aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/ARM64/ARM64ISelDAGToDAG.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Target/ARM64/ARM64ISelDAGToDAG.cpp')
-rw-r--r--lib/Target/ARM64/ARM64ISelDAGToDAG.cpp2381
1 files changed, 2381 insertions, 0 deletions
diff --git a/lib/Target/ARM64/ARM64ISelDAGToDAG.cpp b/lib/Target/ARM64/ARM64ISelDAGToDAG.cpp
new file mode 100644
index 0000000..2e234c9
--- /dev/null
+++ b/lib/Target/ARM64/ARM64ISelDAGToDAG.cpp
@@ -0,0 +1,2381 @@
+//===-- ARM64ISelDAGToDAG.cpp - A dag to dag inst selector for ARM64 ------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines an instruction selector for the ARM64 target.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "arm64-isel"
+#include "ARM64TargetMachine.h"
+#include "MCTargetDesc/ARM64AddressingModes.h"
+#include "llvm/CodeGen/SelectionDAGISel.h"
+#include "llvm/IR/Function.h" // To access function attributes.
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+//===--------------------------------------------------------------------===//
+/// ARM64DAGToDAGISel - ARM64 specific code to select ARM64 machine
+/// instructions for SelectionDAG operations.
+///
+namespace {
+
+class ARM64DAGToDAGISel : public SelectionDAGISel {
+ ARM64TargetMachine &TM;
+
+ /// Subtarget - Keep a pointer to the ARM64Subtarget around so that we can
+ /// make the right decision when generating code for different targets.
+ const ARM64Subtarget *Subtarget;
+
+ bool ForCodeSize;
+
+public:
+ explicit ARM64DAGToDAGISel(ARM64TargetMachine &tm, CodeGenOpt::Level OptLevel)
+ : SelectionDAGISel(tm, OptLevel), TM(tm),
+ Subtarget(&TM.getSubtarget<ARM64Subtarget>()), ForCodeSize(false) {}
+
+ virtual const char *getPassName() const {
+ return "ARM64 Instruction Selection";
+ }
+
+ virtual bool runOnMachineFunction(MachineFunction &MF) {
+ AttributeSet FnAttrs = MF.getFunction()->getAttributes();
+ ForCodeSize =
+ FnAttrs.hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::OptimizeForSize) ||
+ FnAttrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize);
+ return SelectionDAGISel::runOnMachineFunction(MF);
+ }
+
+ SDNode *Select(SDNode *Node);
+
+ /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
+ /// inline asm expressions.
+ virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
+ char ConstraintCode,
+ std::vector<SDValue> &OutOps);
+
+ SDNode *SelectMLAV64LaneV128(SDNode *N);
+ SDNode *SelectMULLV64LaneV128(unsigned IntNo, SDNode *N);
+ bool SelectArithExtendedRegister(SDValue N, SDValue &Reg, SDValue &Shift);
+ bool SelectArithImmed(SDValue N, SDValue &Val, SDValue &Shift);
+ bool SelectNegArithImmed(SDValue N, SDValue &Val, SDValue &Shift);
+ bool SelectArithShiftedRegister(SDValue N, SDValue &Reg, SDValue &Shift) {
+ return SelectShiftedRegister(N, false, Reg, Shift);
+ }
+ bool SelectLogicalShiftedRegister(SDValue N, SDValue &Reg, SDValue &Shift) {
+ return SelectShiftedRegister(N, true, Reg, Shift);
+ }
+ bool SelectAddrModeIndexed8(SDValue N, SDValue &Base, SDValue &OffImm) {
+ return SelectAddrModeIndexed(N, 1, Base, OffImm);
+ }
+ bool SelectAddrModeIndexed16(SDValue N, SDValue &Base, SDValue &OffImm) {
+ return SelectAddrModeIndexed(N, 2, Base, OffImm);
+ }
+ bool SelectAddrModeIndexed32(SDValue N, SDValue &Base, SDValue &OffImm) {
