Unhandled type for FCmp LE instruction: " << *Ty << "\n";
llvm_unreachable(0);
@@ -331,6 +416,7 @@ static GenericValue executeFCMP_OGE(GenericValue Src1, GenericValue Src2,
switch (Ty->getTypeID()) {
IMPLEMENT_FCMP(>=, Float);
IMPLEMENT_FCMP(>=, Double);
+ IMPLEMENT_VECTOR_FCMP(>=);
default:
dbgs() << "Unhandled type for FCmp GE instruction: " << *Ty << "\n";
llvm_unreachable(0);
@@ -344,6 +430,7 @@ static GenericValue executeFCMP_OLT(GenericValue Src1, GenericValue Src2,
switch (Ty->getTypeID()) {
IMPLEMENT_FCMP(<, Float);
IMPLEMENT_FCMP(<, Double);
+ IMPLEMENT_VECTOR_FCMP(<);
default:
dbgs() << "Unhandled type for FCmp LT instruction: " << *Ty << "\n";
llvm_unreachable(0);
@@ -357,6 +444,7 @@ static GenericValue executeFCMP_OGT(GenericValue Src1, GenericValue Src2,
switch (Ty->getTypeID()) {
IMPLEMENT_FCMP(>, Float);
IMPLEMENT_FCMP(>, Double);
+ IMPLEMENT_VECTOR_FCMP(>);
default:
dbgs() << "Unhandled type for FCmp GT instruction: " << *Ty << "\n";
llvm_unreachable(0);
@@ -375,18 +463,32 @@ static GenericValue executeFCMP_OGT(GenericValue Src1, GenericValue Src2,
return Dest; \
}
+#define IMPLEMENT_VECTOR_UNORDERED(TY, X,Y, _FUNC) \
+ if (TY->isVectorTy()) { \
+ GenericValue DestMask = Dest; \
+ Dest = _FUNC(Src1, Src2, Ty); \
+ for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++) \
+ if (DestMask.AggregateVal[_i].IntVal == true) \
+ Dest.AggregateVal[_i].IntVal = APInt(1,true); \
+ return Dest; \
+ }
static GenericValue executeFCMP_UEQ(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
IMPLEMENT_UNORDERED(Ty, Src1, Src2)
+ MASK_VECTOR_NANS(Ty, Src1, Src2, true)
+ IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OEQ)
return executeFCMP_OEQ(Src1, Src2, Ty);
+
}
static GenericValue executeFCMP_UNE(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
IMPLEMENT_UNORDERED(Ty, Src1, Src2)
+ MASK_VECTOR_NANS(Ty, Src1, Src2, true)
+ IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_ONE)
return executeFCMP_ONE(Src1, Src2, Ty);
}
@@ -394,6 +496,8 @@ static GenericValue executeFCMP_ULE(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
IMPLEMENT_UNORDERED(Ty, Src1, Src2)
+ MASK_VECTOR_NANS(Ty, Src1, Src2, true)
+ IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OLE)
return executeFCMP_OLE(Src1, Src2, Ty);
}
@@ -401,6 +505,8 @@ static GenericValue executeFCMP_UGE(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
IMPLEMENT_UNORDERED(Ty, Src1, Src2)
+ MASK_VECTOR_NANS(Ty, Src1, Src2, true)
+ IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OGE)
return executeFCMP_OGE(Src1, Src2, Ty);
}
@@ -408,6 +514,8 @@ static GenericValue executeFCMP_ULT(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
IMPLEMENT_UNORDERED(Ty, Src1, Src2)
+ MASK_VECTOR_NANS(Ty, Src1, Src2, true)
+ IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OLT)
return executeFCMP_OLT(Src1, Src2, Ty);
}
@@ -415,33 +523,88 @@ static GenericValue executeFCMP_UGT(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
IMPLEMENT_UNORDERED(Ty, Src1, Src2)
+ MASK_VECTOR_NANS(Ty, Src1, Src2, true)
+ IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OGT)
return executeFCMP_OGT(Src1, Src2, Ty);
}
static GenericValue executeFCMP_ORD(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
- if (Ty->isFloatTy())
+ if(Ty->isVectorTy()) {
+ assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
+ Dest.AggregateVal.resize( Src1.AggregateVal.size() );
+ if(dyn_cast<VectorType>(Ty)->getElementType()->isFloatTy()) {
+ for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
+ Dest.AggregateVal[_i].IntVal = APInt(1,
+ ( (Src1.AggregateVal[_i].FloatVal ==
+ Src1.AggregateVal[_i].FloatVal) &&
+ (Src2.AggregateVal[_i].FloatVal ==
+ Src2.AggregateVal[_i].FloatVal)));
+ } else {
+ for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
+ Dest.AggregateVal[_i].IntVal = APInt(1,
+ ( (Src1.AggregateVal[_i].DoubleVal ==
+ Src1.AggregateVal[_i].DoubleVal) &&
+ (Src2.AggregateVal[_i].DoubleVal ==
+ Src2.AggregateVal[_i].DoubleVal)));
+ }
+ } else if (Ty->isFloatTy())
Dest.IntVal = APInt(1,(Src1.FloatVal == Src1.FloatVal &&
Src2.FloatVal == Src2.FloatVal));
- else
+ else {
Dest.IntVal = APInt(1,(Src1.DoubleVal == Src1.DoubleVal &&
Src2.DoubleVal == Src2.DoubleVal));
+ }
return Dest;
}
static GenericValue executeFCMP_UNO(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
- if (Ty->isFloatTy())
+ if(Ty->isVectorTy()) {
+ assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
+ Dest.AggregateVal.resize( Src1.AggregateVal.size() );
+ if(dyn_cast<VectorType>(Ty)->getElementType()->isFloatTy()) {
+ for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
+ Dest.AggregateVal[_i].IntVal = APInt(1,
+ ( (Src1.AggregateVal[_i].FloatVal !=
+ Src1.AggregateVal[_i].FloatVal) ||
+ (Src2.AggregateVal[_i].FloatVal !=
+ Src2.AggregateVal[_i].FloatVal)));
+ } else {
+ for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
+ Dest.AggregateVal[_i].IntVal = APInt(1,
+ ( (Src1.AggregateVal[_i].DoubleVal !=
+ Src1.AggregateVal[_i].DoubleVal) ||
+ (Src2.AggregateVal[_i].DoubleVal !=
+ Src2.AggregateVal[_i].DoubleVal)));
+ }
+ } else if (Ty->isFloatTy())
Dest.IntVal = APInt(1,(Src1.FloatVal != Src1.FloatVal ||
Src2.FloatVal != Src2.FloatVal));
- else
+ else {
Dest.IntVal = APInt(1,(Src1.DoubleVal != Src1.DoubleVal ||
Src2.DoubleVal != Src2.DoubleVal));
+ }
return Dest;
}
+static GenericValue executeFCMP_BOOL(GenericValue Src1, GenericValue Src2,
+ const Type *Ty, const bool val) {
+ GenericValue Dest;
+ if(Ty->isVectorTy()) {
+ assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
+ Dest.AggregateVal.resize( Src1.AggregateVal.size() );
+ for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++)
+ Dest.AggregateVal[_i].IntVal = APInt(1,val);
+ } else {
+ Dest.IntVal = APInt(1, val);
+ }
+
+ return Dest;
+}
+
void Interpreter::visitFCmpInst(FCmpInst &I) {
ExecutionContext &SF = ECStack.back();
Type *Ty = I.getOperand(0)->getType();
@@ -450,8 +613,14 @@ void Interpreter::visitFCmpInst(FCmpInst &I) {
GenericValue R; // Result
switch (I.getPredicate()) {
- case FCmpInst::FCMP_FALSE: R.IntVal = APInt(1,false); break;
- case FCmpInst::FCMP_TRUE: R.IntVal = APInt(1,true); break;
+ default:
+ dbgs() << "Don't know how to handle this FCmp predicate!\n-->" << I;
+ llvm_unreachable(0);
+ break;
+ case FCmpInst::FCMP_FALSE: R = executeFCMP_BOOL(Src1, Src2, Ty, false);
+ break;
+ case FCmpInst::FCMP_TRUE: R = executeFCMP_BOOL(Src1, Src2, Ty, true);
+ break;
case FCmpInst::FCMP_ORD: R = executeFCMP_ORD(Src1, Src2, Ty); break;
case FCmpInst::FCMP_UNO: R = executeFCMP_UNO(Src1, Src2, Ty); break;
case FCmpInst::FCMP_UEQ: R = executeFCMP_UEQ(Src1, Src2, Ty); break;
@@ -466,9 +635,6 @@ void Interpreter::visitFCmpInst(FCmpInst &I) {
case FCmpInst::FCMP_OLE: R = executeFCMP_OLE(Src1, Src2, Ty); break;
case FCmpInst::FCMP_UGE: R = executeFCMP_UGE(Src1, Src2, Ty); break;
case FCmpInst::FCMP_OGE: R = executeFCMP_OGE(Src1, Src2, Ty); break;
- default:
- dbgs() << "Don't know how to handle this FCmp predicate!\n-->" << I;
- llvm_unreachable(0);
}
SetValue(&I, R, SF);
@@ -502,16 +668,8 @@ static GenericValue executeCmpInst(unsigned predicate, GenericValue Src1,
case FCmpInst::FCMP_ULE: return executeFCMP_ULE(Src1, Src2, Ty);
case FCmpInst::FCMP_OGE: return executeFCMP_OGE(Src1, Src2, Ty);
case FCmpInst::FCMP_UGE: return executeFCMP_UGE(Src1, Src2, Ty);
- case FCmpInst::FCMP_FALSE: {
- GenericValue Result;
- Result.IntVal = APInt(1, false);
- return Result;
- }
- case FCmpInst::FCMP_TRUE: {
- GenericValue Result;
- Result.IntVal = APInt(1, true);
- return Result;
- }
+ case FCmpInst::FCMP_FALSE: return executeFCMP_BOOL(Src1, Src2, Ty, false);
+ case FCmpInst::FCMP_TRUE: return executeFCMP_BOOL(Src1, Src2, Ty, true);
default:
dbgs() << "Unhandled Cmp predicate\n";
llvm_unreachable(0);
@@ -525,27 +683,105 @@ void Interpreter::visitBinaryOperator(BinaryOperator &I) {
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
GenericValue R; // Result
- switch (I.getOpcode()) {
- case Instruction::Add: R.IntVal = Src1.IntVal + Src2.IntVal; break;
- case Instruction::Sub: R.IntVal = Src1.IntVal - Src2.IntVal; break;
- case Instruction::Mul: R.IntVal = Src1.IntVal * Src2.IntVal; break;
- case Instruction::FAdd: executeFAddInst(R, Src1, Src2, Ty); break;
- case Instruction::FSub: executeFSubInst(R, Src1, Src2, Ty); break;
- case Instruction::FMul: executeFMulInst(R, Src1, Src2, Ty); break;
- case Instruction::FDiv: executeFDivInst(R, Src1, Src2, Ty); break;
- case Instruction::FRem: executeFRemInst(R, Src1, Src2, Ty); break;
- case Instruction::UDiv: R.IntVal = Src1.IntVal.udiv(Src2.IntVal); break;
- case Instruction::SDiv: R.IntVal = Src1.IntVal.sdiv(Src2.IntVal); break;
- case Instruction::URem: R.IntVal = Src1.IntVal.urem(Src2.IntVal); break;
- case Instruction::SRem: R.IntVal = Src1.IntVal.srem(Src2.IntVal); break;
- case Instruction::And: R.IntVal = Src1.IntVal & Src2.IntVal; break;
- case Instruction::Or: R.IntVal = Src1.IntVal | Src2.IntVal; break;
- case Instruction::Xor: R.IntVal = Src1.IntVal ^ Src2.IntVal; break;
- default:
- dbgs() << "Don't know how to handle this binary operator!\n-->" << I;
- llvm_unreachable(0);
+ // First process vector operation
+ if (Ty->isVectorTy()) {
+ assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
+ R.AggregateVal.resize(Src1.AggregateVal.size());
+
+ // Macros to execute binary operation 'OP' over integer vectors
+#define INTEGER_VECTOR_OPERATION(OP) \
+ for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \
+ R.AggregateVal[i].IntVal = \
+ Src1.AggregateVal[i].IntVal OP Src2.AggregateVal[i].IntVal;
+
+ // Additional macros to execute binary operations udiv/sdiv/urem/srem since
+ // they have different notation.
+#define INTEGER_VECTOR_FUNCTION(OP) \
+ for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \
+ R.AggregateVal[i].IntVal = \
+ Src1.AggregateVal[i].IntVal.OP(Src2.AggregateVal[i].IntVal);
+
+ // Macros to execute binary operation 'OP' over floating point type TY
+ // (float or double) vectors
+#define FLOAT_VECTOR_FUNCTION(OP, TY) \
+ for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \
+ R.AggregateVal[i].TY = \
+ Src1.AggregateVal[i].TY OP Src2.AggregateVal[i].TY;
+
+ // Macros to choose appropriate TY: float or double and run operation
+ // execution
+#define FLOAT_VECTOR_OP(OP) { \
+ if (dyn_cast<VectorType>(Ty)->getElementType()->isFloatTy()) \
+ FLOAT_VECTOR_FUNCTION(OP, FloatVal) \
+ else { \
+ if (dyn_cast<VectorType>(Ty)->getElementType()->isDoubleTy()) \
+ FLOAT_VECTOR_FUNCTION(OP, DoubleVal) \
+ else { \
+ dbgs() << "Unhandled type for OP instruction: " << *Ty << "\n"; \
+ llvm_unreachable(0); \
+ } \
+ } \
+}
+
+ switch(I.getOpcode()){
+ default:
+ dbgs() << "Don't know how to handle this binary operator!\n-->" << I;
+ llvm_unreachable(0);
+ break;
+ case Instruction::Add: INTEGER_VECTOR_OPERATION(+) break;
+ case Instruction::Sub: INTEGER_VECTOR_OPERATION(-) break;
+ case Instruction::Mul: INTEGER_VECTOR_OPERATION(*) break;
+ case Instruction::UDiv: INTEGER_VECTOR_FUNCTION(udiv) break;
+ case Instruction::SDiv: INTEGER_VECTOR_FUNCTION(sdiv) break;
+ case Instruction::URem: INTEGER_VECTOR_FUNCTION(urem) break;
+ case Instruction::SRem: INTEGER_VECTOR_FUNCTION(srem) break;
+ case Instruction::And: INTEGER_VECTOR_OPERATION(&) break;
+ case Instruction::Or: INTEGER_VECTOR_OPERATION(|) break;
+ case Instruction::Xor: INTEGER_VECTOR_OPERATION(^) break;
+ case Instruction::FAdd: FLOAT_VECTOR_OP(+) break;
+ case Instruction::FSub: FLOAT_VECTOR_OP(-) break;
+ case Instruction::FMul: FLOAT_VECTOR_OP(*) break;
+ case Instruction::FDiv: FLOAT_VECTOR_OP(/) break;
+ case Instruction::FRem:
+ if (dyn_cast<VectorType>(Ty)->getElementType()->isFloatTy())
+ for (unsigned i = 0; i < R.AggregateVal.size(); ++i)
+ R.AggregateVal[i].FloatVal =
+ fmod(Src1.AggregateVal[i].FloatVal, Src2.AggregateVal[i].FloatVal);
+ else {
+ if (dyn_cast<VectorType>(Ty)->getElementType()->isDoubleTy())
+ for (unsigned i = 0; i < R.AggregateVal.size(); ++i)
+ R.AggregateVal[i].DoubleVal =
+ fmod(Src1.AggregateVal[i].DoubleVal, Src2.AggregateVal[i].DoubleVal);
+ else {
+ dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n";
+ llvm_unreachable(0);
+ }
+ }
+ break;
+ }
+ } else {
+ switch (I.getOpcode()) {
+ default:
+ dbgs() << "Don't know how to handle this binary operator!\n-->" << I;
+ llvm_unreachable(0);
+ break;
+ case Instruction::Add: R.IntVal = Src1.IntVal + Src2.IntVal; break;
+ case Instruction::Sub: R.IntVal = Src1.IntVal - Src2.IntVal; break;
+ case Instruction::Mul: R.IntVal = Src1.IntVal * Src2.IntVal; break;
+ case Instruction::FAdd: executeFAddInst(R, Src1, Src2, Ty); break;
+ case Instruction::FSub: executeFSubInst(R, Src1, Src2, Ty); break;
+ case Instruction::FMul: executeFMulInst(R, Src1, Src2, Ty); break;
+ case Instruction::FDiv: executeFDivInst(R, Src1, Src2, Ty); break;
+ case Instruction::FRem: executeFRemInst(R, Src1, Src2, Ty); break;
+ case Instruction::UDiv: R.IntVal = Src1.IntVal.udiv(Src2.IntVal); break;
+ case Instruction::SDiv: R.IntVal = Src1.IntVal.sdiv(Src2.IntVal); break;
+ case Instruction::URem: R.IntVal = Src1.IntVal.urem(Src2.IntVal); break;
+ case Instruction::SRem: R.IntVal = Src1.IntVal.srem(Src2.IntVal); break;
+ case Instruction::And: R.IntVal = Src1.IntVal & Src2.IntVal; break;
+ case Instruction::Or: R.IntVal = Src1.IntVal | Src2.IntVal; break;
+ case Instruction::Xor: R.IntVal = Src1.IntVal ^ Src2.IntVal; break;
+ }
}
-
SetValue(&I, R, SF);
}
@@ -902,16 +1138,42 @@ void Interpreter::visitCallSite(CallSite CS) {
callFunction((Function*)GVTOP(SRC), ArgVals);
}
+// auxilary function for shift operations
+static unsigned getShiftAmount(uint64_t orgShiftAmount,
+ llvm::APInt valueToShift) {
+ unsigned valueWidth = valueToShift.getBitWidth();
+ if (orgShiftAmount < (uint64_t)valueWidth)
+ return orgShiftAmount;
+ // according to the llvm documentation, if orgShiftAmount > valueWidth,
+ // the result is undfeined. but we do shift by this rule:
+ return (NextPowerOf2(valueWidth-1) - 1) & orgShiftAmount;
+}
+
+
void Interpreter::visitShl(BinaryOperator &I) {
ExecutionContext &SF = ECStack.back();
GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
GenericValue Dest;
- if (Src2.IntVal.getZExtValue() < Src1.IntVal.getBitWidth())
- Dest.IntVal = Src1.IntVal.shl(Src2.IntVal.getZExtValue());
- else
- Dest.IntVal = Src1.IntVal;
-
+ const Type *Ty = I.getType();
+
+ if (Ty->isVectorTy()) {
+ uint32_t src1Size = uint32_t(Src1.AggregateVal.size());
+ assert(src1Size == Src2.AggregateVal.size());
+ for (unsigned i = 0; i < src1Size; i++) {
+ GenericValue Result;
+ uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue();
+ llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal;
+ Result.IntVal = valueToShift.shl(getShiftAmount(shiftAmount, valueToShift));
+ Dest.AggregateVal.push_back(Result);
+ }
+ } else {
+ // scalar
+ uint64_t shiftAmount = Src2.IntVal.getZExtValue();
+ llvm::APInt valueToShift = Src1.IntVal;
+ Dest.IntVal = valueToShift.shl(getShiftAmount(shiftAmount, valueToShift));
+ }
+
SetValue(&I, Dest, SF);
}
@@ -920,11 +1182,25 @@ void Interpreter::visitLShr(BinaryOperator &I) {
GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
GenericValue Dest;
- if (Src2.IntVal.getZExtValue() < Src1.IntVal.getBitWidth())
- Dest.IntVal = Src1.IntVal.lshr(Src2.IntVal.getZExtValue());
- else
- Dest.IntVal = Src1.IntVal;
-
+ const Type *Ty = I.getType();
+
+ if (Ty->isVectorTy()) {
+ uint32_t src1Size = uint32_t(Src1.AggregateVal.size());
+ assert(src1Size == Src2.AggregateVal.size());
+ for (unsigned i = 0; i < src1Size; i++) {
+ GenericValue Result;
+ uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue();
+ llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal;
+ Result.IntVal = valueToShift.lshr(getShiftAmount(shiftAmount, valueToShift));
+ Dest.AggregateVal.push_back(Result);
+ }
+ } else {
+ // scalar
+ uint64_t shiftAmount = Src2.IntVal.getZExtValue();
+ llvm::APInt valueToShift = Src1.IntVal;
+ Dest.IntVal = valueToShift.lshr(getShiftAmount(shiftAmount, valueToShift));
+ }
+
SetValue(&I, Dest, SF);
}
@@ -933,110 +1209,273 @@ void Interpreter::visitAShr(BinaryOperator &I) {
GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
GenericValue Dest;
- if (Src2.IntVal.getZExtValue() < Src1.IntVal.getBitWidth())
- Dest.IntVal = Src1.IntVal.ashr(Src2.IntVal.getZExtValue());
- else
- Dest.IntVal = Src1.IntVal;
-
+ const Type *Ty = I.getType();
+
+ if (Ty->isVectorTy()) {
+ size_t src1Size = Src1.AggregateVal.size();
+ assert(src1Size == Src2.AggregateVal.size());
+ for (unsigned i = 0; i < src1Size; i++) {
+ GenericValue Result;
+ uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue();
+ llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal;
+ Result.IntVal = valueToShift.ashr(getShiftAmount(shiftAmount, valueToShift));
+ Dest.AggregateVal.push_back(Result);
+ }
+ } else {
+ // scalar
+ uint64_t shiftAmount = Src2.IntVal.getZExtValue();
+ llvm::APInt valueToShift = Src1.IntVal;
+ Dest.IntVal = valueToShift.ashr(getShiftAmount(shiftAmount, valueToShift));
+ }
+
SetValue(&I, Dest, SF);
}
GenericValue Interpreter::executeTruncInst(Value *SrcVal, Type *DstTy,
ExecutionContext &SF) {
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- IntegerType *DITy = cast<IntegerType>(DstTy);
- unsigned DBitWidth = DITy->getBitWidth();
- Dest.IntVal = Src.IntVal.trunc(DBitWidth);
+ Type *SrcTy = SrcVal->getType();
+ if (SrcTy->isVectorTy()) {
+ Type *DstVecTy = DstTy->getScalarType();
+ unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
+ unsigned NumElts = Src.AggregateVal.size();
+ // the sizes of src and dst vectors must be equal
+ Dest.AggregateVal.resize(NumElts);
+ for (unsigned i = 0; i < NumElts; i++)
+ Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.trunc(DBitWidth);
+ } else {
+ IntegerType *DITy = cast<IntegerType>(DstTy);
+ unsigned DBitWidth = DITy->getBitWidth();
+ Dest.IntVal = Src.IntVal.trunc(DBitWidth);
+ }
return Dest;
}
GenericValue Interpreter::executeSExtInst(Value *SrcVal, Type *DstTy,
ExecutionContext &SF) {
+ const Type *SrcTy = SrcVal->getType();
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- IntegerType *DITy = cast<IntegerType>(DstTy);
- unsigned DBitWidth = DITy->getBitWidth();
- Dest.IntVal = Src.IntVal.sext(DBitWidth);
+ if (SrcTy->isVectorTy()) {
+ const Type *DstVecTy = DstTy->getScalarType();
+ unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
+ unsigned size = Src.AggregateVal.size();
+ // the sizes of src and dst vectors must be equal.
