aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Support/ScaledNumber.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Support/ScaledNumber.cpp')
-rw-r--r--lib/Support/ScaledNumber.cpp319
1 files changed, 319 insertions, 0 deletions
diff --git a/lib/Support/ScaledNumber.cpp b/lib/Support/ScaledNumber.cpp
new file mode 100644
index 0000000..3fe027b
--- /dev/null
+++ b/lib/Support/ScaledNumber.cpp
@@ -0,0 +1,319 @@
+//==- lib/Support/ScaledNumber.cpp - Support for scaled numbers -*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Implementation of some scaled number algorithms.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Support/ScaledNumber.h"
+
+#include "llvm/ADT/APFloat.h"
+#include "llvm/Support/Debug.h"
+
+using namespace llvm;
+using namespace llvm::ScaledNumbers;
+
+std::pair<uint64_t, int16_t> ScaledNumbers::multiply64(uint64_t LHS,
+ uint64_t RHS) {
+ // Separate into two 32-bit digits (U.L).
+ auto getU = [](uint64_t N) { return N >> 32; };
+ auto getL = [](uint64_t N) { return N & UINT32_MAX; };
+ uint64_t UL = getU(LHS), LL = getL(LHS), UR = getU(RHS), LR = getL(RHS);
+
+ // Compute cross products.
+ uint64_t P1 = UL * UR, P2 = UL * LR, P3 = LL * UR, P4 = LL * LR;
+
+ // Sum into two 64-bit digits.
+ uint64_t Upper = P1, Lower = P4;
+ auto addWithCarry = [&](uint64_t N) {
+ uint64_t NewLower = Lower + (getL(N) << 32);
+ Upper += getU(N) + (NewLower < Lower);
+ Lower = NewLower;
+ };
+ addWithCarry(P2);
+ addWithCarry(P3);
+
+ // Check whether the upper digit is empty.
+ if (!Upper)
+ return std::make_pair(Lower, 0);
+
+ // Shift as little as possible to maximize precision.
+ unsigned LeadingZeros = countLeadingZeros(Upper);
+ int Shift = 64 - LeadingZeros;
+ if (LeadingZeros)
+ Upper = Upper << LeadingZeros | Lower >> Shift;
+ return getRounded(Upper, Shift,
+ Shift && (Lower & UINT64_C(1) << (Shift - 1)));
+}
+
+static uint64_t getHalf(uint64_t N) { return (N >> 1) + (N & 1); }
+
+std::pair<uint32_t, int16_t> ScaledNumbers::divide32(uint32_t Dividend,
+ uint32_t Divisor) {
+ assert(Dividend && "expected non-zero dividend");
+ assert(Divisor && "expected non-zero divisor");
+
+ // Use 64-bit math and canonicalize the dividend to gain precision.
+ uint64_t Dividend64 = Dividend;
+ int Shift = 0;
+ if (int Zeros = countLeadingZeros(Dividend64)) {
+ Shift -= Zeros;
+ Dividend64 <<= Zeros;
+ }
+ uint64_t Quotient = Dividend64 / Divisor;
+ uint64_t Remainder = Dividend64 % Divisor;
+
+ // If Quotient needs to be shifted, leave the rounding to getAdjusted().
+ if (Quotient > UINT32_MAX)
+ return getAdjusted<uint32_t>(Quotient, Shift);
+
+ // Round based on the value of the next bit.
+ return getRounded<uint32_t>(Quotient, Shift, Remainder >= getHalf(Divisor));
+}
+
+std::pair<uint64_t, int16_t> ScaledNumbers::divide64(uint64_t Dividend,
+ uint64_t Divisor) {
+ assert(Dividend && "expected non-zero dividend");
+ assert(Divisor && "expected non-zero divisor");
+
+ // Minimize size of divisor.
+ int Shift = 0;
+ if (int Zeros = countTrailingZeros(Divisor)) {
+ Shift -= Zeros;
+ Divisor >>= Zeros;
+ }
+
+ // Check for powers of two.