+ return SelectAddrModeIndexed(N, 4, Base, OffImm);
+ }
+ bool SelectAddrModeIndexed64(SDValue N, SDValue &Base, SDValue &OffImm) {
+ return SelectAddrModeIndexed(N, 8, Base, OffImm);
+ }
+ bool SelectAddrModeIndexed128(SDValue N, SDValue &Base, SDValue &OffImm) {
+ return SelectAddrModeIndexed(N, 16, Base, OffImm);
+ }
+ bool SelectAddrModeUnscaled8(SDValue N, SDValue &Base, SDValue &OffImm) {
+ return SelectAddrModeUnscaled(N, 1, Base, OffImm);
+ }
+ bool SelectAddrModeUnscaled16(SDValue N, SDValue &Base, SDValue &OffImm) {
+ return SelectAddrModeUnscaled(N, 2, Base, OffImm);
+ }
+ bool SelectAddrModeUnscaled32(SDValue N, SDValue &Base, SDValue &OffImm) {
+ return SelectAddrModeUnscaled(N, 4, Base, OffImm);
+ }
+ bool SelectAddrModeUnscaled64(SDValue N, SDValue &Base, SDValue &OffImm) {
+ return SelectAddrModeUnscaled(N, 8, Base, OffImm);
+ }
+ bool SelectAddrModeUnscaled128(SDValue N, SDValue &Base, SDValue &OffImm) {
+ return SelectAddrModeUnscaled(N, 16, Base, OffImm);
+ }
+
+ bool SelectAddrModeRO8(SDValue N, SDValue &Base, SDValue &Offset,
+ SDValue &Imm) {
+ return SelectAddrModeRO(N, 1, Base, Offset, Imm);
+ }
+ bool SelectAddrModeRO16(SDValue N, SDValue &Base, SDValue &Offset,
+ SDValue &Imm) {
+ return SelectAddrModeRO(N, 2, Base, Offset, Imm);
+ }
+ bool SelectAddrModeRO32(SDValue N, SDValue &Base, SDValue &Offset,
+ SDValue &Imm) {
+ return SelectAddrModeRO(N, 4, Base, Offset, Imm);
+ }
+ bool SelectAddrModeRO64(SDValue N, SDValue &Base, SDValue &Offset,
+ SDValue &Imm) {
+ return SelectAddrModeRO(N, 8, Base, Offset, Imm);
+ }
+ bool SelectAddrModeRO128(SDValue N, SDValue &Base, SDValue &Offset,
+ SDValue &Imm) {
+ return SelectAddrModeRO(N, 16, Base, Offset, Imm);
+ }
+ bool SelectAddrModeNoIndex(SDValue N, SDValue &Val);
+
+ /// Form sequences of consecutive 64/128-bit registers for use in NEON
+ /// instructions making use of a vector-list (e.g. ldN, tbl). Vecs must have
+ /// between 1 and 4 elements. If it contains a single element that is returned
+ /// unchanged; otherwise a REG_SEQUENCE value is returned.
+ SDValue createDTuple(ArrayRef<SDValue> Vecs);
+ SDValue createQTuple(ArrayRef<SDValue> Vecs);
+
+ /// Generic helper for the createDTuple/createQTuple
+ /// functions. Those should almost always be called instead.
+ SDValue createTuple(ArrayRef<SDValue> Vecs, unsigned RegClassIDs[],
+ unsigned SubRegs[]);
+
+ SDNode *SelectTable(SDNode *N, unsigned NumVecs, unsigned Opc, bool isExt);
+
+ SDNode *SelectIndexedLoad(SDNode *N, bool &Done);
+
+ SDNode *SelectLoad(SDNode *N, unsigned NumVecs, unsigned Opc,
+ unsigned SubRegIdx);
+ SDNode *SelectLoadLane(SDNode *N, unsigned NumVecs, unsigned Opc);
+
+ SDNode *SelectStore(SDNode *N, unsigned NumVecs, unsigned Opc);
+ SDNode *SelectStoreLane(SDNode *N, unsigned NumVecs, unsigned Opc);
+
+ SDNode *SelectSIMDAddSubNarrowing(unsigned IntNo, SDNode *Node);
+ SDNode *SelectSIMDXtnNarrowing(unsigned IntNo, SDNode *Node);
+
+ SDNode *SelectAtomic(SDNode *Node, unsigned Op8, unsigned Op16, unsigned Op32,
+ unsigned Op64);
+
+ SDNode *SelectBitfieldExtractOp(SDNode *N);
+ SDNode *SelectBitfieldInsertOp(SDNode *N);
+
+ SDNode *SelectLIBM(SDNode *N);
+
+// Include the pieces autogenerated from the target description.