+ Dest.AggregateVal.resize(size);
+ for (unsigned i = 0; i < size; i++)
+ Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.sext(DBitWidth);
+ } else {
+ const IntegerType *DITy = cast<IntegerType>(DstTy);
+ unsigned DBitWidth = DITy->getBitWidth();
+ Dest.IntVal = Src.IntVal.sext(DBitWidth);
+ }
return Dest;
}
GenericValue Interpreter::executeZExtInst(Value *SrcVal, Type *DstTy,
ExecutionContext &SF) {
+ const Type *SrcTy = SrcVal->getType();
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- IntegerType *DITy = cast<IntegerType>(DstTy);
- unsigned DBitWidth = DITy->getBitWidth();
- Dest.IntVal = Src.IntVal.zext(DBitWidth);
+ if (SrcTy->isVectorTy()) {
+ const Type *DstVecTy = DstTy->getScalarType();
+ unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
+
+ unsigned size = Src.AggregateVal.size();
+ // the sizes of src and dst vectors must be equal.
+ Dest.AggregateVal.resize(size);
+ for (unsigned i = 0; i < size; i++)
+ Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.zext(DBitWidth);
+ } else {
+ const IntegerType *DITy = cast<IntegerType>(DstTy);
+ unsigned DBitWidth = DITy->getBitWidth();
+ Dest.IntVal = Src.IntVal.zext(DBitWidth);
+ }
return Dest;
}
GenericValue Interpreter::executeFPTruncInst(Value *SrcVal, Type *DstTy,
ExecutionContext &SF) {
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- assert(SrcVal->getType()->isDoubleTy() && DstTy->isFloatTy() &&
- "Invalid FPTrunc instruction");
- Dest.FloatVal = (float) Src.DoubleVal;
+
+ if (SrcVal->getType()->getTypeID() == Type::VectorTyID) {
+ assert(SrcVal->getType()->getScalarType()->isDoubleTy() &&
+ DstTy->getScalarType()->isFloatTy() &&
+ "Invalid FPTrunc instruction");
+
+ unsigned size = Src.AggregateVal.size();
+ // the sizes of src and dst vectors must be equal.
+ Dest.AggregateVal.resize(size);
+ for (unsigned i = 0; i < size; i++)
+ Dest.AggregateVal[i].FloatVal = (float)Src.AggregateVal[i].DoubleVal;
+ } else {
+ assert(SrcVal->getType()->isDoubleTy() && DstTy->isFloatTy() &&
+ "Invalid FPTrunc instruction");
+ Dest.FloatVal = (float)Src.DoubleVal;
+ }
+
return Dest;
}
GenericValue Interpreter::executeFPExtInst(Value *SrcVal, Type *DstTy,
ExecutionContext &SF) {
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- assert(SrcVal->getType()->isFloatTy() && DstTy->isDoubleTy() &&
- "Invalid FPTrunc instruction");
- Dest.DoubleVal = (double) Src.FloatVal;
+
+ if (SrcVal->getType()->getTypeID() == Type::VectorTyID) {
+ assert(SrcVal->getType()->getScalarType()->isFloatTy() &&
+ DstTy->getScalarType()->isDoubleTy() && "Invalid FPExt instruction");
+
+ unsigned size = Src.AggregateVal.size();
+ // the sizes of src and dst vectors must be equal.
+ Dest.AggregateVal.resize(size);
+ for (unsigned i = 0; i < size; i++)
+ Dest.AggregateVal[i].DoubleVal = (double)Src.AggregateVal[i].FloatVal;
+ } else {
+ assert(SrcVal->getType()->isFloatTy() && DstTy->isDoubleTy() &&
+ "Invalid FPExt instruction");
+ Dest.DoubleVal = (double)Src.FloatVal;
+ }
+
return Dest;
}
GenericValue Interpreter::executeFPToUIInst(Value *SrcVal, Type *DstTy,
ExecutionContext &SF) {
Type *SrcTy = SrcVal->getType();
- uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- assert(SrcTy->isFloatingPointTy() && "Invalid FPToUI instruction");
- if (SrcTy->getTypeID() == Type::FloatTyID)
- Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
- else
- Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
+ if (SrcTy->getTypeID() == Type::VectorTyID) {
+ const Type *DstVecTy = DstTy->getScalarType();
+ const Type *SrcVecTy = SrcTy->getScalarType();
+ uint32_t DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
+ unsigned size = Src.AggregateVal.size();
+ // the sizes of src and dst vectors must be equal.
+ Dest.AggregateVal.resize(size);
+
+ if (SrcVecTy->getTypeID() == Type::FloatTyID) {
+ assert(SrcVecTy->isFloatingPointTy() && "Invalid FPToUI instruction");
+ for (unsigned i = 0; i < size; i++)
+ Dest.AggregateVal[i].IntVal = APIntOps::RoundFloatToAPInt(
+ Src.AggregateVal[i].FloatVal, DBitWidth);
+ } else {
+ for (unsigned i = 0; i < size; i++)
+ Dest.AggregateVal[i].IntVal = APIntOps::RoundDoubleToAPInt(
+ Src.AggregateVal[i].DoubleVal, DBitWidth);
+ }
+ } else {
+ // scalar
+ uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
+ assert(SrcTy->isFloatingPointTy() && "Invalid FPToUI instruction");
+
+ if (SrcTy->getTypeID() == Type::FloatTyID)
+ Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
+ else {
+ Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
+ }
+ }
+
return Dest;
}
GenericValue Interpreter::executeFPToSIInst(Value *SrcVal, Type *DstTy,
ExecutionContext &SF) {
Type *SrcTy = SrcVal->getType();
- uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- assert(SrcTy->isFloatingPointTy() && "Invalid FPToSI instruction");
- if (SrcTy->getTypeID() == Type::FloatTyID)
- Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
- else
- Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
+ if (SrcTy->getTypeID() == Type::VectorTyID) {
+ const Type *DstVecTy = DstTy->getScalarType();
+ const Type *SrcVecTy = SrcTy->getScalarType();
+ uint32_t DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
+ unsigned size = Src.AggregateVal.size();
+ // the sizes of src and dst vectors must be equal
+ Dest.AggregateVal.resize(size);
+
+ if (SrcVecTy->getTypeID() == Type::FloatTyID) {
+ assert(SrcVecTy->isFloatingPointTy() && "Invalid FPToSI instruction");
+ for (unsigned i = 0; i < size; i++)
+ Dest.AggregateVal[i].IntVal = APIntOps::RoundFloatToAPInt(
+ Src.AggregateVal[i].FloatVal, DBitWidth);
+ } else {
+ for (unsigned i = 0; i < size; i++)
+ Dest.AggregateVal[i].IntVal = APIntOps::RoundDoubleToAPInt(
+ Src.AggregateVal[i].DoubleVal, DBitWidth);
+ }
+ } else {
+ // scalar
+ unsigned DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
+ assert(SrcTy->isFloatingPointTy() && "Invalid FPToSI instruction");
+
+ if (SrcTy->getTypeID() == Type::FloatTyID)
+ Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
+ else {
+ Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
+ }
+ }
return Dest;
}
GenericValue Interpreter::executeUIToFPInst(Value *SrcVal, Type *DstTy,
ExecutionContext &SF) {
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- assert(DstTy->isFloatingPointTy() && "Invalid UIToFP instruction");
- if (DstTy->getTypeID() == Type::FloatTyID)
- Dest.FloatVal = APIntOps::RoundAPIntToFloat(Src.IntVal);
- else
- Dest.DoubleVal = APIntOps::RoundAPIntToDouble(Src.IntVal);
+ if (SrcVal->getType()->getTypeID() == Type::VectorTyID) {
+ const Type *DstVecTy = DstTy->getScalarType();
+ unsigned size = Src.AggregateVal.size();
+ // the sizes of src and dst vectors must be equal
+ Dest.AggregateVal.resize(size);
+
+ if (DstVecTy->getTypeID() == Type::FloatTyID) {
+ assert(DstVecTy->isFloatingPointTy() && "Invalid UIToFP instruction");
+ for (unsigned i = 0; i < size; i++)
+ Dest.AggregateVal[i].FloatVal =
+ APIntOps::RoundAPIntToFloat(Src.AggregateVal[i].IntVal);
+ } else {
+ for (unsigned i = 0; i < size; i++)
+ Dest.AggregateVal[i].DoubleVal =
+ APIntOps::RoundAPIntToDouble(Src.AggregateVal[i].IntVal);
+ }
+ } else {
+ // scalar
+ assert(DstTy->isFloatingPointTy() && "Invalid UIToFP instruction");
+ if (DstTy->getTypeID() == Type::FloatTyID)
+ Dest.FloatVal = APIntOps::RoundAPIntToFloat(Src.IntVal);
+ else {
+ Dest.DoubleVal = APIntOps::RoundAPIntToDouble(Src.IntVal);
+ }
+ }
return Dest;
}
GenericValue Interpreter::executeSIToFPInst(Value *SrcVal, Type *DstTy,
ExecutionContext &SF) {
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- assert(DstTy->isFloatingPointTy() && "Invalid SIToFP instruction");
- if (DstTy->getTypeID() == Type::FloatTyID)
- Dest.FloatVal = APIntOps::RoundSignedAPIntToFloat(Src.IntVal);
- else
- Dest.DoubleVal = APIntOps::RoundSignedAPIntToDouble(Src.IntVal);
- return Dest;
+ if (SrcVal->getType()->getTypeID() == Type::VectorTyID) {
+ const Type *DstVecTy = DstTy->getScalarType();
+ unsigned size = Src.AggregateVal.size();
+ // the sizes of src and dst vectors must be equal
+ Dest.AggregateVal.resize(size);
+
+ if (DstVecTy->getTypeID() == Type::FloatTyID) {
+ assert(DstVecTy->isFloatingPointTy() && "Invalid SIToFP instruction");
+ for (unsigned i = 0; i < size; i++)
+ Dest.AggregateVal[i].FloatVal =
+ APIntOps::RoundSignedAPIntToFloat(Src.AggregateVal[i].IntVal);
+ } else {
+ for (unsigned i = 0; i < size; i++)
+ Dest.AggregateVal[i].DoubleVal =
+ APIntOps::RoundSignedAPIntToDouble(Src.AggregateVal[i].IntVal);
+ }
+ } else {
+ // scalar
+ assert(DstTy->isFloatingPointTy() && "Invalid SIToFP instruction");
+ if (DstTy->getTypeID() == Type::FloatTyID)
+ Dest.FloatVal = APIntOps::RoundSignedAPIntToFloat(Src.IntVal);
+ else {
+ Dest.DoubleVal = APIntOps::RoundSignedAPIntToDouble(Src.IntVal);
+ }
+ }
+
+ return Dest;
}
GenericValue Interpreter::executePtrToIntInst(Value *SrcVal, Type *DstTy,
@@ -1064,33 +1503,167 @@ GenericValue Interpreter::executeIntToPtrInst(Value *SrcVal, Type *DstTy,
GenericValue Interpreter::executeBitCastInst(Value *SrcVal, Type *DstTy,
ExecutionContext &SF) {
-
+
+ // This instruction supports bitwise conversion of vectors to integers and
+ // to vectors of other types (as long as they have the same size)
Type *SrcTy = SrcVal->getType();
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- if (DstTy->isPointerTy()) {
- assert(SrcTy->isPointerTy() && "Invalid BitCast");
- Dest.PointerVal = Src.PointerVal;
- } else if (DstTy->isIntegerTy()) {
- if (SrcTy->isFloatTy()) {
- Dest.IntVal = APInt::floatToBits(Src.FloatVal);
- } else if (SrcTy->isDoubleTy()) {
- Dest.IntVal = APInt::doubleToBits(Src.DoubleVal);
- } else if (SrcTy->isIntegerTy()) {
- Dest.IntVal = Src.IntVal;
- } else
+
+ if ((SrcTy->getTypeID() == Type::VectorTyID) ||
+ (DstTy->getTypeID() == Type::VectorTyID)) {
+ // vector src bitcast to vector dst or vector src bitcast to scalar dst or
+ // scalar src bitcast to vector dst
+ bool isLittleEndian = TD.isLittleEndian();
+ GenericValue TempDst, TempSrc, SrcVec;
+ const Type *SrcElemTy;
+ const Type *DstElemTy;
+ unsigned SrcBitSize;
+ unsigned DstBitSize;
+ unsigned SrcNum;
+ unsigned DstNum;
+
+ if (SrcTy->getTypeID() == Type::VectorTyID) {
+ SrcElemTy = SrcTy->getScalarType();
+ SrcBitSize = SrcTy->getScalarSizeInBits();
+ SrcNum = Src.AggregateVal.size();
+ SrcVec = Src;
+ } else {
+ // if src is scalar value, make it vector <1 x type>
+ SrcElemTy = SrcTy;
+ SrcBitSize = SrcTy->getPrimitiveSizeInBits();
+ SrcNum = 1;
+ SrcVec.AggregateVal.push_back(Src);
+ }
+
+ if (DstTy->getTypeID() == Type::VectorTyID) {
+ DstElemTy = DstTy->getScalarType();
+ DstBitSize = DstTy->getScalarSizeInBits();
+ DstNum = (SrcNum * SrcBitSize) / DstBitSize;
+ } else {
+ DstElemTy = DstTy;
+ DstBitSize = DstTy->getPrimitiveSizeInBits();
+ DstNum = 1;
+ }
+
+ if (SrcNum * SrcBitSize != DstNum * DstBitSize)
llvm_unreachable("Invalid BitCast");
- } else if (DstTy->isFloatTy()) {
- if (SrcTy->isIntegerTy())
- Dest.FloatVal = Src.IntVal.bitsToFloat();
- else
- Dest.FloatVal = Src.FloatVal;
- } else if (DstTy->isDoubleTy()) {
- if (SrcTy->isIntegerTy())
- Dest.DoubleVal = Src.IntVal.bitsToDouble();
- else
- Dest.DoubleVal = Src.DoubleVal;
- } else
- llvm_unreachable("Invalid Bitcast");
+
+ // If src is floating point, cast to integer first.
+ TempSrc.AggregateVal.resize(SrcNum);
+ if (SrcElemTy->isFloatTy()) {
+ for (unsigned i = 0; i < SrcNum; i++)
+ TempSrc.AggregateVal[i].IntVal =
+ APInt::floatToBits(SrcVec.AggregateVal[i].FloatVal);
+
+ } else if (SrcElemTy->isDoubleTy()) {
+ for (unsigned i = 0; i < SrcNum; i++)
+ TempSrc.AggregateVal[i].IntVal =
+ APInt::doubleToBits(SrcVec.AggregateVal[i].DoubleVal);
+ } else if (SrcElemTy->isIntegerTy()) {
+ for (unsigned i = 0; i < SrcNum; i++)
+ TempSrc.AggregateVal[i].IntVal = SrcVec.AggregateVal[i].IntVal;
+ } else {
+ // Pointers are not allowed as the element type of vector.