+ if (Divisor == 1)
+ return std::make_pair(Dividend, Shift);
+
+ // Maximize size of dividend.
+ if (int Zeros = countLeadingZeros(Dividend)) {
+ Shift -= Zeros;
+ Dividend <<= Zeros;
+ }
+
+ // Start with the result of a divide.
+ uint64_t Quotient = Dividend / Divisor;
+ Dividend %= Divisor;
+
+ // Continue building the quotient with long division.
+ while (!(Quotient >> 63) && Dividend) {
+ // Shift Dividend and check for overflow.
+ bool IsOverflow = Dividend >> 63;
+ Dividend <<= 1;
+ --Shift;
+
+ // Get the next bit of Quotient.
+ Quotient <<= 1;
+ if (IsOverflow || Divisor <= Dividend) {
+ Quotient |= 1;
+ Dividend -= Divisor;
+ }
+ }
+
+ return getRounded(Quotient, Shift, Dividend >= getHalf(Divisor));
+}
+
+int ScaledNumbers::compareImpl(uint64_t L, uint64_t R, int ScaleDiff) {
+ assert(ScaleDiff >= 0 && "wrong argument order");
+ assert(ScaleDiff < 64 && "numbers too far apart");
+
+ uint64_t L_adjusted = L >> ScaleDiff;
+ if (L_adjusted < R)
+ return -1;
+ if (L_adjusted > R)
+ return 1;
+
+ return L > L_adjusted << ScaleDiff ? 1 : 0;
+}
+
+static void appendDigit(std::string &Str, unsigned D) {
+ assert(D < 10);
+ Str += '0' + D % 10;
+}
+
+static void appendNumber(std::string &Str, uint64_t N) {
+ while (N) {
+ appendDigit(Str, N % 10);
+ N /= 10;
+ }
+}
+
+static bool doesRoundUp(char Digit) {
+ switch (Digit) {
+ case '5':
+ case '6':
+ case '7':
+ case '8':
+ case '9':
+ return true;
+ default:
+ return false;
+ }
+}
+
+static std::string toStringAPFloat(uint64_t D, int E, unsigned Precision) {
+ assert(E >= ScaledNumbers::MinScale);
+ assert(E <= ScaledNumbers::MaxScale);
+
+ // Find a new E, but don't let it increase past MaxScale.
+ int LeadingZeros = ScaledNumberBase::countLeadingZeros64(D);
+ int NewE = std::min(ScaledNumbers::MaxScale, E + 63 - LeadingZeros);
+ int Shift = 63 - (NewE - E);
+ assert(Shift <= LeadingZeros);
+ assert(Shift == LeadingZeros || NewE == ScaledNumbers::MaxScale);
+ D <<= Shift;
+ E = NewE;
+
+ // Check for a denormal.
+ unsigned AdjustedE = E + 16383;
+ if (!(D >> 63)) {
+ assert(E == ScaledNumbers::MaxScale);
+ AdjustedE = 0;
+ }
+
+ // Build the float and print it.
+ uint64_t RawBits[2] = {D, AdjustedE};
+ APFloat Float(APFloat::x87DoubleExtended, APInt(80, RawBits));
+ SmallVector<char, 24> Chars;
+ Float.toString(Chars, Precision, 0);
+ return std::string(Chars.begin(), Chars.end());
+}
+
+static std::string stripTrailingZeros(const std::string &Float) {
+ size_t NonZero = Float.find_last_not_of('0');
+ assert(NonZero != std::string::npos && "no . in floating point string");
+
+ if (Float[NonZero] == '.')
+ ++NonZero;
+
+ return Float.substr(0, NonZero + 1);
+}
+
+std::string ScaledNumberBase::toString(uint64_t D, int16_t E, int Width,
+ unsigned Precision) {
+ if (!D)
+ return "0.0";
+
+ // Canonicalize exponent and digits.