+#include "ARM64GenDAGISel.inc"
+
+private:
+ bool SelectShiftedRegister(SDValue N, bool AllowROR, SDValue &Reg,
+ SDValue &Shift);
+ bool SelectAddrModeIndexed(SDValue N, unsigned Size, SDValue &Base,
+ SDValue &OffImm);
+ bool SelectAddrModeUnscaled(SDValue N, unsigned Size, SDValue &Base,
+ SDValue &OffImm);
+ bool SelectAddrModeRO(SDValue N, unsigned Size, SDValue &Base,
+ SDValue &Offset, SDValue &Imm);
+ bool isWorthFolding(SDValue V) const;
+ bool SelectExtendedSHL(SDValue N, unsigned Size, SDValue &Offset,
+ SDValue &Imm);
+};
+} // end anonymous namespace
+
+/// isIntImmediate - This method tests to see if the node is a constant
+/// operand. If so Imm will receive the 32-bit value.
+static bool isIntImmediate(const SDNode *N, uint64_t &Imm) {
+ if (const ConstantSDNode *C = dyn_cast<const ConstantSDNode>(N)) {
+ Imm = C->getZExtValue();
+ return true;
+ }
+ return false;
+}
+
+// isIntImmediate - This method tests to see if a constant operand.
+// If so Imm will receive the value.
+static bool isIntImmediate(SDValue N, uint64_t &Imm) {
+ return isIntImmediate(N.getNode(), Imm);
+}
+
+// isOpcWithIntImmediate - This method tests to see if the node is a specific
+// opcode and that it has a immediate integer right operand.
+// If so Imm will receive the 32 bit value.
+static bool isOpcWithIntImmediate(const SDNode *N, unsigned Opc,
+ uint64_t &Imm) {
+ return N->getOpcode() == Opc &&
+ isIntImmediate(N->getOperand(1).getNode(), Imm);
+}
+
+bool ARM64DAGToDAGISel::SelectAddrModeNoIndex(SDValue N, SDValue &Val) {
+ EVT ValTy = N.getValueType();
+ if (ValTy != MVT::i64)
+ return false;
+ Val = N;
+ return true;
+}
+
+bool ARM64DAGToDAGISel::SelectInlineAsmMemoryOperand(
+ const SDValue &Op, char ConstraintCode, std::vector<SDValue> &OutOps) {
+ assert(ConstraintCode == 'm' && "unexpected asm memory constraint");
+ // Require the address to be in a register. That is safe for all ARM64
+ // variants and it is hard to do anything much smarter without knowing
+ // how the operand is used.
+ OutOps.push_back(Op);
+ return false;
+}
+
+/// SelectArithImmed - Select an immediate value that can be represented as
+/// a 12-bit value shifted left by either 0 or 12. If so, return true with
+/// Val set to the 12-bit value and Shift set to the shifter operand.
+bool ARM64DAGToDAGISel::SelectArithImmed(SDValue N, SDValue &Val,
+ SDValue &Shift) {
+ // This function is called from the addsub_shifted_imm ComplexPattern,
+ // which lists [imm] as the list of opcode it's interested in, however
+ // we still need to check whether the operand is actually an immediate
+ // here because the ComplexPattern opcode list is only used in
+ // root-level opcode matching.