+ llvm_unreachable("Invalid Bitcast");
+ }
+
+ // now TempSrc is integer type vector
+ if (DstNum < SrcNum) {
+ // Example: bitcast <4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>
+ unsigned Ratio = SrcNum / DstNum;
+ unsigned SrcElt = 0;
+ for (unsigned i = 0; i < DstNum; i++) {
+ GenericValue Elt;
+ Elt.IntVal = 0;
+ Elt.IntVal = Elt.IntVal.zext(DstBitSize);
+ unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize * (Ratio - 1);
+ for (unsigned j = 0; j < Ratio; j++) {
+ APInt Tmp;
+ Tmp = Tmp.zext(SrcBitSize);
+ Tmp = TempSrc.AggregateVal[SrcElt++].IntVal;
+ Tmp = Tmp.zext(DstBitSize);
+ Tmp = Tmp.shl(ShiftAmt);
+ ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
+ Elt.IntVal |= Tmp;
+ }
+ TempDst.AggregateVal.push_back(Elt);
+ }
+ } else {
+ // Example: bitcast <2 x i64> <i64 0, i64 1> to <4 x i32>
+ unsigned Ratio = DstNum / SrcNum;
+ for (unsigned i = 0; i < SrcNum; i++) {
+ unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize * (Ratio - 1);
+ for (unsigned j = 0; j < Ratio; j++) {
+ GenericValue Elt;
+ Elt.IntVal = Elt.IntVal.zext(SrcBitSize);
+ Elt.IntVal = TempSrc.AggregateVal[i].IntVal;
+ Elt.IntVal = Elt.IntVal.lshr(ShiftAmt);
+ // it could be DstBitSize == SrcBitSize, so check it
+ if (DstBitSize < SrcBitSize)
+ Elt.IntVal = Elt.IntVal.trunc(DstBitSize);
+ ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
+ TempDst.AggregateVal.push_back(Elt);
+ }
+ }
+ }
+
+ // convert result from integer to specified type
+ if (DstTy->getTypeID() == Type::VectorTyID) {
+ if (DstElemTy->isDoubleTy()) {
+ Dest.AggregateVal.resize(DstNum);
+ for (unsigned i = 0; i < DstNum; i++)
+ Dest.AggregateVal[i].DoubleVal =
+ TempDst.AggregateVal[i].IntVal.bitsToDouble();
+ } else if (DstElemTy->isFloatTy()) {
+ Dest.AggregateVal.resize(DstNum);
+ for (unsigned i = 0; i < DstNum; i++)
+ Dest.AggregateVal[i].FloatVal =
+ TempDst.AggregateVal[i].IntVal.bitsToFloat();
+ } else {
+ Dest = TempDst;
+ }
+ } else {
+ if (DstElemTy->isDoubleTy())
+ Dest.DoubleVal = TempDst.AggregateVal[0].IntVal.bitsToDouble();
+ else if (DstElemTy->isFloatTy()) {
+ Dest.FloatVal = TempDst.AggregateVal[0].IntVal.bitsToFloat();
+ } else {
+ Dest.IntVal = TempDst.AggregateVal[0].IntVal;
+ }
+ }
+ } else { // if ((SrcTy->getTypeID() == Type::VectorTyID) ||
+ // (DstTy->getTypeID() == Type::VectorTyID))
+
+ // scalar src bitcast to scalar dst
+ if (DstTy->isPointerTy()) {
+ assert(SrcTy->isPointerTy() && "Invalid BitCast");
+ Dest.PointerVal = Src.PointerVal;
+ } else if (DstTy->isIntegerTy()) {
+ if (SrcTy->isFloatTy())
+ Dest.IntVal = APInt::floatToBits(Src.FloatVal);
+ else if (SrcTy->isDoubleTy()) {
+ Dest.IntVal = APInt::doubleToBits(Src.DoubleVal);
+ } else if (SrcTy->isIntegerTy()) {
+ Dest.IntVal = Src.IntVal;
+ } else {
+ llvm_unreachable("Invalid BitCast");
+ }
+ } else if (DstTy->isFloatTy()) {
+ if (SrcTy->isIntegerTy())
+ Dest.FloatVal = Src.IntVal.bitsToFloat();
+ else {
+ Dest.FloatVal = Src.FloatVal;
+ }
+ } else if (DstTy->isDoubleTy()) {
+ if (SrcTy->isIntegerTy())
+ Dest.DoubleVal = Src.IntVal.bitsToDouble();
+ else {
+ Dest.DoubleVal = Src.DoubleVal;
+ }
+ } else {
+ llvm_unreachable("Invalid Bitcast");
+ }
+ }
return Dest;
}
@@ -1187,6 +1760,39 @@ void Interpreter::visitVAArgInst(VAArgInst &I) {
++VAList.UIntPairVal.second;
}
+void Interpreter::visitExtractElementInst(ExtractElementInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
+ GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
+ GenericValue Dest;
+
+ Type *Ty = I.getType();
+ const unsigned indx = unsigned(Src2.IntVal.getZExtValue());
+
+ if(Src1.AggregateVal.size() > indx) {
+ switch (Ty->getTypeID()) {
+ default:
+ dbgs() << "Unhandled destination type for extractelement instruction: "
+ << *Ty << "\n";
+ llvm_unreachable(0);
+ break;
+ case Type::IntegerTyID:
+ Dest.IntVal = Src1.AggregateVal[indx].IntVal;
+ break;
+ case Type::FloatTyID:
+ Dest.FloatVal = Src1.AggregateVal[indx].FloatVal;
+ break;
+ case Type::DoubleTyID:
+ Dest.DoubleVal = Src1.AggregateVal[indx].DoubleVal;
+ break;
+ }
+ } else {
+ dbgs() << "Invalid index in extractelement instruction\n";
+ }
+
+ SetValue(&I, Dest, SF);
+}
+
GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE,
ExecutionContext &SF) {
switch (CE->getOpcode()) {
diff --git a/lib/ExecutionEngine/Interpreter/Interpreter.h b/lib/ExecutionEngine/Interpreter/Interpreter.h
index e95db2f..2952d7e 100644
--- a/lib/ExecutionEngine/Interpreter/Interpreter.h
+++ b/lib/ExecutionEngine/Interpreter/Interpreter.h
@@ -178,6 +178,7 @@ public:
void visitAShr(BinaryOperator &I);
void visitVAArgInst(VAArgInst &I);
+ void visitExtractElementInst(ExtractElementInst &I);
void visitInstruction(Instruction &I) {
errs() << I << "\n";
llvm_unreachable("Instruction not interpretable yet!");
diff --git a/lib/ExecutionEngine/JIT/Android.mk b/lib/ExecutionEngine/JIT/Android.mk
index 02cef81..0466ba0 100644
--- a/lib/ExecutionEngine/JIT/Android.mk
+++ b/lib/ExecutionEngine/JIT/Android.mk
@@ -6,7 +6,6 @@ include $(CLEAR_VARS)
LOCAL_SRC_FILES := \
JIT.cpp \
- JITDwarfEmitter.cpp \
JITEmitter.cpp \
JITMemoryManager.cpp
diff --git a/lib/ExecutionEngine/JIT/CMakeLists.txt b/lib/ExecutionEngine/JIT/CMakeLists.txt
index 52bb389..e16baed 100644
--- a/lib/ExecutionEngine/JIT/CMakeLists.txt
+++ b/lib/ExecutionEngine/JIT/CMakeLists.txt
@@ -3,7 +3,6 @@ add_definitions(-DENABLE_X86_JIT)
add_llvm_library(LLVMJIT
JIT.cpp
- JITDwarfEmitter.cpp
JITEmitter.cpp
JITMemoryManager.cpp
)
diff --git a/lib/ExecutionEngine/JIT/JITDwarfEmitter.cpp b/lib/ExecutionEngine/JIT/JITDwarfEmitter.cpp
deleted file mode 100644
index 35d2b8b..0000000
--- a/lib/ExecutionEngine/JIT/JITDwarfEmitter.cpp
+++ /dev/null
@@ -1,596 +0,0 @@
-//===----- JITDwarfEmitter.cpp - Write dwarf tables into memory -----------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file defines a JITDwarfEmitter object that is used by the JIT to
-// write dwarf tables to memory.
-//
-//===----------------------------------------------------------------------===//
-
-#include "JITDwarfEmitter.h"
-#include "JIT.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/CodeGen/JITCodeEmitter.h"
-#include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/CodeGen/MachineModuleInfo.h"
-#include "llvm/ExecutionEngine/JITMemoryManager.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/Function.h"
-#include "llvm/MC/MCAsmInfo.h"
-#include "llvm/MC/MCSymbol.h"
-#include "llvm/MC/MachineLocation.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Target/TargetFrameLowering.h"
-#include "llvm/Target/TargetInstrInfo.h"
-#include "llvm/Target/TargetMachine.h"
-#include "llvm/Target/TargetRegisterInfo.h"
-using namespace llvm;
-
-JITDwarfEmitter::JITDwarfEmitter(JIT& theJit) : MMI(0), Jit(theJit) {}
-
-
-unsigned char* JITDwarfEmitter::EmitDwarfTable(MachineFunction& F,
- JITCodeEmitter& jce,
- unsigned char* StartFunction,
- unsigned char* EndFunction,
- unsigned char* &EHFramePtr) {
- assert(MMI && "MachineModuleInfo not registered!");
-
- const TargetMachine& TM = F.getTarget();
- TD = TM.getDataLayout();
- stackGrowthDirection = TM.getFrameLowering()->getStackGrowthDirection();
- RI = TM.getRegisterInfo();
- MAI = TM.getMCAsmInfo();
- JCE = &jce;
-
- unsigned char* ExceptionTable = EmitExceptionTable(&F, StartFunction,
- EndFunction);
-
- unsigned char* Result = 0;
-
- const std::vector<const Function *> Personalities = MMI->getPersonalities();
- EHFramePtr = EmitCommonEHFrame(Personalities[MMI->getPersonalityIndex()]);
-
- Result = EmitEHFrame(Personalities[MMI->getPersonalityIndex()], EHFramePtr,
- StartFunction, EndFunction, ExceptionTable);
-
- return Result;
-}
-
-
-void
-JITDwarfEmitter::EmitFrameMoves(intptr_t BaseLabelPtr,
- const std::vector<MachineMove> &Moves) const {
- unsigned PointerSize = TD->getPointerSize();
- int stackGrowth = stackGrowthDirection == TargetFrameLowering::StackGrowsUp ?
- PointerSize : -PointerSize;
- MCSymbol *BaseLabel = 0;
-
- for (unsigned i = 0, N = Moves.size(); i < N; ++i) {
- const MachineMove &Move = Moves[i];
- MCSymbol *Label = Move.getLabel();
-
- // Throw out move if the label is invalid.
- if (Label && (*JCE->getLabelLocations())[Label] == 0)
- continue;
-
- intptr_t LabelPtr = 0;
- if (Label) LabelPtr = JCE->getLabelAddress(Label);
-
- const MachineLocation &Dst = Move.getDestination();
- const MachineLocation &Src = Move.getSource();
-
- // Advance row if new location.
- if (BaseLabelPtr && Label && BaseLabel != Label) {
- JCE->emitByte(dwarf::DW_CFA_advance_loc4);
- JCE->emitInt32(LabelPtr - BaseLabelPtr);
-
- BaseLabel = Label;
- BaseLabelPtr = LabelPtr;
- }
-
- // If advancing cfa.
- if (Dst.isReg() && Dst.getReg() == MachineLocation::VirtualFP) {
- if (!Src.isReg()) {
- if (Src.getReg() == MachineLocation::VirtualFP) {
- JCE->emitByte(dwarf::DW_CFA_def_cfa_offset);
- } else {
- JCE->emitByte(dwarf::DW_CFA_def_cfa);
- JCE->emitULEB128Bytes(RI->getDwarfRegNum(Src.getReg(), true));
- }
-
- JCE->emitULEB128Bytes(-Src.getOffset());
- } else {
- llvm_unreachable("Machine move not supported yet.");
- }
- } else if (Src.isReg() &&
- Src.getReg() == MachineLocation::VirtualFP) {
- if (Dst.isReg()) {
- JCE->emitByte(dwarf::DW_CFA_def_cfa_register);
- JCE->emitULEB128Bytes(RI->getDwarfRegNum(Dst.getReg(), true));
- } else {
- llvm_unreachable("Machine move not supported yet.");
- }
- } else {
- unsigned Reg = RI->getDwarfRegNum(Src.getReg(), true);
- int Offset = Dst.getOffset() / stackGrowth;
-
- if (Offset < 0) {
- JCE->emitByte(dwarf::DW_CFA_offset_extended_sf);
- JCE->emitULEB128Bytes(Reg);
- JCE->emitSLEB128Bytes(Offset);
- } else if (Reg < 64) {
- JCE->emitByte(dwarf::DW_CFA_offset + Reg);
- JCE->emitULEB128Bytes(Offset);
- } else {
- JCE->emitByte(dwarf::DW_CFA_offset_extended);
- JCE->emitULEB128Bytes(Reg);
- JCE->emitULEB128Bytes(Offset);
- }
- }
- }
-}
-
-/// SharedTypeIds - How many leading type ids two landing pads have in common.
-static unsigned SharedTypeIds(const LandingPadInfo *L,
- const LandingPadInfo *R) {
- const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
- unsigned LSize = LIds.size(), RSize = RIds.size();
- unsigned MinSize = LSize < RSize ? LSize : RSize;
- unsigned Count = 0;
-
- for (; Count != MinSize; ++Count)
- if (LIds[Count] != RIds[Count])
- return Count;
-
- return Count;
-}
-
-
-/// PadLT - Order landing pads lexicographically by type id.
-static bool PadLT(const LandingPadInfo *L, const LandingPadInfo *R) {
- const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
- unsigned LSize = LIds.size(), RSize = RIds.size();
- unsigned MinSize = LSize < RSize ? LSize : RSize;
-
- for (unsigned i = 0; i != MinSize; ++i)
- if (LIds[i] != RIds[i])
- return LIds[i] < RIds[i];
-
- return LSize < RSize;
-}
-
-namespace {
-
-/// ActionEntry - Structure describing an entry in the actions table.
-struct ActionEntry {
- int ValueForTypeID; // The value to write - may not be equal to the type id.
- int NextAction;
- struct ActionEntry *Previous;
-};
-
-/// PadRange - Structure holding a try-range and the associated landing pad.
-struct PadRange {
- // The index of the landing pad.
- unsigned PadIndex;
- // The index of the begin and end labels in the landing pad's label lists.
- unsigned RangeIndex;
-};
-
-typedef DenseMap<MCSymbol*, PadRange> RangeMapType;
-
-/// CallSiteEntry - Structure describing an entry in the call-site table.
-struct CallSiteEntry {
- MCSymbol *BeginLabel; // zero indicates the start of the function.
- MCSymbol *EndLabel; // zero indicates the end of the function.
- MCSymbol *PadLabel; // zero indicates that there is no landing pad.
- unsigned Action;
-};
-
-}
-
-unsigned char* JITDwarfEmitter::EmitExceptionTable(MachineFunction* MF,
- unsigned char* StartFunction,
- unsigned char* EndFunction) const {
- assert(MMI && "MachineModuleInfo not registered!");
-
- // Map all labels and get rid of any dead landing pads.
- MMI->TidyLandingPads(JCE->getLabelLocations());
-
- const std::vector<const GlobalVariable *> &TypeInfos = MMI->getTypeInfos();
- const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
- const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads();
- if (PadInfos.empty()) return 0;
-
- // Sort the landing pads in order of their type ids. This is used to fold
- // duplicate actions.
- SmallVector<const LandingPadInfo *, 64> LandingPads;
- LandingPads.reserve(PadInfos.size());
- for (unsigned i = 0, N = PadInfos.size(); i != N; ++i)
- LandingPads.push_back(&PadInfos[i]);
- std::sort(LandingPads.begin(), LandingPads.end(), PadLT);
-
- // Negative type ids index into FilterIds, positive type ids index into
- // TypeInfos. The value written for a positive type id is just the type
- // id itself. For a negative type id, however, the value written is the
- // (negative) byte offset of the corresponding FilterIds entry. The byte
- // offset is usually equal to the type id, because the FilterIds entries
- // are written using a variable width encoding which outputs one byte per
- // entry as long as the value written is not too large, but can differ.
- // This kind of complication does not occur for positive type ids because
- // type infos are output using a fixed width encoding.
- // FilterOffsets[i] holds the byte offset corresponding to FilterIds[i].
- SmallVector<int, 16> FilterOffsets;
- FilterOffsets.reserve(FilterIds.size());
- int Offset = -1;
- for(std::vector<unsigned>::const_iterator I = FilterIds.begin(),
- E = FilterIds.end(); I != E; ++I) {
- FilterOffsets.push_back(Offset);
- Offset -= MCAsmInfo::getULEB128Size(*I);
- }
-
- // Compute the actions table and gather the first action index for each
- // landing pad site.
- SmallVector<ActionEntry, 32> Actions;
- SmallVector<unsigned, 64> FirstActions;
- FirstActions.reserve(LandingPads.size());
-
- int FirstAction = 0;
- unsigned SizeActions = 0;
- for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
- const LandingPadInfo *LP = LandingPads[i];
- const std::vector<int> &TypeIds = LP->TypeIds;
- const unsigned NumShared = i ? SharedTypeIds(LP, LandingPads[i-1]) : 0;
- unsigned SizeSiteActions = 0;
-
- if (NumShared < TypeIds.size()) {
- unsigned SizeAction = 0;
- ActionEntry *PrevAction = 0;
-
- if (NumShared) {
- const unsigned SizePrevIds = LandingPads[i-1]->TypeIds.size();
- assert(Actions.size());
- PrevAction = &Actions.back();
- SizeAction = MCAsmInfo::getSLEB128Size(PrevAction->NextAction) +
- MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
- for (unsigned j = NumShared; j != SizePrevIds; ++j) {
- SizeAction -= MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
- SizeAction += -PrevAction->NextAction;
- PrevAction = PrevAction->Previous;
- }
- }
-
- // Compute the actions.
- for (unsigned I = NumShared, M = TypeIds.size(); I != M; ++I) {
- int TypeID = TypeIds[I];
- assert(-1-TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
- int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID;
- unsigned SizeTypeID = MCAsmInfo::getSLEB128Size(ValueForTypeID);
-
- int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0;
- SizeAction = SizeTypeID + MCAsmInfo::getSLEB128Size(NextAction);
- SizeSiteActions += SizeAction;
-
- ActionEntry Action = {ValueForTypeID, NextAction, PrevAction};
- Actions.push_back(Action);
-
- PrevAction = &Actions.back();
- }
-
- // Record the first action of the landing pad site.
- FirstAction = SizeActions + SizeSiteActions - SizeAction + 1;
- } // else identical - re-use previous FirstAction
-
- FirstActions.push_back(FirstAction);
-
- // Compute this sites contribution to size.
- SizeActions += SizeSiteActions;
- }
-
- // Compute the call-site table. Entries must be ordered by address.
- SmallVector<CallSiteEntry, 64> CallSites;
-
- RangeMapType PadMap;
- for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
- const LandingPadInfo *LandingPad = LandingPads[i];
- for (unsigned j=0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
- MCSymbol *BeginLabel = LandingPad->BeginLabels[j];
- assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
- PadRange P = { i, j };
- PadMap[BeginLabel] = P;
- }
- }
-
- bool MayThrow = false;
- MCSymbol *LastLabel = 0;
- for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
- I != E; ++I) {
- for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end();
- MI != E; ++MI) {
- if (!MI->isLabel()) {
- MayThrow |= MI->isCall();
- continue;
- }
-
- MCSymbol *BeginLabel = MI->getOperand(0).getMCSymbol();
- assert(BeginLabel && "Invalid label!");
-
- if (BeginLabel == LastLabel)
- MayThrow = false;
-
- RangeMapType::iterator L = PadMap.find(BeginLabel);
-
- if (L == PadMap.end())
- continue;
-
- PadRange P = L->second;
- const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
-
- assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
- "Inconsistent landing pad map!");
-
- // If some instruction between the previous try-range and this one may
- // throw, create a call-site entry with no landing pad for the region
- // between the try-ranges.
- if (MayThrow) {
- CallSiteEntry Site = {LastLabel, BeginLabel, 0, 0};
- CallSites.push_back(Site);
- }
-
- LastLabel = LandingPad->EndLabels[P.RangeIndex];
- CallSiteEntry Site = {BeginLabel, LastLabel,
- LandingPad->LandingPadLabel, FirstActions[P.PadIndex]};
-
- assert(Site.BeginLabel && Site.EndLabel && Site.PadLabel &&
- "Invalid landing pad!");
-
- // Try to merge with the previous call-site.
- if (CallSites.size()) {
- CallSiteEntry &Prev = CallSites.back();
- if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) {
- // Extend the range of the previous entry.
- Prev.EndLabel = Site.EndLabel;
- continue;
- }
- }
-
- // Otherwise, create a new call-site.
- CallSites.push_back(Site);
- }
- }
- // If some instruction between the previous try-range and the end of the
- // function may throw, create a call-site entry with no landing pad for the
- // region following the try-range.
- if (MayThrow) {
- CallSiteEntry Site = {LastLabel, 0, 0, 0};
- CallSites.push_back(Site);
- }
-
- // Final tallies.
- unsigned SizeSites = CallSites.size() * (sizeof(int32_t) + // Site start.
- sizeof(int32_t) + // Site length.
- sizeof(int32_t)); // Landing pad.
- for (unsigned i = 0, e = CallSites.size(); i < e; ++i)
- SizeSites += MCAsmInfo::getULEB128Size(CallSites[i].Action);
-
- unsigned SizeTypes = TypeInfos.size() * TD->getPointerSize();
-
- unsigned TypeOffset = sizeof(int8_t) + // Call site format
- // Call-site table length
- MCAsmInfo::getULEB128Size(SizeSites) +
- SizeSites + SizeActions + SizeTypes;
-
- // Begin the exception table.
- JCE->emitAlignmentWithFill(4, 0);
- // Asm->EOL("Padding");
-
- unsigned char* DwarfExceptionTable = (unsigned char*)JCE->getCurrentPCValue();
-
- // Emit the header.
- JCE->emitByte(dwarf::DW_EH_PE_omit);
- // Asm->EOL("LPStart format (DW_EH_PE_omit)");
- JCE->emitByte(dwarf::DW_EH_PE_absptr);
- // Asm->EOL("TType format (DW_EH_PE_absptr)");
- JCE->emitULEB128Bytes(TypeOffset);
- // Asm->EOL("TType base offset");
- JCE->emitByte(dwarf::DW_EH_PE_udata4);
- // Asm->EOL("Call site format (DW_EH_PE_udata4)");
- JCE->emitULEB128Bytes(SizeSites);
- // Asm->EOL("Call-site table length");
-
- // Emit the landing pad site information.