+ uint64_t Above0 = 0;
+ uint64_t Below0 = 0;
+ uint64_t Extra = 0;
+ int ExtraShift = 0;
+ if (E == 0) {
+ Above0 = D;
+ } else if (E > 0) {
+ if (int Shift = std::min(int16_t(countLeadingZeros64(D)), E)) {
+ D <<= Shift;
+ E -= Shift;
+
+ if (!E)
+ Above0 = D;
+ }
+ } else if (E > -64) {
+ Above0 = D >> -E;
+ Below0 = D << (64 + E);
+ } else if (E > -120) {
+ Below0 = D >> (-E - 64);
+ Extra = D << (128 + E);
+ ExtraShift = -64 - E;
+ }
+
+ // Fall back on APFloat for very small and very large numbers.
+ if (!Above0 && !Below0)
+ return toStringAPFloat(D, E, Precision);
+
+ // Append the digits before the decimal.
+ std::string Str;
+ size_t DigitsOut = 0;
+ if (Above0) {
+ appendNumber(Str, Above0);
+ DigitsOut = Str.size();
+ } else
+ appendDigit(Str, 0);
+ std::reverse(Str.begin(), Str.end());
+
+ // Return early if there's nothing after the decimal.
+ if (!Below0)
+ return Str + ".0";
+
+ // Append the decimal and beyond.
+ Str += '.';
+ uint64_t Error = UINT64_C(1) << (64 - Width);
+
+ // We need to shift Below0 to the right to make space for calculating
+ // digits. Save the precision we're losing in Extra.
+ Extra = (Below0 & 0xf) << 56 | (Extra >> 8);
+ Below0 >>= 4;
+ size_t SinceDot = 0;
+ size_t AfterDot = Str.size();
+ do {
+ if (ExtraShift) {
+ --ExtraShift;
+ Error *= 5;
+ } else
+ Error *= 10;
+
+ Below0 *= 10;
+ Extra *= 10;
+ Below0 += (Extra >> 60);
+ Extra = Extra & (UINT64_MAX >> 4);
+ appendDigit(Str, Below0 >> 60);
+ Below0 = Below0 & (UINT64_MAX >> 4);
+ if (DigitsOut || Str.back() != '0')
+ ++DigitsOut;
+ ++SinceDot;
+ } while (Error && (Below0 << 4 | Extra >> 60) >= Error / 2 &&
+ (!Precision || DigitsOut <= Precision || SinceDot < 2));
+
+ // Return early for maximum precision.
+ if (!Precision || DigitsOut <= Precision)
+ return stripTrailingZeros(Str);
+
+ // Find where to truncate.
+ size_t Truncate =
+ std::max(Str.size() - (DigitsOut - Precision), AfterDot + 1);
+
+ // Check if there's anything to truncate.
+ if (Truncate >= Str.size())
+ return stripTrailingZeros(Str);
+
+ bool Carry = doesRoundUp(Str[Truncate]);
+ if (!Carry)
+ return stripTrailingZeros(Str.substr(0, Truncate));
+
+ // Round with the first truncated digit.
+ for (std::string::reverse_iterator I(Str.begin() + Truncate), E = Str.rend();
+ I != E; ++I) {
+ if (*I == '.')
+ continue;
+ if (*I == '9') {
+ *I = '0';
+ continue;
+ }
+
+ ++*I;
+ Carry = false;
+ break;
+ }
+
+ // Add "1" in front if we still need to carry.
+ return stripTrailingZeros(std::string(Carry, '1') + Str.substr(0, Truncate));
+}
+
+raw_ostream &ScaledNumberBase::print(raw_ostream &OS, uint64_t D, int16_t E,
+ int Width, unsigned Precision) {
+ return OS << toString(D, E, Width, Precision);
+}
+
+void ScaledNumberBase::dump(uint64_t D, int16_t E, int Width) {
+ print(dbgs(), D, E, Width, 0) << "[" << Width << ":" << D << "*2^" << E
+ << "]";
+}