+ if (!isa<ConstantSDNode>(N.getNode()))
+ return false;
+
+ uint64_t Immed = cast<ConstantSDNode>(N.getNode())->getZExtValue();
+ unsigned ShiftAmt;
+
+ if (Immed >> 12 == 0) {
+ ShiftAmt = 0;
+ } else if ((Immed & 0xfff) == 0 && Immed >> 24 == 0) {
+ ShiftAmt = 12;
+ Immed = Immed >> 12;
+ } else
+ return false;
+
+ unsigned ShVal = ARM64_AM::getShifterImm(ARM64_AM::LSL, ShiftAmt);
+ Val = CurDAG->getTargetConstant(Immed, MVT::i32);
+ Shift = CurDAG->getTargetConstant(ShVal, MVT::i32);
+ return true;
+}
+
+/// SelectNegArithImmed - As above, but negates the value before trying to
+/// select it.
+bool ARM64DAGToDAGISel::SelectNegArithImmed(SDValue N, SDValue &Val,
+ SDValue &Shift) {
+ // This function is called from the addsub_shifted_imm ComplexPattern,
+ // which lists [imm] as the list of opcode it's interested in, however
+ // we still need to check whether the operand is actually an immediate
+ // here because the ComplexPattern opcode list is only used in
+ // root-level opcode matching.
+ if (!isa<ConstantSDNode>(N.getNode()))
+ return false;
+
+ // The immediate operand must be a 24-bit zero-extended immediate.
+ uint64_t Immed = cast<ConstantSDNode>(N.getNode())->getZExtValue();
+
+ // This negation is almost always valid, but "cmp wN, #0" and "cmn wN, #0"
+ // have the opposite effect on the C flag, so this pattern mustn't match under
+ // those circumstances.
+ if (Immed == 0)
+ return false;
+
+ if (N.getValueType() == MVT::i32)
+ Immed = ~((uint32_t)Immed) + 1;
+ else
+ Immed = ~Immed + 1ULL;
+ if (Immed & 0xFFFFFFFFFF000000ULL)
+ return false;
+
+ Immed &= 0xFFFFFFULL;
+ return SelectArithImmed(CurDAG->getConstant(Immed, MVT::i32), Val, Shift);
+}
+
+/// getShiftTypeForNode - Translate a shift node to the corresponding
+/// ShiftType value.
+static ARM64_AM::ShiftType getShiftTypeForNode(SDValue N) {
+ switch (N.getOpcode()) {
+ default:
+ return ARM64_AM::InvalidShift;
+ case ISD::SHL:
+ return ARM64_AM::LSL;
+ case ISD::SRL:
+ return ARM64_AM::LSR;
+ case ISD::SRA:
+ return ARM64_AM::ASR;
+ case ISD::ROTR:
+ return ARM64_AM::ROR;
+ }
+}
+
+/// \brief Determine wether it is worth to fold V into an extended register.
+bool ARM64DAGToDAGISel::isWorthFolding(SDValue V) const {
+ // it hurts if the a value is used at least twice, unless we are optimizing
+ // for code size.
+ if (ForCodeSize || V.hasOneUse())
+ return true;
+ return false;
+}
+
+/// SelectShiftedRegister - Select a "shifted register" operand. If the value
+/// is not shifted, set the Shift operand to default of "LSL 0". The logical
+/// instructions allow the shifted register to be rotated, but the arithmetic
+/// instructions do not. The AllowROR parameter specifies whether ROR is
+/// supported.
+bool ARM64DAGToDAGISel::SelectShiftedRegister(SDValue N, bool AllowROR,
+ SDValue &Reg, SDValue &Shift) {
+ ARM64_AM::ShiftType ShType = getShiftTypeForNode(N);
+ if (ShType == ARM64_AM::InvalidShift)
+ return false;
+ if (!AllowROR && ShType == ARM64_AM::ROR)
+ return false;
+
+ if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
+ unsigned BitSize = N.getValueType().getSizeInBits();
+ unsigned Val = RHS->getZExtValue() & (BitSize - 1);
+ unsigned ShVal = ARM64_AM::getShifterImm(ShType, Val);
+
+ Reg = N.getOperand(0);
+ Shift = CurDAG->getTargetConstant(ShVal, MVT::i32);
+ return isWorthFolding(N);
+ }
+
+ return false;
+}
+
+/// getExtendTypeForNode - Translate an extend node to the corresponding
+/// ExtendType value.