- for (unsigned i = 0; i < CallSites.size(); ++i) {
- CallSiteEntry &S = CallSites[i];
- intptr_t BeginLabelPtr = 0;
- intptr_t EndLabelPtr = 0;
-
- if (!S.BeginLabel) {
- BeginLabelPtr = (intptr_t)StartFunction;
- JCE->emitInt32(0);
- } else {
- BeginLabelPtr = JCE->getLabelAddress(S.BeginLabel);
- JCE->emitInt32(BeginLabelPtr - (intptr_t)StartFunction);
- }
-
- // Asm->EOL("Region start");
-
- if (!S.EndLabel)
- EndLabelPtr = (intptr_t)EndFunction;
- else
- EndLabelPtr = JCE->getLabelAddress(S.EndLabel);
-
- JCE->emitInt32(EndLabelPtr - BeginLabelPtr);
- //Asm->EOL("Region length");
-
- if (!S.PadLabel) {
- JCE->emitInt32(0);
- } else {
- unsigned PadLabelPtr = JCE->getLabelAddress(S.PadLabel);
- JCE->emitInt32(PadLabelPtr - (intptr_t)StartFunction);
- }
- // Asm->EOL("Landing pad");
-
- JCE->emitULEB128Bytes(S.Action);
- // Asm->EOL("Action");
- }
-
- // Emit the actions.
- for (unsigned I = 0, N = Actions.size(); I != N; ++I) {
- ActionEntry &Action = Actions[I];
-
- JCE->emitSLEB128Bytes(Action.ValueForTypeID);
- //Asm->EOL("TypeInfo index");
- JCE->emitSLEB128Bytes(Action.NextAction);
- //Asm->EOL("Next action");
- }
-
- // Emit the type ids.
- for (unsigned M = TypeInfos.size(); M; --M) {
- const GlobalVariable *GV = TypeInfos[M - 1];
-
- if (GV) {
- if (TD->getPointerSize() == sizeof(int32_t))
- JCE->emitInt32((intptr_t)Jit.getOrEmitGlobalVariable(GV));
- else
- JCE->emitInt64((intptr_t)Jit.getOrEmitGlobalVariable(GV));
- } else {
- if (TD->getPointerSize() == sizeof(int32_t))
- JCE->emitInt32(0);
- else
- JCE->emitInt64(0);
- }
- // Asm->EOL("TypeInfo");
- }
-
- // Emit the filter typeids.
- for (unsigned j = 0, M = FilterIds.size(); j < M; ++j) {
- unsigned TypeID = FilterIds[j];
- JCE->emitULEB128Bytes(TypeID);
- //Asm->EOL("Filter TypeInfo index");
- }
-
- JCE->emitAlignmentWithFill(4, 0);
-
- return DwarfExceptionTable;
-}
-
-unsigned char*
-JITDwarfEmitter::EmitCommonEHFrame(const Function* Personality) const {
- unsigned PointerSize = TD->getPointerSize();
- int stackGrowth = stackGrowthDirection == TargetFrameLowering::StackGrowsUp ?
- PointerSize : -PointerSize;
-
- unsigned char* StartCommonPtr = (unsigned char*)JCE->getCurrentPCValue();
- // EH Common Frame header
- JCE->allocateSpace(4, 0);
- unsigned char* FrameCommonBeginPtr = (unsigned char*)JCE->getCurrentPCValue();
- JCE->emitInt32((int)0);
- JCE->emitByte(dwarf::DW_CIE_VERSION);
- JCE->emitString(Personality ? "zPLR" : "zR");
- JCE->emitULEB128Bytes(1);
- JCE->emitSLEB128Bytes(stackGrowth);
- JCE->emitByte(RI->getDwarfRegNum(RI->getRARegister(), true));
-
- if (Personality) {
- // Augmentation Size: 3 small ULEBs of one byte each, and the personality
- // function which size is PointerSize.
- JCE->emitULEB128Bytes(3 + PointerSize);
-
- // We set the encoding of the personality as direct encoding because we use
- // the function pointer. The encoding is not relative because the current
- // PC value may be bigger than the personality function pointer.
- if (PointerSize == 4) {
- JCE->emitByte(dwarf::DW_EH_PE_sdata4);
- JCE->emitInt32(((intptr_t)Jit.getPointerToGlobal(Personality)));
- } else {
- JCE->emitByte(dwarf::DW_EH_PE_sdata8);
- JCE->emitInt64(((intptr_t)Jit.getPointerToGlobal(Personality)));
- }
-
- // LSDA encoding: This must match the encoding used in EmitEHFrame ()
- if (PointerSize == 4)
- JCE->emitULEB128Bytes(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4);
- else
- JCE->emitULEB128Bytes(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata8);
- JCE->emitULEB128Bytes(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4);
- } else {
- JCE->emitULEB128Bytes(1);
- JCE->emitULEB128Bytes(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4);
- }
-
- EmitFrameMoves(0, MAI->getInitialFrameState());
-
- JCE->emitAlignmentWithFill(PointerSize, dwarf::DW_CFA_nop);
-
- JCE->emitInt32At((uintptr_t*)StartCommonPtr,
- (uintptr_t)((unsigned char*)JCE->getCurrentPCValue() -
- FrameCommonBeginPtr));
-
- return StartCommonPtr;
-}
-
-
-unsigned char*
-JITDwarfEmitter::EmitEHFrame(const Function* Personality,
- unsigned char* StartCommonPtr,
- unsigned char* StartFunction,
- unsigned char* EndFunction,
- unsigned char* ExceptionTable) const {
- unsigned PointerSize = TD->getPointerSize();
-
- // EH frame header.
- unsigned char* StartEHPtr = (unsigned char*)JCE->getCurrentPCValue();
- JCE->allocateSpace(4, 0);
- unsigned char* FrameBeginPtr = (unsigned char*)JCE->getCurrentPCValue();
- // FDE CIE Offset
- JCE->emitInt32(FrameBeginPtr - StartCommonPtr);
- JCE->emitInt32(StartFunction - (unsigned char*)JCE->getCurrentPCValue());
- JCE->emitInt32(EndFunction - StartFunction);
-
- // If there is a personality and landing pads then point to the language
- // specific data area in the exception table.
- if (Personality) {
- JCE->emitULEB128Bytes(PointerSize == 4 ? 4 : 8);
-
- if (PointerSize == 4) {
- if (!MMI->getLandingPads().empty())
- JCE->emitInt32(ExceptionTable-(unsigned char*)JCE->getCurrentPCValue());
- else
- JCE->emitInt32((int)0);
- } else {
- if (!MMI->getLandingPads().empty())
- JCE->emitInt64(ExceptionTable-(unsigned char*)JCE->getCurrentPCValue());
- else
- JCE->emitInt64((int)0);
- }
- } else {
- JCE->emitULEB128Bytes(0);
- }
-
- // Indicate locations of function specific callee saved registers in
- // frame.
- EmitFrameMoves((intptr_t)StartFunction, MMI->getFrameMoves());
-
- JCE->emitAlignmentWithFill(PointerSize, dwarf::DW_CFA_nop);
-
- // Indicate the size of the table
- JCE->emitInt32At((uintptr_t*)StartEHPtr,
- (uintptr_t)((unsigned char*)JCE->getCurrentPCValue() -
- StartEHPtr));
-
- // Double zeroes for the unwind runtime
- if (PointerSize == 8) {
- JCE->emitInt64(0);
- JCE->emitInt64(0);
- } else {
- JCE->emitInt32(0);
- JCE->emitInt32(0);
- }
-
- return StartEHPtr;
-}
diff --git a/lib/ExecutionEngine/JIT/JITDwarfEmitter.h b/lib/ExecutionEngine/JIT/JITDwarfEmitter.h
deleted file mode 100644
index 98ac340..0000000
--- a/lib/ExecutionEngine/JIT/JITDwarfEmitter.h
+++ /dev/null
@@ -1,77 +0,0 @@
-//===------ JITDwarfEmitter.h - Write dwarf tables into memory ------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file defines a JITDwarfEmitter object that is used by the JIT to
-// write dwarf tables to memory.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_EXECUTION_ENGINE_JIT_DWARFEMITTER_H
-#define LLVM_EXECUTION_ENGINE_JIT_DWARFEMITTER_H
-
-#include "llvm/Support/DataTypes.h"
-#include <vector>
-
-namespace llvm {
-
-class Function;
-class JIT;
-class JITCodeEmitter;
-class MachineFunction;
-class MachineModuleInfo;
-class MachineMove;
-class MCAsmInfo;
-class DataLayout;
-class TargetMachine;
-class TargetRegisterInfo;
-
-class JITDwarfEmitter {
- const DataLayout* TD;
- JITCodeEmitter* JCE;
- const TargetRegisterInfo* RI;
- const MCAsmInfo *MAI;
- MachineModuleInfo* MMI;
- JIT& Jit;
- bool stackGrowthDirection;
-
- unsigned char* EmitExceptionTable(MachineFunction* MF,
- unsigned char* StartFunction,
- unsigned char* EndFunction) const;
-
- void EmitFrameMoves(intptr_t BaseLabelPtr,
- const std::vector<MachineMove> &Moves) const;
-
- unsigned char* EmitCommonEHFrame(const Function* Personality) const;
-
- unsigned char* EmitEHFrame(const Function* Personality,
- unsigned char* StartBufferPtr,
- unsigned char* StartFunction,
- unsigned char* EndFunction,
- unsigned char* ExceptionTable) const;
-
-public:
-
- JITDwarfEmitter(JIT& jit);
-
- unsigned char* EmitDwarfTable(MachineFunction& F,
- JITCodeEmitter& JCE,
- unsigned char* StartFunction,
- unsigned char* EndFunction,
- unsigned char* &EHFramePtr);
-
-
- void setModuleInfo(MachineModuleInfo* Info) {
- MMI = Info;
- }
-};
-
-
-} // end namespace llvm
-
-#endif // LLVM_EXECUTION_ENGINE_JIT_DWARFEMITTER_H
diff --git a/lib/ExecutionEngine/JIT/JITEmitter.cpp b/lib/ExecutionEngine/JIT/JITEmitter.cpp
index c273876..acbbfa1 100644
--- a/lib/ExecutionEngine/JIT/JITEmitter.cpp
+++ b/lib/ExecutionEngine/JIT/JITEmitter.cpp
@@ -14,7 +14,6 @@
#define DEBUG_TYPE "jit"
#include "JIT.h"
-#include "JITDwarfEmitter.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/SmallPtrSet.h"
@@ -325,9 +324,6 @@ namespace {
/// Resolver - This contains info about the currently resolved functions.
JITResolver Resolver;
- /// DE - The dwarf emitter for the jit.
- OwningPtr<JITDwarfEmitter> DE;
-
/// LabelLocations - This vector is a mapping from Label ID's to their
/// address.
DenseMap<MCSymbol*, uintptr_t> LabelLocations;
@@ -363,22 +359,16 @@ namespace {
/// Instance of the JIT
JIT *TheJIT;
- bool JITExceptionHandling;
-
public:
JITEmitter(JIT &jit, JITMemoryManager *JMM, TargetMachine &TM)
: SizeEstimate(0), Resolver(jit, *this), MMI(0), CurFn(0),
- EmittedFunctions(this), TheJIT(&jit),
- JITExceptionHandling(TM.Options.JITExceptionHandling) {
+ EmittedFunctions(this), TheJIT(&jit) {
MemMgr = JMM ? JMM : JITMemoryManager::CreateDefaultMemManager();
if (jit.getJITInfo().needsGOT()) {
MemMgr->AllocateGOT();
DEBUG(dbgs() << "JIT is managing a GOT\n");
}
- if (JITExceptionHandling) {
- DE.reset(new JITDwarfEmitter(jit));
- }
}
~JITEmitter() {
delete MemMgr;
@@ -460,7 +450,6 @@ namespace {
virtual void setModuleInfo(MachineModuleInfo* Info) {
MMI = Info;
- if (DE.get()) DE->setModuleInfo(Info);
}
private:
@@ -964,40 +953,6 @@ bool JITEmitter::finishFunction(MachineFunction &F) {
}
});
- if (JITExceptionHandling) {
- uintptr_t ActualSize = 0;
- SavedBufferBegin = BufferBegin;
- SavedBufferEnd = BufferEnd;
- SavedCurBufferPtr = CurBufferPtr;
- uint8_t *FrameRegister;
-
- while (true) {
- BufferBegin = CurBufferPtr = MemMgr->startExceptionTable(F.getFunction(),
- ActualSize);
- BufferEnd = BufferBegin+ActualSize;
- EmittedFunctions[F.getFunction()].ExceptionTable = BufferBegin;
- uint8_t *EhStart;
- FrameRegister = DE->EmitDwarfTable(F, *this, FnStart, FnEnd, EhStart);
-
- // If the buffer was large enough to hold the table then we are done.
- if (CurBufferPtr != BufferEnd)
- break;
-
- // Try again with twice as much space.
- ActualSize = (CurBufferPtr - BufferBegin) * 2;
- MemMgr->deallocateExceptionTable(BufferBegin);
- }
- MemMgr->endExceptionTable(F.getFunction(), BufferBegin, CurBufferPtr,
- FrameRegister);
- BufferBegin = SavedBufferBegin;
- BufferEnd = SavedBufferEnd;
- CurBufferPtr = SavedCurBufferPtr;
-
- if (JITExceptionHandling) {
- TheJIT->RegisterTable(F.getFunction(), FrameRegister);
- }
- }
-
if (MMI)
MMI->EndFunction();
@@ -1027,15 +982,10 @@ void JITEmitter::deallocateMemForFunction(const Function *F) {
Emitted = EmittedFunctions.find(F);
if (Emitted != EmittedFunctions.end()) {
MemMgr->deallocateFunctionBody(Emitted->second.FunctionBody);
- MemMgr->deallocateExceptionTable(Emitted->second.ExceptionTable);
TheJIT->NotifyFreeingMachineCode(Emitted->second.Code);
EmittedFunctions.erase(Emitted);
}
-
- if (JITExceptionHandling) {
- TheJIT->DeregisterTable(F);
- }
}
diff --git a/lib/ExecutionEngine/JIT/JITMemoryManager.cpp b/lib/ExecutionEngine/JIT/JITMemoryManager.cpp
index 66aeb77..94db245 100644
--- a/lib/ExecutionEngine/JIT/JITMemoryManager.cpp
+++ b/lib/ExecutionEngine/JIT/JITMemoryManager.cpp
@@ -468,7 +468,11 @@ namespace {
// Grow the required block size to account for the block header
Size += sizeof(*CurBlock);
- // FIXME: Alignement handling.
+ // Alignment handling.
+ if (!Alignment)
+ Alignment = 16;
+ Size += Alignment - 1;
+
FreeRangeHeader* candidateBlock = FreeMemoryList;
FreeRangeHeader* head = FreeMemoryList;
FreeRangeHeader* iter = head->Next;
@@ -500,7 +504,8 @@ namespace {
FreeMemoryList = candidateBlock->AllocateBlock();
// Release the memory at the end of this block that isn't needed.
FreeMemoryList = CurBlock->TrimAllocationToSize(FreeMemoryList, Size);
- return (uint8_t *)(CurBlock + 1);
+ uintptr_t unalignedAddr = (uintptr_t)CurBlock + sizeof(*CurBlock);
+ return (uint8_t*)RoundUpToAlignment((uint64_t)unalignedAddr, Alignment);
}
/// allocateDataSection - Allocate memory for a data section.
@@ -509,30 +514,10 @@ namespace {
return (uint8_t*)DataAllocator.Allocate(Size, Alignment);
}
- bool applyPermissions(std::string *ErrMsg) {
+ bool finalizeMemory(std::string *ErrMsg) {
return false;
}
- /// startExceptionTable - Use startFunctionBody to allocate memory for the
- /// function's exception table.
- uint8_t* startExceptionTable(const Function* F, uintptr_t &ActualSize) {
- return startFunctionBody(F, ActualSize);
- }
-
- /// endExceptionTable - The exception table of F is now allocated,
- /// and takes the memory in the range [TableStart,TableEnd).
- void endExceptionTable(const Function *F, uint8_t *TableStart,
- uint8_t *TableEnd, uint8_t* FrameRegister) {
- assert(TableEnd > TableStart);
- assert(TableStart == (uint8_t *)(CurBlock+1) &&
- "Mismatched table start/end!");
-
- uintptr_t BlockSize = TableEnd - (uint8_t *)CurBlock;
-
- // Release the memory at the end of this block that isn't needed.
- FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize);
- }
-
uint8_t *getGOTBase() const {
return GOTBase;
}
@@ -557,12 +542,6 @@ namespace {
if (Body) deallocateBlock(Body);
}
- /// deallocateExceptionTable - Deallocate memory for the specified
- /// exception table.
- void deallocateExceptionTable(void *ET) {
- if (ET) deallocateBlock(ET);
- }
-
/// setMemoryWritable - When code generation is in progress,
/// the code pages may need permissions changed.
void setMemoryWritable()
diff --git a/lib/ExecutionEngine/MCJIT/MCJIT.cpp b/lib/ExecutionEngine/MCJIT/MCJIT.cpp
index fee10e1..09dd924 100644
--- a/lib/ExecutionEngine/MCJIT/MCJIT.cpp
+++ b/lib/ExecutionEngine/MCJIT/MCJIT.cpp
@@ -14,6 +14,7 @@
#include "llvm/ExecutionEngine/MCJIT.h"
#include "llvm/ExecutionEngine/ObjectBuffer.h"
#include "llvm/ExecutionEngine/ObjectImage.h"
+#include "llvm/ExecutionEngine/SectionMemoryManager.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
@@ -38,7 +39,7 @@ extern "C" void LLVMLinkInMCJIT() {
ExecutionEngine *MCJIT::createJIT(Module *M,
std::string *ErrorStr,
- JITMemoryManager *JMM,
+ RTDyldMemoryManager *MemMgr,
bool GVsWithCode,
TargetMachine *TM) {
// Try to register the program as a source of symbols to resolve against.
@@ -46,13 +47,14 @@ ExecutionEngine *MCJIT::createJIT(Module *M,
// FIXME: Don't do this here.
sys::DynamicLibrary::LoadLibraryPermanently(0, NULL);
- return new MCJIT(M, TM, JMM, GVsWithCode);
+ return new MCJIT(M, TM, MemMgr ? MemMgr : new SectionMemoryManager(),
+ GVsWithCode);
}
MCJIT::MCJIT(Module *m, TargetMachine *tm, RTDyldMemoryManager *MM,
bool AllocateGVsWithCode)
: ExecutionEngine(m), TM(tm), Ctx(0), MemMgr(MM), Dyld(MM),
- isCompiled(false), M(m) {
+ IsLoaded(false), M(m), ObjCache(0) {
setDataLayout(TM->getDataLayout());
}
@@ -64,7 +66,11 @@ MCJIT::~MCJIT() {
delete TM;
}
-void MCJIT::emitObject(Module *m) {
+void MCJIT::setObjectCache(ObjectCache* NewCache) {
+ ObjCache = NewCache;
+}
+
+ObjectBufferStream* MCJIT::emitObject(Module *m) {
/// Currently, MCJIT only supports a single module and the module passed to
/// this function call is expected to be the contained module. The module
/// is passed as a parameter here to prepare for multiple module support in
@@ -77,30 +83,66 @@ void MCJIT::emitObject(Module *m) {
// FIXME: Track compilation state on a per-module basis when multiple modules
// are supported.
// Re-compilation is not supported
- if (isCompiled)
- return;
+ assert(!IsLoaded);
PassManager PM;
PM.add(new DataLayout(*TM->getDataLayout()));
// The RuntimeDyld will take ownership of this shortly
- OwningPtr<ObjectBufferStream> Buffer(new ObjectBufferStream());
+ OwningPtr<ObjectBufferStream> CompiledObject(new ObjectBufferStream());
// Turn the machine code intermediate representation into bytes in memory
// that may be executed.
- if (TM->addPassesToEmitMC(PM, Ctx, Buffer->getOStream(), false)) {
+ if (TM->addPassesToEmitMC(PM, Ctx, CompiledObject->getOStream(), false)) {
report_fatal_error("Target does not support MC emission!");
}
// Initialize passes.
PM.run(*m);
// Flush the output buffer to get the generated code into memory
- Buffer->flush();
+ CompiledObject->flush();
+
+ // If we have an object cache, tell it about the new object.
+ // Note that we're using the compiled image, not the loaded image (as below).
+ if (ObjCache) {
+ // MemoryBuffer is a thin wrapper around the actual memory, so it's OK
+ // to create a temporary object here and delete it after the call.
+ OwningPtr<MemoryBuffer> MB(CompiledObject->getMemBuffer());
+ ObjCache->notifyObjectCompiled(m, MB.get());
+ }
+
+ return CompiledObject.take();
+}
+
+void MCJIT::loadObject(Module *M) {
+
+ // Get a thread lock to make sure we aren't trying to load multiple times
+ MutexGuard locked(lock);
+
+ // FIXME: Track compilation state on a per-module basis when multiple modules
+ // are supported.
+ // Re-compilation is not supported
+ if (IsLoaded)
+ return;
+
+ OwningPtr<ObjectBuffer> ObjectToLoad;
+ // Try to load the pre-compiled object from cache if possible
+ if (0 != ObjCache) {
+ OwningPtr<MemoryBuffer> PreCompiledObject(ObjCache->getObject(M));
+ if (0 != PreCompiledObject.get())
+ ObjectToLoad.reset(new ObjectBuffer(PreCompiledObject.take()));
+ }
+
+ // If the cache did not contain a suitable object, compile the object
+ if (!ObjectToLoad) {
+ ObjectToLoad.reset(emitObject(M));
+ assert(ObjectToLoad.get() && "Compilation did not produce an object.");
+ }
// Load the object into the dynamic linker.
// handing off ownership of the buffer
- LoadedObject.reset(Dyld.loadObject(Buffer.take()));
+ LoadedObject.reset(Dyld.loadObject(ObjectToLoad.take()));
if (!LoadedObject)
report_fatal_error(Dyld.getErrorString());
@@ -113,7 +155,7 @@ void MCJIT::emitObject(Module *m) {
NotifyObjectEmitted(*LoadedObject);
// FIXME: Add support for per-module compilation state
- isCompiled = true;
+ IsLoaded = true;
}
// FIXME: Add a parameter to identify which object is being finalized when
@@ -122,22 +164,21 @@ void MCJIT::emitObject(Module *m) {
// protection in the interface.
void MCJIT::finalizeObject() {
// If the module hasn't been compiled, just do that.
- if (!isCompiled) {
- // If the call to Dyld.resolveRelocations() is removed from emitObject()
+ if (!IsLoaded) {
+ // If the call to Dyld.resolveRelocations() is removed from loadObject()
// we'll need to do that here.
- emitObject(M);
-
- // Set page permissions.
- MemMgr->applyPermissions();
-
- return;
+ loadObject(M);
+ } else {
+ // Resolve any relocations.
+ Dyld.resolveRelocations();
}
- // Resolve any relocations.
- Dyld.resolveRelocations();
+ StringRef EHData = Dyld.getEHFrameSection();
+ if (!EHData.empty())
+ MemMgr->registerEHFrames(EHData);
// Set page permissions.
- MemMgr->applyPermissions();
+ MemMgr->finalizeMemory();
}
void *MCJIT::getPointerToBasicBlock(BasicBlock *BB) {
@@ -151,8 +192,8 @@ void *MCJIT::getPointerToFunction(Function *F) {
// dies.
// FIXME: Add support for per-module compilation state
- if (!isCompiled)
- emitObject(M);
+ if (!IsLoaded)
+ loadObject(M);
if (F->isDeclaration() || F->hasAvailableExternallyLinkage()) {
bool AbortOnFailure = !F->hasExternalWeakLinkage();
@@ -284,8 +325,8 @@ GenericValue MCJIT::runFunction(Function *F,
void *MCJIT::getPointerToNamedFunction(const std::string &Name,
bool AbortOnFailure) {
// FIXME: Add support for per-module compilation state
- if (!isCompiled)
- emitObject(M);
+ if (!IsLoaded)
+ loadObject(M);
if (!isSymbolSearchingDisabled() && MemMgr) {
void *ptr = MemMgr->getPointerToNamedFunction(Name, false);
diff --git a/lib/ExecutionEngine/MCJIT/MCJIT.h b/lib/ExecutionEngine/MCJIT/MCJIT.h
index 283a8e5..a899d4f 100644
--- a/lib/ExecutionEngine/MCJIT/MCJIT.h
+++ b/lib/ExecutionEngine/MCJIT/MCJIT.h
@@ -12,6 +12,7 @@
#include "llvm/ADT/SmallVector.h"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
+#include "llvm/ExecutionEngine/ObjectCache.h"
#include "llvm/ExecutionEngine/RuntimeDyld.h"
#include "llvm/PassManager.h"
@@ -34,16 +35,30 @@ class MCJIT : public ExecutionEngine {
SmallVector<JITEventListener*, 2> EventListeners;
// FIXME: Add support for multiple modules
- bool isCompiled;
+ bool IsLoaded;
Module *M;
OwningPtr<ObjectImage> LoadedObject;
+ // An optional ObjectCache to be notified of compiled objects and used to
+ // perform lookup of pre-compiled code to avoid re-compilation.
+ ObjectCache *ObjCache;
+
public:
~MCJIT();
/// @name ExecutionEngine interface implementation
/// @{
+ /// Sets the object manager that MCJIT should use to avoid compilation.
+ virtual void setObjectCache(ObjectCache *manager);
+
+ /// finalizeObject - ensure the module is fully processed and is usable.
+ ///
+ /// It is the user-level function for completing the process of making the
+ /// object usable for execution. It should be called after sections within an
+ /// object have been relocated using mapSectionAddress. When this method is
+ /// called the MCJIT execution engine will reapply relocations for a loaded
+ /// object.
virtual void finalizeObject();
virtual void *getPointerToBasicBlock(BasicBlock *BB);
@@ -90,7 +105,7 @@ public:
static ExecutionEngine *createJIT(Module *M,
std::string *ErrorStr,
- JITMemoryManager *JMM,
+ RTDyldMemoryManager *MemMgr,
bool GVsWithCode,
TargetMachine *TM);
@@ -102,7 +117,9 @@ protected:
/// this function call is expected to be the contained module. The module
/// is passed as a parameter here to prepare for multiple module support in
/// the future.
- void emitObject(Module *M);
+ ObjectBufferStream* emitObject(Module *M);
+
+ void loadObject(Module *M);
void NotifyObjectEmitted(const ObjectImage& Obj);
void NotifyFreeingObject(const ObjectImage& Obj);
diff --git a/lib/ExecutionEngine/MCJIT/SectionMemoryManager.cpp b/lib/ExecutionEngine/MCJIT/SectionMemoryManager.cpp
index fa35acd..650832e 100644
--- a/lib/ExecutionEngine/MCJIT/SectionMemoryManager.cpp
+++ b/lib/ExecutionEngine/MCJIT/SectionMemoryManager.cpp
@@ -14,19 +14,8 @@
#include "llvm/Config/config.h"
#include "llvm/ExecutionEngine/SectionMemoryManager.h"
-#include "llvm/Support/DynamicLibrary.h"
#include "llvm/Support/MathExtras.h"
-#ifdef __linux__
- // These includes used by SectionMemoryManager::getPointerToNamedFunction()
- // for Glibc trickery. See comments in this function for more information.
- #ifdef HAVE_SYS_STAT_H
- #include <sys/stat.h>
- #endif
- #include <fcntl.h>
- #include <unistd.h>
-#endif
-
namespace llvm {
uint8_t *SectionMemoryManager::allocateDataSection(uintptr_t Size,
@@ -111,7 +100,7 @@ uint8_t *SectionMemoryManager::allocateSection(MemoryGroup &MemGroup,
return (uint8_t*)Addr;
}
-bool SectionMemoryManager::applyPermissions(std::string *ErrMsg)
+bool SectionMemoryManager::finalizeMemory(std::string *ErrMsg)
{
// FIXME: Should in-progress permissions be reverted if an error occurs?
error_code ec;
@@ -138,6 +127,11 @@ bool SectionMemoryManager::applyPermissions(std::string *ErrMsg)
// Read-write data memory already has the correct permissions
+ // Some platforms with separate data cache and instruction cache require
+ // explicit cache flush, otherwise JIT code manipulations (like resolved
+ // relocations) will get to the data cache but not to the instruction cache.
+ invalidateInstructionCache();
+
return false;
}
@@ -162,57 +156,6 @@ void SectionMemoryManager::invalidateInstructionCache() {
CodeMem.AllocatedMem[i].size());
}
-static int jit_noop() {
- return 0;
-}
-
-void *SectionMemoryManager::getPointerToNamedFunction(const std::string &Name,
- bool AbortOnFailure) {
-#if defined(__linux__)
- //===--------------------------------------------------------------------===//
- // Function stubs that are invoked instead of certain library calls
- //
- // Force the following functions to be linked in to anything that uses the
- // JIT. This is a hack designed to work around the all-too-clever Glibc
- // strategy of making these functions work differently when inlined vs. when
- // not inlined, and hiding their real definitions in a separate archive file
- // that the dynamic linker can't see. For more info, search for
- // 'libc_nonshared.a' on Google, or read http://llvm.org/PR274.
- if (Name == "stat") return (void*)(intptr_t)&stat;
- if (Name == "fstat") return (void*)(intptr_t)&fstat;
- if (Name == "lstat") return (void*)(intptr_t)&lstat;
- if (Name == "stat64") return (void*)(intptr_t)&stat64;
- if (Name == "fstat64") return (void*)(intptr_t)&fstat64;
- if (Name == "lstat64") return (void*)(intptr_t)&lstat64;
- if (Name == "atexit") return (void*)(intptr_t)&atexit;
- if (Name == "mknod") return (void*)(intptr_t)&mknod;
-#endif // __linux__
-
- // We should not invoke parent's ctors/dtors from generated main()!
- // On Mingw and Cygwin, the symbol __main is resolved to
- // callee's(eg. tools/lli) one, to invoke wrong duplicated ctors
- // (and register wrong callee's dtors with atexit(3)).
- // We expect ExecutionEngine::runStaticConstructorsDestructors()
- // is called before ExecutionEngine::runFunctionAsMain() is called.
- if (Name == "__main") return (void*)(intptr_t)&jit_noop;
-
- const char *NameStr = Name.c_str();
- void *Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(NameStr);
- if (Ptr) return Ptr;
-
- // If it wasn't found and if it starts with an underscore ('_') character,
- // try again without the underscore.
- if (NameStr[0] == '_') {
- Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(NameStr+1);
- if (Ptr) return Ptr;
- }
-
- if (AbortOnFailure)
- report_fatal_error("Program used external function '" + Name +
- "' which could not be resolved!");
- return 0;
-}
-
SectionMemoryManager::~SectionMemoryManager() {
for (unsigned i = 0, e = CodeMem.AllocatedMem.size(); i != e; ++i)
sys::Memory::releaseMappedMemory(CodeMem.AllocatedMem[i]);
diff --git a/lib/ExecutionEngine/RTDyldMemoryManager.cpp b/lib/ExecutionEngine/RTDyldMemoryManager.cpp
new file mode 100644
index 0000000..4e76457
--- /dev/null
+++ b/lib/ExecutionEngine/RTDyldMemoryManager.cpp
@@ -0,0 +1,118 @@
+//===-- RTDyldMemoryManager.cpp - Memory manager for MC-JIT -----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Implementation of the runtime dynamic memory manager base class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Config/config.h"
+#include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
+#include "llvm/Support/DynamicLibrary.h"
+#include "llvm/Support/ErrorHandling.h"
+
+#include <cstdlib>
+
+#ifdef __linux__
+ // These includes used by RTDyldMemoryManager::getPointerToNamedFunction()
+ // for Glibc trickery. See comments in this function for more information.
+ #ifdef HAVE_SYS_STAT_H
+ #include <sys/stat.h>
+ #endif
+ #include <fcntl.h>
+ #include <unistd.h>
+#endif
+
+namespace llvm {
+
+RTDyldMemoryManager::~RTDyldMemoryManager() {}
+
+// Determine whether we can register EH tables.
+#if (defined(__GNUC__) && !defined(__ARM_EABI__) && \
+ !defined(__USING_SJLJ_EXCEPTIONS__))
+#define HAVE_EHTABLE_SUPPORT 1
+#else
+#define HAVE_EHTABLE_SUPPORT 0
+#endif
+
+#if HAVE_EHTABLE_SUPPORT
+extern "C" void __register_frame(void*);
+
+static const char *processFDE(const char *Entry) {
+ const char *P = Entry;
+ uint32_t Length = *((const uint32_t *)P);
+ P += 4;
+ uint32_t Offset = *((const uint32_t *)P);
+ if (Offset != 0)
+ __register_frame(const_cast<char *>(Entry));
+ return P + Length;
+}
+#endif
+
+void RTDyldMemoryManager::registerEHFrames(StringRef SectionData) {
+#if HAVE_EHTABLE_SUPPORT
+ const char *P = SectionData.data();
+ const char *End = SectionData.data() + SectionData.size();
+ do {
+ P = processFDE(P);
+ } while(P != End);
+#endif
+}
+
+static int jit_noop() {
+ return 0;
+}
+
+void *RTDyldMemoryManager::getPointerToNamedFunction(const std::string &Name,
+ bool AbortOnFailure) {
+#if defined(__linux__)
+ //===--------------------------------------------------------------------===//
+ // Function stubs that are invoked instead of certain library calls
+ //
+ // Force the following functions to be linked in to anything that uses the
+ // JIT. This is a hack designed to work around the all-too-clever Glibc
+ // strategy of making these functions work differently when inlined vs. when
+ // not inlined, and hiding their real definitions in a separate archive file
+ // that the dynamic linker can't see. For more info, search for
+ // 'libc_nonshared.a' on Google, or read http://llvm.org/PR274.
+ if (Name == "stat") return (void*)(intptr_t)&stat;
+ if (Name == "fstat") return (void*)(intptr_t)&fstat;
+ if (Name == "lstat") return (void*)(intptr_t)&lstat;
+ if (Name == "stat64") return (void*)(intptr_t)&stat64;
+ if (Name == "fstat64") return (void*)(intptr_t)&fstat64;
+ if (Name == "lstat64") return (void*)(intptr_t)&lstat64;
+ if (Name == "atexit") return (void*)(intptr_t)&atexit;
+ if (Name == "mknod") return (void*)(intptr_t)&mknod;
+#endif // __linux__
+
+ // We should not invoke parent's ctors/dtors from generated main()!
+ // On Mingw and Cygwin, the symbol __main is resolved to
+ // callee's(eg. tools/lli) one, to invoke wrong duplicated ctors
+ // (and register wrong callee's dtors with atexit(3)).
+ // We expect ExecutionEngine::runStaticConstructorsDestructors()
+ // is called before ExecutionEngine::runFunctionAsMain() is called.
+ if (Name == "__main") return (void*)(intptr_t)&jit_noop;
+
+ const char *NameStr = Name.c_str();
+ void *Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(NameStr);
+ if (Ptr) return Ptr;
+
+ // If it wasn't found and if it starts with an underscore ('_') character,
+ // try again without the underscore.
+ if (NameStr[0] == '_') {
+ Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(NameStr+1);
+ if (Ptr) return Ptr;
+ }
+
+ if (AbortOnFailure)
+ report_fatal_error("Program used external function '" + Name +
+ "' which could not be resolved!");
+ return 0;
+}
+
+} // namespace llvm
diff --git a/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp b/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp
index 409b25f..943622f 100644
--- a/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp
+++ b/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp
@@ -17,18 +17,22 @@
#include "RuntimeDyldELF.h"
#include "RuntimeDyldImpl.h"
#include "RuntimeDyldMachO.h"
+#include "llvm/Support/FileSystem.h"
#include "llvm/Support/MathExtras.h"
-#include "llvm/Support/Path.h"
+#include "llvm/Object/ELF.h"
using namespace llvm;
using namespace llvm::object;
// Empty out-of-line virtual destructor as the key function.
-RTDyldMemoryManager::~RTDyldMemoryManager() {}
RuntimeDyldImpl::~RuntimeDyldImpl() {}
namespace llvm {
+StringRef RuntimeDyldImpl::getEHFrameSection() {
+ return StringRef();
+}
+
// Resolve the relocations for all symbols we currently know about.
void RuntimeDyldImpl::resolveRelocations() {
// First, resolve relocations associated with external symbols.
@@ -96,7 +100,8 @@ ObjectImage *RuntimeDyldImpl::loadObject(ObjectBuffer *InputBuffer) {
bool isCommon = flags & SymbolRef::SF_Common;
if (isCommon) {
// Add the common symbols to a list. We'll allocate them all below.
- uint64_t Align = getCommonSymbolAlignment(*i);
+ uint32_t Align;
+ Check(i->getAlignment(Align));
uint64_t Size = 0;
Check(i->getSize(Size));
CommonSize += Size + Align;
@@ -142,6 +147,7 @@ ObjectImage *RuntimeDyldImpl::loadObject(ObjectBuffer *InputBuffer) {
bool isFirstRelocation = true;
unsigned SectionID = 0;
StubMap Stubs;
+ section_iterator RelocatedSection = si->getRelocatedSection();
for (relocation_iterator i = si->begin_relocations(),
e = si->end_relocations(); i != e; i.increment(err)) {
@@ -149,23 +155,14 @@ ObjectImage *RuntimeDyldImpl::loadObject(ObjectBuffer *InputBuffer) {
// If it's the first relocation in this section, find its SectionID
if (isFirstRelocation) {
- SectionID = findOrEmitSection(*obj, *si, true, LocalSections);
+ SectionID =
+ findOrEmitSection(*obj, *RelocatedSection, true, LocalSections);
DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
isFirstRelocation = false;
}
- ObjRelocationInfo RI;
- RI.SectionID = SectionID;
- Check(i->getAdditionalInfo(RI.AdditionalInfo));
- Check(i->getOffset(RI.Offset));
- Check(i->getSymbol(RI.Symbol));
- Check(i->getType(RI.Type));
-
- DEBUG(dbgs() << "\t\tAddend: " << RI.AdditionalInfo
- << " Offset: " << format("%p", (uintptr_t)RI.Offset)
- << " Type: " << (uint32_t)(RI.Type & 0xffffffffL)
- << "\n");
- processRelocationRef(RI, *obj, LocalSections, LocalSymbols, Stubs);
+ processRelocationRef(SectionID, *i, *obj, LocalSections, LocalSymbols,
+ Stubs);
}
}
@@ -183,7 +180,7 @@ void RuntimeDyldImpl::emitCommonSymbols(ObjectImage &Obj,
if (!Addr)
report_fatal_error("Unable to allocate memory for common symbols!");
uint64_t Offset = 0;
- Sections.push_back(SectionEntry(StringRef(), Addr, TotalSize, TotalSize, 0));
+ Sections.push_back(SectionEntry(StringRef(), Addr, TotalSize, 0));
memset(Addr, 0, TotalSize);
DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID
@@ -220,11 +217,25 @@ unsigned RuntimeDyldImpl::emitSection(ObjectImage &Obj,
unsigned StubBufSize = 0,
StubSize = getMaxStubSize();
error_code err;
+ const ObjectFile *ObjFile = Obj.getObjectFile();
+ // FIXME: this is an inefficient way to handle this. We should computed the
+ // necessary section allocation size in loadObject by walking all the sections
+ // once.
if (StubSize > 0) {
- for (relocation_iterator i = Section.begin_relocations(),
- e = Section.end_relocations(); i != e; i.increment(err), Check(err))
- StubBufSize += StubSize;
+ for (section_iterator SI = ObjFile->begin_sections(),
+ SE = ObjFile->end_sections();
+ SI != SE; SI.increment(err), Check(err)) {
+ section_iterator RelSecI = SI->getRelocatedSection();
+ if (!(RelSecI == Section))
+ continue;
+
+ for (relocation_iterator I = SI->begin_relocations(),
+ E = SI->end_relocations(); I != E; I.increment(err), Check(err)) {
+ StubBufSize += StubSize;
+ }
+ }
}
+
StringRef data;
uint64_t Alignment64;
Check(Section.getContents(data));
@@ -243,6 +254,12 @@ unsigned RuntimeDyldImpl::emitSection(ObjectImage &Obj,
Check(Section.isReadOnlyData(IsReadOnly));
Check(Section.getSize(DataSize));
Check(Section.getName(Name));
+ if (StubSize > 0) {
+ unsigned StubAlignment = getStubAlignment();
+ unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment);
+ if (StubAlignment > EndAlignment)
+ StubBufSize += StubAlignment - EndAlignment;
+ }
unsigned Allocate;
unsigned SectionID = Sections.size();
@@ -295,8 +312,7 @@ unsigned RuntimeDyldImpl::emitSection(ObjectImage &Obj,
<< "\n");
}
- Sections.push_back(SectionEntry(Name, Addr, Allocate, DataSize,
- (uintptr_t)pData));
+ Sections.push_back(SectionEntry(Name, Addr, DataSize, (uintptr_t)pData));
return SectionID;
}
@@ -339,7 +355,25 @@ void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
}
uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr) {
- if (Arch == Triple::arm) {
+ if (Arch == Triple::aarch64) {
+ // This stub has to be able to access the full address space,
+ // since symbol lookup won't necessarily find a handy, in-range,
+ // PLT stub for functions which could be anywhere.