+static ARM64_AM::ExtendType getExtendTypeForNode(SDValue N,
+ bool IsLoadStore = false) {
+ if (N.getOpcode() == ISD::SIGN_EXTEND ||
+ N.getOpcode() == ISD::SIGN_EXTEND_INREG) {
+ EVT SrcVT;
+ if (N.getOpcode() == ISD::SIGN_EXTEND_INREG)
+ SrcVT = cast<VTSDNode>(N.getOperand(1))->getVT();
+ else
+ SrcVT = N.getOperand(0).getValueType();
+
+ if (!IsLoadStore && SrcVT == MVT::i8)
+ return ARM64_AM::SXTB;
+ else if (!IsLoadStore && SrcVT == MVT::i16)
+ return ARM64_AM::SXTH;
+ else if (SrcVT == MVT::i32)
+ return ARM64_AM::SXTW;
+ else if (SrcVT == MVT::i64)
+ return ARM64_AM::SXTX;
+
+ return ARM64_AM::InvalidExtend;
+ } else if (N.getOpcode() == ISD::ZERO_EXTEND ||
+ N.getOpcode() == ISD::ANY_EXTEND) {
+ EVT SrcVT = N.getOperand(0).getValueType();
+ if (!IsLoadStore && SrcVT == MVT::i8)
+ return ARM64_AM::UXTB;
+ else if (!IsLoadStore && SrcVT == MVT::i16)
+ return ARM64_AM::UXTH;
+ else if (SrcVT == MVT::i32)
+ return ARM64_AM::UXTW;
+ else if (SrcVT == MVT::i64)
+ return ARM64_AM::UXTX;
+
+ return ARM64_AM::InvalidExtend;
+ } else if (N.getOpcode() == ISD::AND) {
+ ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1));
+ if (!CSD)
+ return ARM64_AM::InvalidExtend;
+ uint64_t AndMask = CSD->getZExtValue();
+
+ switch (AndMask) {
+ default:
+ return ARM64_AM::InvalidExtend;
+ case 0xFF:
+ return !IsLoadStore ? ARM64_AM::UXTB : ARM64_AM::InvalidExtend;
+ case 0xFFFF:
+ return !IsLoadStore ? ARM64_AM::UXTH : ARM64_AM::InvalidExtend;
+ case 0xFFFFFFFF:
+ return ARM64_AM::UXTW;
+ }
+ }
+
+ return ARM64_AM::InvalidExtend;
+}
+
+// Helper for SelectMLAV64LaneV128 - Recognize high lane extracts.
+static bool checkHighLaneIndex(SDNode *DL, SDValue &LaneOp, int &LaneIdx) {
+ if (DL->getOpcode() != ARM64ISD::DUPLANE16 &&
+ DL->getOpcode() != ARM64ISD::DUPLANE32)
+ return false;
+
+ SDValue SV = DL->getOperand(0);
+ if (SV.getOpcode() != ISD::INSERT_SUBVECTOR)
+ return false;
+
+ SDValue EV = SV.getOperand(1);
+ if (EV.getOpcode() != ISD::EXTRACT_SUBVECTOR)
+ return false;
+
+ ConstantSDNode *DLidx = cast<ConstantSDNode>(DL->getOperand(1).getNode());
+ ConstantSDNode *EVidx = cast<ConstantSDNode>(EV.getOperand(1).getNode());
+ LaneIdx = DLidx->getSExtValue() + EVidx->getSExtValue();
+ LaneOp = EV.getOperand(0);
+
+ return true;
+}
+
+// Helper for SelectOpcV64LaneV128 - Recogzine operatinos where one operand is a
+// high lane extract.