+ uint32_t *StubAddr = (uint32_t*)Addr;
+
+ // Stub can use ip0 (== x16) to calculate address
+ *StubAddr = 0xd2e00010; // movz ip0, #:abs_g3:<addr>
+ StubAddr++;
+ *StubAddr = 0xf2c00010; // movk ip0, #:abs_g2_nc:<addr>
+ StubAddr++;
+ *StubAddr = 0xf2a00010; // movk ip0, #:abs_g1_nc:<addr>
+ StubAddr++;
+ *StubAddr = 0xf2800010; // movk ip0, #:abs_g0_nc:<addr>
+ StubAddr++;
+ *StubAddr = 0xd61f0200; // br ip0
+
+ return Addr;
+ } else if (Arch == Triple::arm) {
// TODO: There is only ARM far stub now. We should add the Thumb stub,
// and stubs for branches Thumb - ARM and ARM - Thumb.
uint32_t *StubAddr = (uint32_t*)Addr;
@@ -362,7 +396,7 @@ uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr) {
StubAddr++;
*StubAddr = NopInstr;
return Addr;
- } else if (Arch == Triple::ppc64) {
+ } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
// PowerPC64 stub: the address points to a function descriptor
// instead of the function itself. Load the function address
// on r11 and sets it to control register. Also loads the function
@@ -380,6 +414,13 @@ uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr) {
writeInt32BE(Addr+40, 0x4E800420); // bctr
return Addr;
+ } else if (Arch == Triple::systemz) {
+ writeInt16BE(Addr, 0xC418); // lgrl %r1,.+8
+ writeInt16BE(Addr+2, 0x0000);
+ writeInt16BE(Addr+4, 0x0004);
+ writeInt16BE(Addr+6, 0x07F1); // brc 15,%r1
+ // 8-byte address stored at Addr + 8
+ return Addr;
}
return Addr;
}
@@ -401,26 +442,14 @@ void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
Sections[SectionID].LoadAddress = Addr;
}
-void RuntimeDyldImpl::resolveRelocationEntry(const RelocationEntry &RE,
- uint64_t Value) {
- // Ignore relocations for sections that were not loaded
- if (Sections[RE.SectionID].Address != 0) {
- DEBUG(dbgs() << "\tSectionID: " << RE.SectionID
- << " + " << RE.Offset << " ("
- << format("%p", Sections[RE.SectionID].Address + RE.Offset) << ")"
- << " RelType: " << RE.RelType
- << " Addend: " << RE.Addend
- << "\n");
-
- resolveRelocation(Sections[RE.SectionID], RE.Offset,
- Value, RE.RelType, RE.Addend);
- }
-}
-
void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
uint64_t Value) {
for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
- resolveRelocationEntry(Relocs[i], Value);
+ const RelocationEntry &RE = Relocs[i];
+ // Ignore relocations for sections that were not loaded
+ if (Sections[RE.SectionID].Address == 0)
+ continue;
+ resolveRelocation(RE, Value);
}
}
@@ -472,33 +501,34 @@ RuntimeDyld::~RuntimeDyld() {
ObjectImage *RuntimeDyld::loadObject(ObjectBuffer *InputBuffer) {
if (!Dyld) {
- sys::LLVMFileType type = sys::IdentifyFileType(
- InputBuffer->getBufferStart(),
- static_cast<unsigned>(InputBuffer->getBufferSize()));
- switch (type) {
- case sys::ELF_Relocatable_FileType:
- case sys::ELF_Executable_FileType:
- case sys::ELF_SharedObject_FileType:
- case sys::ELF_Core_FileType:
- Dyld = new RuntimeDyldELF(MM);
- break;
- case sys::Mach_O_Object_FileType:
- case sys::Mach_O_Executable_FileType:
- case sys::Mach_O_FixedVirtualMemorySharedLib_FileType:
- case sys::Mach_O_Core_FileType:
- case sys::Mach_O_PreloadExecutable_FileType:
- case sys::Mach_O_DynamicallyLinkedSharedLib_FileType:
- case sys::Mach_O_DynamicLinker_FileType:
- case sys::Mach_O_Bundle_FileType:
- case sys::Mach_O_DynamicallyLinkedSharedLibStub_FileType:
- case sys::Mach_O_DSYMCompanion_FileType:
- Dyld = new RuntimeDyldMachO(MM);
- break;
- case sys::Unknown_FileType:
- case sys::Bitcode_FileType:
- case sys::Archive_FileType:
- case sys::COFF_FileType:
- report_fatal_error("Incompatible object format!");
+ sys::fs::file_magic Type =
+ sys::fs::identify_magic(InputBuffer->getBuffer());
+ switch (Type) {
+ case sys::fs::file_magic::elf_relocatable:
+ case sys::fs::file_magic::elf_executable:
+ case sys::fs::file_magic::elf_shared_object:
+ case sys::fs::file_magic::elf_core:
+ Dyld = new RuntimeDyldELF(MM);
+ break;
+ case sys::fs::file_magic::macho_object:
+ case sys::fs::file_magic::macho_executable:
+ case sys::fs::file_magic::macho_fixed_virtual_memory_shared_lib:
+ case sys::fs::file_magic::macho_core:
+ case sys::fs::file_magic::macho_preload_executable:
+ case sys::fs::file_magic::macho_dynamically_linked_shared_lib:
+ case sys::fs::file_magic::macho_dynamic_linker:
+ case sys::fs::file_magic::macho_bundle:
+ case sys::fs::file_magic::macho_dynamically_linked_shared_lib_stub:
+ case sys::fs::file_magic::macho_dsym_companion:
+ Dyld = new RuntimeDyldMachO(MM);
+ break;
+ case sys::fs::file_magic::unknown:
+ case sys::fs::file_magic::bitcode:
+ case sys::fs::file_magic::archive:
+ case sys::fs::file_magic::coff_object:
+ case sys::fs::file_magic::pecoff_executable:
+ case sys::fs::file_magic::macho_universal_binary:
+ report_fatal_error("Incompatible object format!");
}
} else {
if (!Dyld->isCompatibleFormat(InputBuffer))
@@ -534,4 +564,8 @@ StringRef RuntimeDyld::getErrorString() {
return Dyld->getErrorString();
}
+StringRef RuntimeDyld::getEHFrameSection() {
+ return Dyld->getEHFrameSection();
+}
+
} // end namespace llvm
diff --git a/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp b/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp
index b8537b1..cd99c3c 100644
--- a/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp
+++ b/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp
@@ -41,7 +41,7 @@ error_code check(error_code Err) {
template<class ELFT>
class DyldELFObject
: public ELFObjectFile<ELFT> {
- LLVM_ELF_IMPORT_TYPES(ELFT)
+ LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
typedef Elf_Shdr_Impl<ELFT> Elf_Shdr;
typedef Elf_Sym_Impl<ELFT> Elf_Sym;
@@ -151,6 +151,14 @@ void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef,
namespace llvm {
+StringRef RuntimeDyldELF::getEHFrameSection() {
+ for (int i = 0, e = Sections.size(); i != e; ++i) {
+ if (Sections[i].Name == ".eh_frame")
+ return StringRef((const char*)Sections[i].Address, Sections[i].Size);
+ }
+ return StringRef();
+}
+
ObjectImage *RuntimeDyldELF::createObjectImage(ObjectBuffer *Buffer) {
if (Buffer->getBufferSize() < ELF::EI_NIDENT)
llvm_unreachable("Unexpected ELF object size");
@@ -269,12 +277,115 @@ void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section,
}
}
+void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section,
+ uint64_t Offset,
+ uint64_t Value,
+ uint32_t Type,
+ int64_t Addend) {
+ uint32_t *TargetPtr = reinterpret_cast<uint32_t*>(Section.Address + Offset);
+ uint64_t FinalAddress = Section.LoadAddress + Offset;
+
+ DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
+ << format("%llx", Section.Address + Offset)
+ << " FinalAddress: 0x" << format("%llx",FinalAddress)
+ << " Value: 0x" << format("%llx",Value)
+ << " Type: 0x" << format("%x",Type)
+ << " Addend: 0x" << format("%llx",Addend)
+ << "\n");
+
+ switch (Type) {
+ default:
+ llvm_unreachable("Relocation type not implemented yet!");
+ break;
+ case ELF::R_AARCH64_ABS64: {
+ uint64_t *TargetPtr = reinterpret_cast<uint64_t*>(Section.Address + Offset);
+ *TargetPtr = Value + Addend;
+ break;
+ }
+ case ELF::R_AARCH64_PREL32: {
+ uint64_t Result = Value + Addend - FinalAddress;
+ assert(static_cast<int64_t>(Result) >= INT32_MIN &&
+ static_cast<int64_t>(Result) <= UINT32_MAX);
+ *TargetPtr = static_cast<uint32_t>(Result & 0xffffffffU);
+ break;
+ }
+ case ELF::R_AARCH64_CALL26: // fallthrough
+ case ELF::R_AARCH64_JUMP26: {
+ // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the
+ // calculation.
+ uint64_t BranchImm = Value + Addend - FinalAddress;
+
+ // "Check that -2^27 <= result < 2^27".
+ assert(-(1LL << 27) <= static_cast<int64_t>(BranchImm) &&
+ static_cast<int64_t>(BranchImm) < (1LL << 27));
+
+ // AArch64 code is emitted with .rela relocations. The data already in any
+ // bits affected by the relocation on entry is garbage.
+ *TargetPtr &= 0xfc000000U;
+ // Immediate goes in bits 25:0 of B and BL.
+ *TargetPtr |= static_cast<uint32_t>(BranchImm & 0xffffffcU) >> 2;
+ break;
+ }
+ case ELF::R_AARCH64_MOVW_UABS_G3: {
+ uint64_t Result = Value + Addend;
+
+ // AArch64 code is emitted with .rela relocations. The data already in any
+ // bits affected by the relocation on entry is garbage.
+ *TargetPtr &= 0xffe0001fU;
+ // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
+ *TargetPtr |= Result >> (48 - 5);
+ // Shift must be "lsl #48", in bits 22:21
+ assert((*TargetPtr >> 21 & 0x3) == 3 && "invalid shift for relocation");
+ break;
+ }
+ case ELF::R_AARCH64_MOVW_UABS_G2_NC: {
+ uint64_t Result = Value + Addend;
+
+
+ // AArch64 code is emitted with .rela relocations. The data already in any
+ // bits affected by the relocation on entry is garbage.
+ *TargetPtr &= 0xffe0001fU;
+ // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
+ *TargetPtr |= ((Result & 0xffff00000000ULL) >> (32 - 5));
+ // Shift must be "lsl #32", in bits 22:21
+ assert((*TargetPtr >> 21 & 0x3) == 2 && "invalid shift for relocation");
+ break;
+ }
+ case ELF::R_AARCH64_MOVW_UABS_G1_NC: {
+ uint64_t Result = Value + Addend;
+
+ // AArch64 code is emitted with .rela relocations. The data already in any
+ // bits affected by the relocation on entry is garbage.
+ *TargetPtr &= 0xffe0001fU;
+ // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
+ *TargetPtr |= ((Result & 0xffff0000U) >> (16 - 5));
+ // Shift must be "lsl #16", in bits 22:2
+ assert((*TargetPtr >> 21 & 0x3) == 1 && "invalid shift for relocation");
+ break;
+ }
+ case ELF::R_AARCH64_MOVW_UABS_G0_NC: {
+ uint64_t Result = Value + Addend;
+
+ // AArch64 code is emitted with .rela relocations. The data already in any
+ // bits affected by the relocation on entry is garbage.
+ *TargetPtr &= 0xffe0001fU;
+ // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
+ *TargetPtr |= ((Result & 0xffffU) << 5);
+ // Shift must be "lsl #0", in bits 22:21.
+ assert((*TargetPtr >> 21 & 0x3) == 0 && "invalid shift for relocation");
+ break;
+ }
+ }
+}
+
void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
uint64_t Offset,
uint32_t Value,
uint32_t Type,
int32_t Addend) {
// TODO: Add Thumb relocations.
+ uint32_t *Placeholder = reinterpret_cast<uint32_t*>(Section.ObjAddress +
+ Offset);
uint32_t* TargetPtr = (uint32_t*)(Section.Address + Offset);
uint32_t FinalAddress = ((Section.LoadAddress + Offset) & 0xFFFFFFFF);
Value += Addend;
@@ -293,44 +404,51 @@ void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
// Write a 32bit value to relocation address, taking into account the
// implicit addend encoded in the target.
- case ELF::R_ARM_TARGET1 :
- case ELF::R_ARM_ABS32 :
- *TargetPtr += Value;
+ case ELF::R_ARM_TARGET1:
+ case ELF::R_ARM_ABS32:
+ *TargetPtr = *Placeholder + Value;
break;
-
// Write first 16 bit of 32 bit value to the mov instruction.
// Last 4 bit should be shifted.
- case ELF::R_ARM_MOVW_ABS_NC :
+ case ELF::R_ARM_MOVW_ABS_NC:
// We are not expecting any other addend in the relocation address.
// Using 0x000F0FFF because MOVW has its 16 bit immediate split into 2
// non-contiguous fields.
- assert((*TargetPtr & 0x000F0FFF) == 0);
+ assert((*Placeholder & 0x000F0FFF) == 0);
Value = Value & 0xFFFF;
- *TargetPtr |= Value & 0xFFF;
+ *TargetPtr = *Placeholder | (Value & 0xFFF);
*TargetPtr |= ((Value >> 12) & 0xF) << 16;
break;
-
// Write last 16 bit of 32 bit value to the mov instruction.
// Last 4 bit should be shifted.
- case ELF::R_ARM_MOVT_ABS :
+ case ELF::R_ARM_MOVT_ABS:
// We are not expecting any other addend in the relocation address.
// Use 0x000F0FFF for the same reason as R_ARM_MOVW_ABS_NC.
- assert((*TargetPtr & 0x000F0FFF) == 0);
+ assert((*Placeholder & 0x000F0FFF) == 0);
+
Value = (Value >> 16) & 0xFFFF;
- *TargetPtr |= Value & 0xFFF;
+ *TargetPtr = *Placeholder | (Value & 0xFFF);
*TargetPtr |= ((Value >> 12) & 0xF) << 16;
break;
-
// Write 24 bit relative value to the branch instruction.
case ELF::R_ARM_PC24 : // Fall through.
case ELF::R_ARM_CALL : // Fall through.
- case ELF::R_ARM_JUMP24 :
+ case ELF::R_ARM_JUMP24: {
int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
RelValue = (RelValue & 0x03FFFFFC) >> 2;
+ assert((*TargetPtr & 0xFFFFFF) == 0xFFFFFE);
*TargetPtr &= 0xFF000000;
*TargetPtr |= RelValue;
break;
}
+ case ELF::R_ARM_PRIVATE_0:
+ // This relocation is reserved by the ARM ELF ABI for internal use. We
+ // appropriate it here to act as an R_ARM_ABS32 without any addend for use
+ // in the stubs created during JIT (which can't put an addend into the
+ // original object file).
+ *TargetPtr = Value;
+ break;
+ }
}
void RuntimeDyldELF::resolveMIPSRelocation(const SectionEntry &Section,
@@ -338,6 +456,8 @@ void RuntimeDyldELF::resolveMIPSRelocation(const SectionEntry &Section,
uint32_t Value,
uint32_t Type,
int32_t Addend) {
+ uint32_t *Placeholder = reinterpret_cast<uint32_t*>(Section.ObjAddress +
+ Offset);
uint32_t* TargetPtr = (uint32_t*)(Section.Address + Offset);
Value += Addend;
@@ -355,19 +475,30 @@ void RuntimeDyldELF::resolveMIPSRelocation(const SectionEntry &Section,
llvm_unreachable("Not implemented relocation type!");
break;
case ELF::R_MIPS_32:
- *TargetPtr = Value + (*TargetPtr);
+ *TargetPtr = Value + (*Placeholder);
break;
case ELF::R_MIPS_26:
- *TargetPtr = ((*TargetPtr) & 0xfc000000) | (( Value & 0x0fffffff) >> 2);
+ *TargetPtr = ((*Placeholder) & 0xfc000000) | (( Value & 0x0fffffff) >> 2);
break;
case ELF::R_MIPS_HI16:
// Get the higher 16-bits. Also add 1 if bit 15 is 1.
- Value += ((*TargetPtr) & 0x0000ffff) << 16;
+ Value += ((*Placeholder) & 0x0000ffff) << 16;
+ *TargetPtr = ((*Placeholder) & 0xffff0000) |
+ (((Value + 0x8000) >> 16) & 0xffff);
+ break;
+ case ELF::R_MIPS_LO16:
+ Value += ((*Placeholder) & 0x0000ffff);
+ *TargetPtr = ((*Placeholder) & 0xffff0000) | (Value & 0xffff);
+ break;
+ case ELF::R_MIPS_UNUSED1:
+ // Similar to ELF::R_ARM_PRIVATE_0, R_MIPS_UNUSED1 and R_MIPS_UNUSED2
+ // are used for internal JIT purpose. These relocations are similar to
+ // R_MIPS_HI16 and R_MIPS_LO16, but they do not take any addend into
+ // account.
*TargetPtr = ((*TargetPtr) & 0xffff0000) |
(((Value + 0x8000) >> 16) & 0xffff);
break;
- case ELF::R_MIPS_LO16:
- Value += ((*TargetPtr) & 0x0000ffff);
+ case ELF::R_MIPS_UNUSED2:
*TargetPtr = ((*TargetPtr) & 0xffff0000) | (Value & 0xffff);
break;
}
@@ -412,9 +543,13 @@ void RuntimeDyldELF::findOPDEntrySection(ObjectImage &Obj,
error_code err;
for (section_iterator si = Obj.begin_sections(),
se = Obj.end_sections(); si != se; si.increment(err)) {
- StringRef SectionName;
- check(si->getName(SectionName));
- if (SectionName != ".opd")
+ section_iterator RelSecI = si->getRelocatedSection();
+ if (RelSecI == Obj.end_sections())
+ continue;
+
+ StringRef RelSectionName;
+ check(RelSecI->getName(RelSectionName));
+ if (RelSectionName != ".opd")
continue;
for (relocation_iterator i = si->begin_relocations(),
@@ -430,12 +565,11 @@ void RuntimeDyldELF::findOPDEntrySection(ObjectImage &Obj,
continue;
}
- SymbolRef TargetSymbol;
uint64_t TargetSymbolOffset;
- int64_t TargetAdditionalInfo;
- check(i->getSymbol(TargetSymbol));
+ symbol_iterator TargetSymbol = i->getSymbol();
check(i->getOffset(TargetSymbolOffset));
- check(i->getAdditionalInfo(TargetAdditionalInfo));
+ int64_t Addend;
+ check(getELFRelocationAddend(*i, Addend));
i = i.increment(err);
if (i == e)
@@ -455,9 +589,9 @@ void RuntimeDyldELF::findOPDEntrySection(ObjectImage &Obj,
continue;
section_iterator tsi(Obj.end_sections());
- check(TargetSymbol.getSection(tsi));
+ check(TargetSymbol->getSection(tsi));
Rel.SectionID = findOrEmitSection(Obj, (*tsi), true, LocalSections);
- Rel.Addend = (intptr_t)TargetAdditionalInfo;
+ Rel.Addend = (intptr_t)Addend;
return;
}
}
@@ -541,6 +675,11 @@ void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
llvm_unreachable("Relocation R_PPC64_REL32 overflow");
writeInt32BE(LocalAddress, delta);
} break;
+ case ELF::R_PPC64_REL64: {
+ uint64_t FinalAddress = (Section.LoadAddress + Offset);
+ uint64_t Delta = Value - FinalAddress + Addend;
+ writeInt64BE(LocalAddress, Delta);
+ } break;
case ELF::R_PPC64_ADDR64 :
writeInt64BE(LocalAddress, Value + Addend);
break;
@@ -560,6 +699,48 @@ void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
}
}
+void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section,
+ uint64_t Offset,
+ uint64_t Value,
+ uint32_t Type,
+ int64_t Addend) {
+ uint8_t *LocalAddress = Section.Address + Offset;
+ switch (Type) {
+ default:
+ llvm_unreachable("Relocation type not implemented yet!");
+ break;
+ case ELF::R_390_PC16DBL:
+ case ELF::R_390_PLT16DBL: {
+ int64_t Delta = (Value + Addend) - (Section.LoadAddress + Offset);
+ assert(int16_t(Delta / 2) * 2 == Delta && "R_390_PC16DBL overflow");
+ writeInt16BE(LocalAddress, Delta / 2);
+ break;
+ }
+ case ELF::R_390_PC32DBL:
+ case ELF::R_390_PLT32DBL: {
+ int64_t Delta = (Value + Addend) - (Section.LoadAddress + Offset);
+ assert(int32_t(Delta / 2) * 2 == Delta && "R_390_PC32DBL overflow");
+ writeInt32BE(LocalAddress, Delta / 2);
+ break;
+ }
+ case ELF::R_390_PC32: {
+ int64_t Delta = (Value + Addend) - (Section.LoadAddress + Offset);
+ assert(int32_t(Delta) == Delta && "R_390_PC32 overflow");
+ writeInt32BE(LocalAddress, Delta);
+ break;
+ }
+ case ELF::R_390_64:
+ writeInt64BE(LocalAddress, Value + Addend);
+ break;
+ }
+}
+
+void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE,
+ uint64_t Value) {
+ const SectionEntry &Section = Sections[RE.SectionID];
+ return resolveRelocation(Section, RE.Offset, Value, RE.RelType, RE.Addend);
+}
+
void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
uint64_t Offset,
uint64_t Value,
@@ -574,6 +755,9 @@ void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
(uint32_t)(Value & 0xffffffffL), Type,
(uint32_t)(Addend & 0xffffffffL));
break;
+ case Triple::aarch64:
+ resolveAArch64Relocation(Section, Offset, Value, Type, Addend);
+ break;
case Triple::arm: // Fall through.
case Triple::thumb:
resolveARMRelocation(Section, Offset,
@@ -586,45 +770,56 @@ void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
(uint32_t)(Value & 0xffffffffL), Type,
(uint32_t)(Addend & 0xffffffffL));
break;
- case Triple::ppc64:
+ case Triple::ppc64: // Fall through.
+ case Triple::ppc64le:
resolvePPC64Relocation(Section, Offset, Value, Type, Addend);
break;
+ case Triple::systemz:
+ resolveSystemZRelocation(Section, Offset, Value, Type, Addend);
+ break;
default: llvm_unreachable("Unsupported CPU type!");
}
}
-void RuntimeDyldELF::processRelocationRef(const ObjRelocationInfo &Rel,
+void RuntimeDyldELF::processRelocationRef(unsigned SectionID,
+ RelocationRef RelI,
ObjectImage &Obj,
ObjSectionToIDMap &ObjSectionToID,
const SymbolTableMap &Symbols,
StubMap &Stubs) {
-
- uint32_t RelType = (uint32_t)(Rel.Type & 0xffffffffL);
- intptr_t Addend = (intptr_t)Rel.AdditionalInfo;
- const SymbolRef &Symbol = Rel.Symbol;
+ uint64_t RelType;
+ Check(RelI.getType(RelType));
+ int64_t Addend;
+ Check(getELFRelocationAddend(RelI, Addend));
+ symbol_iterator Symbol = RelI.getSymbol();
// Obtain the symbol name which is referenced in the relocation
StringRef TargetName;
- Symbol.getName(TargetName);
+ if (Symbol != Obj.end_symbols())
+ Symbol->getName(TargetName);
DEBUG(dbgs() << "\t\tRelType: " << RelType
<< " Addend: " << Addend
<< " TargetName: " << TargetName
<< "\n");
RelocationValueRef Value;
// First search for the symbol in the local symbol table
- SymbolTableMap::const_iterator lsi = Symbols.find(TargetName.data());
- SymbolRef::Type SymType;
- Symbol.getType(SymType);
+ SymbolTableMap::const_iterator lsi = Symbols.end();
+ SymbolRef::Type SymType = SymbolRef::ST_Unknown;
+ if (Symbol != Obj.end_symbols()) {
+ lsi = Symbols.find(TargetName.data());
+ Symbol->getType(SymType);
+ }
if (lsi != Symbols.end()) {
Value.SectionID = lsi->second.first;
- Value.Addend = lsi->second.second;
+ Value.Addend = lsi->second.second + Addend;
} else {
// Search for the symbol in the global symbol table
- SymbolTableMap::const_iterator gsi =
- GlobalSymbolTable.find(TargetName.data());
+ SymbolTableMap::const_iterator gsi = GlobalSymbolTable.end();
+ if (Symbol != Obj.end_symbols())
+ gsi = GlobalSymbolTable.find(TargetName.data());
if (gsi != GlobalSymbolTable.end()) {
Value.SectionID = gsi->second.first;
- Value.Addend = gsi->second.second;
+ Value.Addend = gsi->second.second + Addend;
} else {
switch (SymType) {
case SymbolRef::ST_Debug: {
@@ -632,7 +827,7 @@ void RuntimeDyldELF::processRelocationRef(const ObjRelocationInfo &Rel,
// and can be changed by another developers. Maybe best way is add
// a new symbol type ST_Section to SymbolRef and use it.
section_iterator si(Obj.end_sections());
- Symbol.getSection(si);
+ Symbol->getSection(si);
if (si == Obj.end_sections())
llvm_unreachable("Symbol section not found, bad object file format!");
DEBUG(dbgs() << "\t\tThis is section symbol\n");
@@ -657,21 +852,73 @@ void RuntimeDyldELF::processRelocationRef(const ObjRelocationInfo &Rel,
}
}
}
- DEBUG(dbgs() << "\t\tRel.SectionID: " << Rel.SectionID
- << " Rel.Offset: " << Rel.Offset
+ uint64_t Offset;
+ Check(RelI.getOffset(Offset));
+
+ DEBUG(dbgs() << "\t\tSectionID: " << SectionID
+ << " Offset: " << Offset
<< "\n");
- if (Arch == Triple::arm &&
+ if (Arch == Triple::aarch64 &&
+ (RelType == ELF::R_AARCH64_CALL26 ||
+ RelType == ELF::R_AARCH64_JUMP26)) {
+ // This is an AArch64 branch relocation, need to use a stub function.
+ DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation.");
+ SectionEntry &Section = Sections[SectionID];
+
+ // Look for an existing stub.
+ StubMap::const_iterator i = Stubs.find(Value);
+ if (i != Stubs.end()) {
+ resolveRelocation(Section, Offset,
+ (uint64_t)Section.Address + i->second, RelType, 0);
+ DEBUG(dbgs() << " Stub function found\n");
+ } else {
+ // Create a new stub function.
+ DEBUG(dbgs() << " Create a new stub function\n");
+ Stubs[Value] = Section.StubOffset;
+ uint8_t *StubTargetAddr = createStubFunction(Section.Address +
+ Section.StubOffset);
+
+ RelocationEntry REmovz_g3(SectionID,
+ StubTargetAddr - Section.Address,
+ ELF::R_AARCH64_MOVW_UABS_G3, Value.Addend);
+ RelocationEntry REmovk_g2(SectionID,
+ StubTargetAddr - Section.Address + 4,
+ ELF::R_AARCH64_MOVW_UABS_G2_NC, Value.Addend);
+ RelocationEntry REmovk_g1(SectionID,
+ StubTargetAddr - Section.Address + 8,
+ ELF::R_AARCH64_MOVW_UABS_G1_NC, Value.Addend);
+ RelocationEntry REmovk_g0(SectionID,
+ StubTargetAddr - Section.Address + 12,
+ ELF::R_AARCH64_MOVW_UABS_G0_NC, Value.Addend);
+
+ if (Value.SymbolName) {
+ addRelocationForSymbol(REmovz_g3, Value.SymbolName);
+ addRelocationForSymbol(REmovk_g2, Value.SymbolName);
+ addRelocationForSymbol(REmovk_g1, Value.SymbolName);
+ addRelocationForSymbol(REmovk_g0, Value.SymbolName);
+ } else {
+ addRelocationForSection(REmovz_g3, Value.SectionID);
+ addRelocationForSection(REmovk_g2, Value.SectionID);
+ addRelocationForSection(REmovk_g1, Value.SectionID);
+ addRelocationForSection(REmovk_g0, Value.SectionID);
+ }
+ resolveRelocation(Section, Offset,
+ (uint64_t)Section.Address + Section.StubOffset,
+ RelType, 0);
+ Section.StubOffset += getMaxStubSize();
+ }
+ } else if (Arch == Triple::arm &&
(RelType == ELF::R_ARM_PC24 ||
RelType == ELF::R_ARM_CALL ||
RelType == ELF::R_ARM_JUMP24)) {
// This is an ARM branch relocation, need to use a stub function.
DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.");
- SectionEntry &Section = Sections[Rel.SectionID];
+ SectionEntry &Section = Sections[SectionID];
// Look for an existing stub.
StubMap::const_iterator i = Stubs.find(Value);
if (i != Stubs.end()) {
- resolveRelocation(Section, Rel.Offset,
+ resolveRelocation(Section, Offset,
(uint64_t)Section.Address + i->second, RelType, 0);
DEBUG(dbgs() << " Stub function found\n");
} else {
@@ -680,14 +927,14 @@ void RuntimeDyldELF::processRelocationRef(const ObjRelocationInfo &Rel,
Stubs[Value] = Section.StubOffset;
uint8_t *StubTargetAddr = createStubFunction(Section.Address +
Section.StubOffset);
- RelocationEntry RE(Rel.SectionID, StubTargetAddr - Section.Address,
- ELF::R_ARM_ABS32, Value.Addend);
+ RelocationEntry RE(SectionID, StubTargetAddr - Section.Address,
+ ELF::R_ARM_PRIVATE_0, Value.Addend);
if (Value.SymbolName)
addRelocationForSymbol(RE, Value.SymbolName);
else
addRelocationForSection(RE, Value.SectionID);
- resolveRelocation(Section, Rel.Offset,
+ resolveRelocation(Section, Offset,
(uint64_t)Section.Address + Section.StubOffset,
RelType, 0);
Section.StubOffset += getMaxStubSize();
@@ -696,8 +943,8 @@ void RuntimeDyldELF::processRelocationRef(const ObjRelocationInfo &Rel,
RelType == ELF::R_MIPS_26) {
// This is an Mips branch relocation, need to use a stub function.
DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
- SectionEntry &Section = Sections[Rel.SectionID];
- uint8_t *Target = Section.Address + Rel.Offset;
+ SectionEntry &Section = Sections[SectionID];
+ uint8_t *Target = Section.Address + Offset;
uint32_t *TargetAddress = (uint32_t *)Target;
// Extract the addend from the instruction.
@@ -708,7 +955,7 @@ void RuntimeDyldELF::processRelocationRef(const ObjRelocationInfo &Rel,
// Look up for existing stub.
StubMap::const_iterator i = Stubs.find(Value);
if (i != Stubs.end()) {
- resolveRelocation(Section, Rel.Offset,
+ resolveRelocation(Section, Offset,
(uint64_t)Section.Address + i->second, RelType, 0);
DEBUG(dbgs() << " Stub function found\n");
} else {
@@ -719,12 +966,12 @@ void RuntimeDyldELF::processRelocationRef(const ObjRelocationInfo &Rel,
Section.StubOffset);
// Creating Hi and Lo relocations for the filled stub instructions.
- RelocationEntry REHi(Rel.SectionID,
+ RelocationEntry REHi(SectionID,
StubTargetAddr - Section.Address,
- ELF::R_MIPS_HI16, Value.Addend);
- RelocationEntry RELo(Rel.SectionID,
+ ELF::R_MIPS_UNUSED1, Value.Addend);
+ RelocationEntry RELo(SectionID,
StubTargetAddr - Section.Address + 4,
- ELF::R_MIPS_LO16, Value.Addend);
+ ELF::R_MIPS_UNUSED2, Value.Addend);
if (Value.SymbolName) {
addRelocationForSymbol(REHi, Value.SymbolName);
@@ -734,18 +981,18 @@ void RuntimeDyldELF::processRelocationRef(const ObjRelocationInfo &Rel,
addRelocationForSection(RELo, Value.SectionID);
}
- resolveRelocation(Section, Rel.Offset,
+ resolveRelocation(Section, Offset,
(uint64_t)Section.Address + Section.StubOffset,
RelType, 0);
Section.StubOffset += getMaxStubSize();
}
- } else if (Arch == Triple::ppc64) {
+ } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
if (RelType == ELF::R_PPC64_REL24) {
// A PPC branch relocation will need a stub function if the target is
// an external symbol (Symbol::ST_Unknown) or if the target address
// is not within the signed 24-bits branch address.
- SectionEntry &Section = Sections[Rel.SectionID];
- uint8_t *Target = Section.Address + Rel.Offset;
+ SectionEntry &Section = Sections[SectionID];
+ uint8_t *Target = Section.Address + Offset;
bool RangeOverflow = false;
if (SymType != SymbolRef::ST_Unknown) {
// A function call may points to the .opd entry, so the final symbol value
@@ -755,7 +1002,7 @@ void RuntimeDyldELF::processRelocationRef(const ObjRelocationInfo &Rel,
int32_t delta = static_cast<int32_t>(Target - RelocTarget);
// If it is within 24-bits branch range, just set the branch target
if (SignExtend32<24>(delta) == delta) {
- RelocationEntry RE(Rel.SectionID, Rel.Offset, RelType, Value.Addend);
+ RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
if (Value.SymbolName)
addRelocationForSymbol(RE, Value.SymbolName);
else
@@ -770,7 +1017,7 @@ void RuntimeDyldELF::processRelocationRef(const ObjRelocationInfo &Rel,
StubMap::const_iterator i = Stubs.find(Value);
if (i != Stubs.end()) {
// Symbol function stub already created, just relocate to it
- resolveRelocation(Section, Rel.Offset,
+ resolveRelocation(Section, Offset,
(uint64_t)Section.Address + i->second, RelType, 0);
DEBUG(dbgs() << " Stub function found\n");
} else {
@@ -779,21 +1026,21 @@ void RuntimeDyldELF::processRelocationRef(const ObjRelocationInfo &Rel,
Stubs[Value] = Section.StubOffset;
uint8_t *StubTargetAddr = createStubFunction(Section.Address +
Section.StubOffset);
- RelocationEntry RE(Rel.SectionID, StubTargetAddr - Section.Address,
+ RelocationEntry RE(SectionID, StubTargetAddr - Section.Address,
ELF::R_PPC64_ADDR64, Value.Addend);
// Generates the 64-bits address loads as exemplified in section
// 4.5.1 in PPC64 ELF ABI.
- RelocationEntry REhst(Rel.SectionID,
+ RelocationEntry REhst(SectionID,
StubTargetAddr - Section.Address + 2,
ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend);
- RelocationEntry REhr(Rel.SectionID,
+ RelocationEntry REhr(SectionID,
StubTargetAddr - Section.Address + 6,
ELF::R_PPC64_ADDR16_HIGHER, Value.Addend);
- RelocationEntry REh(Rel.SectionID,
+ RelocationEntry REh(SectionID,
StubTargetAddr - Section.Address + 14,
ELF::R_PPC64_ADDR16_HI, Value.Addend);
- RelocationEntry REl(Rel.SectionID,
+ RelocationEntry REl(SectionID,
StubTargetAddr - Section.Address + 18,
ELF::R_PPC64_ADDR16_LO, Value.Addend);
@@ -809,7 +1056,7 @@ void RuntimeDyldELF::processRelocationRef(const ObjRelocationInfo &Rel,
addRelocationForSection(REl, Value.SectionID);
}
- resolveRelocation(Section, Rel.Offset,
+ resolveRelocation(Section, Offset,
(uint64_t)Section.Address + Section.StubOffset,
RelType, 0);
if (SymType == SymbolRef::ST_Unknown)
@@ -819,7 +1066,7 @@ void RuntimeDyldELF::processRelocationRef(const ObjRelocationInfo &Rel,
}
}
} else {
- RelocationEntry RE(Rel.SectionID, Rel.Offset, RelType, Value.Addend);
+ RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
// Extra check to avoid relocation againt empty symbols (usually
// the R_PPC64_TOC).
if (Value.SymbolName && !TargetName.empty())
@@ -827,8 +1074,55 @@ void RuntimeDyldELF::processRelocationRef(const ObjRelocationInfo &Rel,
else
addRelocationForSection(RE, Value.SectionID);
}
+ } else if (Arch == Triple::systemz &&
+ (RelType == ELF::R_390_PLT32DBL ||
+ RelType == ELF::R_390_GOTENT)) {
+ // Create function stubs for both PLT and GOT references, regardless of
+ // whether the GOT reference is to data or code. The stub contains the
+ // full address of the symbol, as needed by GOT references, and the
+ // executable part only adds an overhead of 8 bytes.
+ //
+ // We could try to conserve space by allocating the code and data
+ // parts of the stub separately. However, as things stand, we allocate
+ // a stub for every relocation, so using a GOT in JIT code should be
+ // no less space efficient than using an explicit constant pool.
+ DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation.");
+ SectionEntry &Section = Sections[SectionID];
+
+ // Look for an existing stub.
+ StubMap::const_iterator i = Stubs.find(Value);
+ uintptr_t StubAddress;
+ if (i != Stubs.end()) {
+ StubAddress = uintptr_t(Section.Address) + i->second;
+ DEBUG(dbgs() << " Stub function found\n");
+ } else {
+ // Create a new stub function.
+ DEBUG(dbgs() << " Create a new stub function\n");
+
+ uintptr_t BaseAddress = uintptr_t(Section.Address);
+ uintptr_t StubAlignment = getStubAlignment();
+ StubAddress = (BaseAddress + Section.StubOffset +
+ StubAlignment - 1) & -StubAlignment;
+ unsigned StubOffset = StubAddress - BaseAddress;
+
+ Stubs[Value] = StubOffset;
+ createStubFunction((uint8_t *)StubAddress);
+ RelocationEntry RE(SectionID, StubOffset + 8,
+ ELF::R_390_64, Value.Addend - Addend);
+ if (Value.SymbolName)
+ addRelocationForSymbol(RE, Value.SymbolName);
+ else
+ addRelocationForSection(RE, Value.SectionID);
+ Section.StubOffset = StubOffset + getMaxStubSize();
+ }
+
+ if (RelType == ELF::R_390_GOTENT)
+ resolveRelocation(Section, Offset, StubAddress + 8,
+ ELF::R_390_PC32DBL, Addend);
+ else
+ resolveRelocation(Section, Offset, StubAddress, RelType, Addend);
} else {
- RelocationEntry RE(Rel.SectionID, Rel.Offset, RelType, Value.Addend);
+ RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
if (Value.SymbolName)
addRelocationForSymbol(RE, Value.SymbolName);
else
@@ -836,13 +1130,6 @@ void RuntimeDyldELF::processRelocationRef(const ObjRelocationInfo &Rel,
}
}
-unsigned RuntimeDyldELF::getCommonSymbolAlignment(const SymbolRef &Sym) {
- // In ELF, the value of an SHN_COMMON symbol is its alignment requirement.
- uint64_t Align;
- Check(Sym.getValue(Align));
- return Align;
-}
-
bool RuntimeDyldELF::isCompatibleFormat(const ObjectBuffer *Buffer) const {
if (Buffer->getBufferSize() < strlen(ELF::ElfMagic))
return false;
diff --git a/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.h b/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.h
index 07e704b..794c7ec 100644
--- a/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.h
+++ b/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.h
@@ -31,7 +31,12 @@ namespace {
} // end anonymous namespace
class RuntimeDyldELF : public RuntimeDyldImpl {
-protected:
+ void resolveRelocation(const SectionEntry &Section,
+ uint64_t Offset,
+ uint64_t Value,
+ uint32_t Type,
+ int64_t Addend);
+
void resolveX86_64Relocation(const SectionEntry &Section,
uint64_t Offset,
uint64_t Value,
@@ -44,6 +49,12 @@ protected:
uint32_t Type,
int32_t Addend);
+ void resolveAArch64Relocation(const SectionEntry &Section,
+ uint64_t Offset,
+ uint64_t Value,
+ uint32_t Type,
+ int64_t Addend);
+
void resolveARMRelocation(const SectionEntry &Section,
uint64_t Offset,
uint32_t Value,
@@ -62,21 +73,11 @@ protected:
uint32_t Type,
int64_t Addend);
- virtual void resolveRelocation(const SectionEntry &Section,
- uint64_t Offset,
- uint64_t Value,
- uint32_t Type,
- int64_t Addend);
-
- virtual void processRelocationRef(const ObjRelocationInfo &Rel,
- ObjectImage &Obj,
- ObjSectionToIDMap &ObjSectionToID,
- const SymbolTableMap &Symbols,
- StubMap &Stubs);
-
- unsigned getCommonSymbolAlignment(const SymbolRef &Sym);
-
- virtual ObjectImage *createObjectImage(ObjectBuffer *InputBuffer);
+ void resolveSystemZRelocation(const SectionEntry &Section,
+ uint64_t Offset,
+ uint64_t Value,
+ uint32_t Type,
+ int64_t Addend);
uint64_t findPPC64TOC() const;
void findOPDEntrySection(ObjectImage &Obj,
@@ -84,12 +85,19 @@ protected:
RelocationValueRef &Rel);
public:
- RuntimeDyldELF(RTDyldMemoryManager *mm)
- : RuntimeDyldImpl(mm) {}
+ RuntimeDyldELF(RTDyldMemoryManager *mm) : RuntimeDyldImpl(mm) {}
+ virtual void resolveRelocation(const RelocationEntry &RE, uint64_t Value);
+ virtual void processRelocationRef(unsigned SectionID,
+ RelocationRef RelI,
+ ObjectImage &Obj,
+ ObjSectionToIDMap &ObjSectionToID,
+ const SymbolTableMap &Symbols,
+ StubMap &Stubs);
+ virtual bool isCompatibleFormat(const ObjectBuffer *Buffer) const;
+ virtual ObjectImage *createObjectImage(ObjectBuffer *InputBuffer);
+ virtual StringRef getEHFrameSection();
virtual ~RuntimeDyldELF();
-
- bool isCompatibleFormat(const ObjectBuffer *Buffer) const;
};
} // end namespace llvm
diff --git a/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldImpl.h b/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldImpl.h
index f100994..14d945b 100644
--- a/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldImpl.h
+++ b/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldImpl.h
@@ -49,7 +49,7 @@ public:
/// Address - address in the linker's memory where the section resides.
uint8_t *Address;
- /// Size - section size.
+ /// Size - section size. Doesn't include the stubs.
size_t Size;
/// LoadAddress - the address of the section in the target process's memory.
@@ -67,9 +67,9 @@ public:
uintptr_t ObjAddress;
SectionEntry(StringRef name, uint8_t *address, size_t size,
- uintptr_t stubOffset, uintptr_t objAddress)
+ uintptr_t objAddress)
: Name(name), Address(address), Size(size), LoadAddress((uintptr_t)address),
- StubOffset(stubOffset), ObjAddress(objAddress) {}
+ StubOffset(size), ObjAddress(objAddress) {}
};
/// RelocationEntry - used to represent relocations internally in the dynamic
@@ -89,20 +89,20 @@ public:
/// used to make a relocation section relative instead of symbol relative.
intptr_t Addend;
+ /// True if this is a PCRel relocation (MachO specific).
+ bool IsPCRel;
+
+ /// The size of this relocation (MachO specific).
+ unsigned Size;
+
RelocationEntry(unsigned id, uint64_t offset, uint32_t type, int64_t addend)
- : SectionID(id), Offset(offset), RelType(type), Addend(addend) {}
-};
+ : SectionID(id), Offset(offset), RelType(type), Addend(addend),
+ IsPCRel(false), Size(0) {}
-/// ObjRelocationInfo - relocation information as read from the object file.
-/// Used to pass around data taken from object::RelocationRef, together with
-/// the section to which the relocation points (represented by a SectionID).
-class ObjRelocationInfo {
-public:
- unsigned SectionID;
- uint64_t Offset;
- SymbolRef Symbol;
- uint64_t Type;
- int64_t AdditionalInfo;
+ RelocationEntry(unsigned id, uint64_t offset, uint32_t type, int64_t addend,
+ bool IsPCRel, unsigned Size)
+ : SectionID(id), Offset(offset), RelType(type), Addend(addend),
+ IsPCRel(IsPCRel), Size(Size) {}
};
class RelocationValueRef {
@@ -166,16 +166,29 @@ protected:
Triple::ArchType Arch;
inline unsigned getMaxStubSize() {
+ if (Arch == Triple::aarch64)
+ return 20; // movz; movk; movk; movk; br
if (Arch == Triple::arm || Arch == Triple::thumb)
return 8; // 32-bit instruction and 32-bit address
else if (Arch == Triple::mipsel || Arch == Triple::mips)
return 16;
- else if (Arch == Triple::ppc64)
+ else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le)
return 44;
+ else if (Arch == Triple::x86_64)
+ return 8; // GOT
+ else if (Arch == Triple::systemz)
+ return 16;
else
return 0;
}
+ inline unsigned getStubAlignment() {
+ if (Arch == Triple::systemz)
+ return 8;
+ else
+ return 1;
+ }
+
bool HasError;
std::string ErrorStr;
@@ -194,22 +207,15 @@ protected:
return (uint8_t*)Sections[SectionID].Address;
}
- // Subclasses can override this method to get the alignment requirement of
- // a common symbol. Returns no alignment requirement if not implemented.
- virtual unsigned getCommonSymbolAlignment(const SymbolRef &Sym) {
- return 0;
- }
-
-
void writeInt16BE(uint8_t *Addr, uint16_t Value) {
- if (sys::isLittleEndianHost())
+ if (sys::IsLittleEndianHost)
Value = sys::SwapByteOrder(Value);
*Addr = (Value >> 8) & 0xFF;
*(Addr+1) = Value & 0xFF;
}
void writeInt32BE(uint8_t *Addr, uint32_t Value) {
- if (sys::isLittleEndianHost())
+ if (sys::IsLittleEndianHost)
Value = sys::SwapByteOrder(Value);
*Addr = (Value >> 24) & 0xFF;
*(Addr+1) = (Value >> 16) & 0xFF;
@@ -218,7 +224,7 @@ protected:
}
void writeInt64BE(uint8_t *Addr, uint64_t Value) {
- if (sys::isLittleEndianHost())
+ if (sys::IsLittleEndianHost)
Value = sys::SwapByteOrder(Value);
*Addr = (Value >> 56) & 0xFF;
*(Addr+1) = (Value >> 48) & 0xFF;
@@ -269,24 +275,16 @@ protected:
/// \brief Resolves relocations from Relocs list with address from Value.
void resolveRelocationList(const RelocationList &Relocs, uint64_t Value);
- void resolveRelocationEntry(const RelocationEntry &RE, uint64_t Value);
/// \brief A object file specific relocation resolver
- /// \param Section The section where the relocation is being applied
- /// \param Offset The offset into the section for this relocation
+ /// \param RE The relocation to be resolved
/// \param Value Target symbol address to apply the relocation action
- /// \param Type object file specific relocation type
- /// \param Addend A constant addend used to compute the value to be stored
- /// into the relocatable field
- virtual void resolveRelocation(const SectionEntry &Section,
- uint64_t Offset,
- uint64_t Value,
- uint32_t Type,
- int64_t Addend) = 0;
+ virtual void resolveRelocation(const RelocationEntry &RE, uint64_t Value) = 0;
/// \brief Parses the object file relocation and stores it to Relocations
/// or SymbolRelocations (this depends on the object file type).
- virtual void processRelocationRef(const ObjRelocationInfo &Rel,
+ virtual void processRelocationRef(unsigned SectionID,
+ RelocationRef RelI,
ObjectImage &Obj,
ObjSectionToIDMap &ObjSectionToID,
const SymbolTableMap &Symbols,
@@ -336,6 +334,8 @@ public:
StringRef getErrorString() { return ErrorStr; }
virtual bool isCompatibleFormat(const ObjectBuffer *Buffer) const = 0;
+
+ virtual StringRef getEHFrameSection();
};
} // end namespace llvm
diff --git a/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.cpp b/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.cpp
index bcc3df1..0384b32 100644
--- a/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.cpp
+++ b/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.cpp
@@ -21,16 +21,87 @@ using namespace llvm::object;
namespace llvm {
+static unsigned char *processFDE(unsigned char *P, intptr_t DeltaForText, intptr_t DeltaForEH) {
+ uint32_t Length = *((uint32_t*)P);
+ P += 4;
+ unsigned char *Ret = P + Length;
+ uint32_t Offset = *((uint32_t*)P);
+ if (Offset == 0) // is a CIE
+ return Ret;
+
+ P += 4;
+ intptr_t FDELocation = *((intptr_t*)P);
+ intptr_t NewLocation = FDELocation - DeltaForText;
+ *((intptr_t*)P) = NewLocation;
+ P += sizeof(intptr_t);
+
+ // Skip the FDE address range
+ P += sizeof(intptr_t);
+
+ uint8_t Augmentationsize = *P;
+ P += 1;
+ if (Augmentationsize != 0) {
+ intptr_t LSDA = *((intptr_t*)P);
+ intptr_t NewLSDA = LSDA - DeltaForEH;
+ *((intptr_t*)P) = NewLSDA;
+ }
+
+ return Ret;
+}
+
+static intptr_t computeDelta(SectionEntry *A, SectionEntry *B) {
+ intptr_t ObjDistance = A->ObjAddress - B->ObjAddress;
+ intptr_t MemDistance = A->LoadAddress - B->LoadAddress;
+ return ObjDistance - MemDistance;
+}
+
+StringRef RuntimeDyldMachO::getEHFrameSection() {
+ SectionEntry *Text = NULL;
+ SectionEntry *EHFrame = NULL;
+ SectionEntry *ExceptTab = NULL;
+ for (int i = 0, e = Sections.size(); i != e; ++i) {
+ if (Sections[i].Name == "__eh_frame")
+ EHFrame = &Sections[i];
+ else if (Sections[i].Name == "__text")
+ Text = &Sections[i];
+ else if (Sections[i].Name == "__gcc_except_tab")
+ ExceptTab = &Sections[i];
+ }
+ if (Text == NULL || EHFrame == NULL)
+ return StringRef();
+
+ intptr_t DeltaForText = computeDelta(Text, EHFrame);
+ intptr_t DeltaForEH = 0;
+ if (ExceptTab)
+ DeltaForEH = computeDelta(ExceptTab, EHFrame);
+
+ unsigned char *P = EHFrame->Address;
+ unsigned char *End = P + EHFrame->Size;
+ do {
+ P = processFDE(P, DeltaForText, DeltaForEH);
+ } while(P != End);
+
+ return StringRef((char*)EHFrame->Address, EHFrame->Size);
+}
+
+void RuntimeDyldMachO::resolveRelocation(const RelocationEntry &RE,
+ uint64_t Value) {
+ const SectionEntry &Section = Sections[RE.SectionID];
+ return resolveRelocation(Section, RE.Offset, Value, RE.RelType, RE.Addend,
+ RE.IsPCRel, RE.Size);
+}
+
void RuntimeDyldMachO::resolveRelocation(const SectionEntry &Section,
uint64_t Offset,
uint64_t Value,
uint32_t Type,
- int64_t Addend) {
+ int64_t Addend,
+ bool isPCRel,
+ unsigned LogSize) {
uint8_t *LocalAddress = Section.Address + Offset;
uint64_t FinalAddress = Section.LoadAddress + Offset;
- bool isPCRel = (Type >> 24) & 1;
- unsigned MachoType = (Type >> 28) & 0xf;
- unsigned Size = 1 << ((Type >> 25) & 3);
+ unsigned MachoType = Type;
+ unsigned Size = 1 << LogSize;
DEBUG(dbgs() << "resolveRelocation LocalAddress: "
<< format("%p", LocalAddress)
@@ -205,89 +276,110 @@ bool RuntimeDyldMachO::resolveARMRelocation(uint8_t *LocalAddress,
return false;
}
-void RuntimeDyldMachO::processRelocationRef(const ObjRelocationInfo &Rel,
+void RuntimeDyldMachO::processRelocationRef(unsigned SectionID,
+ RelocationRef RelI,
ObjectImage &Obj,
ObjSectionToIDMap &ObjSectionToID,
const SymbolTableMap &Symbols,
StubMap &Stubs) {
+ const ObjectFile *OF = Obj.getObjectFile();
+ const MachOObjectFile *MachO = static_cast<const MachOObjectFile*>(OF);
+ macho::RelocationEntry RE = MachO->getRelocation(RelI.getRawDataRefImpl());
- uint32_t RelType = (uint32_t) (Rel.Type & 0xffffffffL);
+ uint32_t RelType = MachO->getAnyRelocationType(RE);
RelocationValueRef Value;
- SectionEntry &Section = Sections[Rel.SectionID];
+ SectionEntry &Section = Sections[SectionID];
+
+ bool isExtern = MachO->getPlainRelocationExternal(RE);
+ bool IsPCRel = MachO->getAnyRelocationPCRel(RE);
+ unsigned Size = MachO->getAnyRelocationLength(RE);
+ uint64_t Offset;
+ RelI.getOffset(Offset);
+ uint8_t *LocalAddress = Section.Address + Offset;
+ unsigned NumBytes = 1 << Size;
+ uint64_t Addend = 0;
+ memcpy(&Addend, LocalAddress, NumBytes);
- bool isExtern = (RelType >> 27) & 1;
if (isExtern) {
// Obtain the symbol name which is referenced in the relocation
+ symbol_iterator Symbol = RelI.getSymbol();
StringRef TargetName;
- const SymbolRef &Symbol = Rel.Symbol;
- Symbol.getName(TargetName);
+ Symbol->getName(TargetName);
// First search for the symbol in the local symbol table
SymbolTableMap::const_iterator lsi = Symbols.find(TargetName.data());
if (lsi != Symbols.end()) {
Value.SectionID = lsi->second.first;
- Value.Addend = lsi->second.second;
+ Value.Addend = lsi->second.second + Addend;
} else {
// Search for the symbol in the global symbol table
SymbolTableMap::const_iterator gsi = GlobalSymbolTable.find(TargetName.data());
if (gsi != GlobalSymbolTable.end()) {
Value.SectionID = gsi->second.first;
- Value.Addend = gsi->second.second;
- } else
+ Value.Addend = gsi->second.second + Addend;
+ } else {
Value.SymbolName = TargetName.data();
+ Value.Addend = Addend;
+ }
}
} else {
- error_code err;
- uint8_t sectionIndex = static_cast<uint8_t>(RelType & 0xFF);
- section_iterator si = Obj.begin_sections(),
- se = Obj.end_sections();
- for (uint8_t i = 1; i < sectionIndex; i++) {
- error_code err;
- si.increment(err);
- if (si == se)
- break;
- }
- assert(si != se && "No section containing relocation!");
- Value.SectionID = findOrEmitSection(Obj, *si, true, ObjSectionToID);
- Value.Addend = 0;
- // FIXME: The size and type of the relocation determines if we can
- // encode an Addend in the target location itself, and if so, how many
- // bytes we should read in order to get it. We don't yet support doing
- // that, and just assuming it's sizeof(intptr_t) is blatantly wrong.
- //Value.Addend = *(const intptr_t *)Target;
- if (Value.Addend) {
- // The MachO addend is an offset from the current section. We need it
- // to be an offset from the destination section
- Value.Addend += Section.ObjAddress - Sections[Value.SectionID].ObjAddress;
- }
+ SectionRef Sec = MachO->getRelocationSection(RE);
+ Value.SectionID = findOrEmitSection(Obj, Sec, true, ObjSectionToID);
+ uint64_t Addr;
+ Sec.getAddress(Addr);
+ Value.Addend = Addend - Addr;
}
- if (Arch == Triple::arm && (RelType & 0xf) == macho::RIT_ARM_Branch24Bit) {
+ if (Arch == Triple::x86_64 && RelType == macho::RIT_X86_64_GOT) {
+ assert(IsPCRel);
+ assert(Size == 2);
+ StubMap::const_iterator i = Stubs.find(Value);
+ uint8_t *Addr;
+ if (i != Stubs.end()) {
+ Addr = Section.Address + i->second;
+ } else {
+ Stubs[Value] = Section.StubOffset;
+ uint8_t *GOTEntry = Section.Address + Section.StubOffset;
+ RelocationEntry RE(SectionID, Section.StubOffset,
+ macho::RIT_X86_64_Unsigned, Value.Addend - 4, false,
+ 3);
+ if (Value.SymbolName)
+ addRelocationForSymbol(RE, Value.SymbolName);
+ else
+ addRelocationForSection(RE, Value.SectionID);
+ Section.StubOffset += 8;
+ Addr = GOTEntry;
+ }
+ resolveRelocation(Section, Offset, (uint64_t)Addr,
+ macho::RIT_X86_64_Unsigned, 4, true, 2);
+ } else if (Arch == Triple::arm &&
+ (RelType & 0xf) == macho::RIT_ARM_Branch24Bit) {
// This is an ARM branch relocation, need to use a stub function.
// Look up for existing stub.
StubMap::const_iterator i = Stubs.find(Value);
if (i != Stubs.end())
- resolveRelocation(Section, Rel.Offset,
+ resolveRelocation(Section, Offset,
(uint64_t)Section.Address + i->second,
- RelType, 0);
+ RelType, 0, IsPCRel, Size);
else {
// Create a new stub function.
Stubs[Value] = Section.StubOffset;
uint8_t *StubTargetAddr = createStubFunction(Section.Address +
Section.StubOffset);
- RelocationEntry RE(Rel.SectionID, StubTargetAddr - Section.Address,
+ RelocationEntry RE(SectionID, StubTargetAddr - Section.Address,
macho::RIT_Vanilla, Value.Addend);
if (Value.SymbolName)
addRelocationForSymbol(RE, Value.SymbolName);
else
addRelocationForSection(RE, Value.SectionID);
- resolveRelocation(Section, Rel.Offset,
+ resolveRelocation(Section, Offset,
(uint64_t)Section.Address + Section.StubOffset,
- RelType, 0);
+ RelType, 0, IsPCRel, Size);
Section.StubOffset += getMaxStubSize();
}
} else {
- RelocationEntry RE(Rel.SectionID, Rel.Offset, RelType, Value.Addend);
+ RelocationEntry RE(SectionID, Offset, RelType, Value.Addend,
+ IsPCRel, Size);
if (Value.SymbolName)
addRelocationForSymbol(RE, Value.SymbolName);
else
diff --git a/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.h b/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.h
index 62d8487..df8d3bb 100644
--- a/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.h
+++ b/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.h
@@ -16,7 +16,7 @@
#include "RuntimeDyldImpl.h"
#include "llvm/ADT/IndexedMap.h"
-#include "llvm/Object/MachOObject.h"
+#include "llvm/Object/MachO.h"
#include "llvm/Support/Format.h"
using namespace llvm;
@@ -25,7 +25,6 @@ using namespace llvm::object;
namespace llvm {
class RuntimeDyldMachO : public RuntimeDyldImpl {
-protected:
bool resolveI386Relocation(uint8_t *LocalAddress,
uint64_t FinalAddress,
uint64_t Value,
@@ -48,22 +47,25 @@ protected:
unsigned Size,
int64_t Addend);
- virtual void processRelocationRef(const ObjRelocationInfo &Rel,
+ void resolveRelocation(const SectionEntry &Section,
+ uint64_t Offset,
+ uint64_t Value,
+ uint32_t Type,
+ int64_t Addend,
+ bool isPCRel,
+ unsigned Size);
+public:
+ RuntimeDyldMachO(RTDyldMemoryManager *mm) : RuntimeDyldImpl(mm) {}
+
+ virtual void resolveRelocation(const RelocationEntry &RE, uint64_t Value);
+ virtual void processRelocationRef(unsigned SectionID,
+ RelocationRef RelI,
ObjectImage &Obj,
ObjSectionToIDMap &ObjSectionToID,
const SymbolTableMap &Symbols,
StubMap &Stubs);
-
-public:
- virtual void resolveRelocation(const SectionEntry &Section,
- uint64_t Offset,
- uint64_t Value,
- uint32_t Type,
- int64_t Addend);
-
- RuntimeDyldMachO(RTDyldMemoryManager *mm) : RuntimeDyldImpl(mm) {}
-
- bool isCompatibleFormat(const ObjectBuffer *Buffer) const;
+ virtual bool isCompatibleFormat(const ObjectBuffer *Buffer) const;
+ virtual StringRef getEHFrameSection();
};
} // end namespace llvm
diff --git a/lib/ExecutionEngine/TargetSelect.cpp b/lib/ExecutionEngine/TargetSelect.cpp
index ca4330f..558d8b3 100644
--- a/lib/ExecutionEngine/TargetSelect.cpp
+++ b/lib/ExecutionEngine/TargetSelect.cpp
@@ -88,6 +88,14 @@ TargetMachine *EngineBuilder::selectTarget(const Triple &TargetTriple,
FeaturesStr = Features.getString();
}
+ // FIXME: non-iOS ARM FastISel is broken with MCJIT.
+ if (UseMCJIT &&
+ TheTriple.getArch() == Triple::arm &&
+ TheTriple.getOS() != Triple::IOS &&
+ OptLevel == CodeGenOpt::None) {
+ OptLevel = CodeGenOpt::Less;
+ }
+
// Allocate a target...
TargetMachine *Target = TheTarget->createTargetMachine(TheTriple.getTriple(),
MCPU, FeaturesStr,