+static bool checkV64LaneV128(SDValue Op0, SDValue Op1, SDValue &StdOp,
+ SDValue &LaneOp, int &LaneIdx) {
+
+ if (!checkHighLaneIndex(Op0.getNode(), LaneOp, LaneIdx)) {
+ std::swap(Op0, Op1);
+ if (!checkHighLaneIndex(Op0.getNode(), LaneOp, LaneIdx))
+ return false;
+ }
+ StdOp = Op1;
+ return true;
+}
+
+/// SelectMLAV64LaneV128 - ARM64 supports 64-bit vector MLAs (v4i16 and v2i32)
+/// where one multiplicand is a lane in the upper half of a 128-bit vector.
+/// Recognize and select this so that we don't emit unnecessary lane extracts.
+SDNode *ARM64DAGToDAGISel::SelectMLAV64LaneV128(SDNode *N) {
+ SDValue Op0 = N->getOperand(0);
+ SDValue Op1 = N->getOperand(1);
+ SDValue MLAOp1; // Will hold ordinary multiplicand for MLA.
+ SDValue MLAOp2; // Will hold lane-accessed multiplicand for MLA.
+ int LaneIdx = -1; // Will hold the lane index.
+
+ if (Op1.getOpcode() != ISD::MUL ||
+ !checkV64LaneV128(Op1.getOperand(0), Op1.getOperand(1), MLAOp1, MLAOp2,
+ LaneIdx)) {
+ std::swap(Op0, Op1);
+ if (Op1.getOpcode() != ISD::MUL ||
+ !checkV64LaneV128(Op1.getOperand(0), Op1.getOperand(1), MLAOp1, MLAOp2,
+ LaneIdx))
+ return 0;
+ }
+
+ SDValue LaneIdxVal = CurDAG->getTargetConstant(LaneIdx, MVT::i64);
+
+ SDValue Ops[] = { Op0, MLAOp1, MLAOp2, LaneIdxVal };
+
+ unsigned MLAOpc = ~0U;
+
+ switch (N->getSimpleValueType(0).SimpleTy) {
+ default:
+ llvm_unreachable("Unrecognized MLA.");
+ case MVT::v4i16:
+ MLAOpc = ARM64::MLAv4i16_indexed;
+ break;
+ case MVT::v2i32:
+ MLAOpc = ARM64::MLAv2i32_indexed;
+ break;
+ }
+
+ return CurDAG->getMachineNode(MLAOpc, SDLoc(N), N->getValueType(0), Ops);
+}
+
+SDNode *ARM64DAGToDAGISel::SelectMULLV64LaneV128(unsigned IntNo, SDNode *N) {
+ SDValue SMULLOp0;
+ SDValue SMULLOp1;
+ int LaneIdx;
+
+ if (!checkV64LaneV128(N->getOperand(1), N->getOperand(2), SMULLOp0, SMULLOp1,
+ LaneIdx))
+ return 0;
+
+ SDValue LaneIdxVal = CurDAG->getTargetConstant(LaneIdx, MVT::i64);
+
+ SDValue Ops[] = { SMULLOp0, SMULLOp1, LaneIdxVal };
+
+ unsigned SMULLOpc = ~0U;
+
+ if (IntNo == Intrinsic::arm64_neon_smull) {
+ switch (N->getSimpleValueType(0).SimpleTy) {
+ default:
+ llvm_unreachable("Unrecognized SMULL.");
+ case MVT::v4i32:
+ SMULLOpc = ARM64::SMULLv4i16_indexed;
+ break;
+ case MVT::v2i64:
+ SMULLOpc = ARM64::SMULLv2i32_indexed;
+ break;
+ }
+ } else if (IntNo == Intrinsic::arm64_neon_umull) {
+ switch (N->getSimpleValueType(0).SimpleTy) {
+ default:
+ llvm_unreachable("Unrecognized SMULL.");
+ case MVT::v4i32:
+ SMULLOpc = ARM64::UMULLv4i16_indexed;
+ break;
+ case MVT::v2i64:
+ SMULLOpc = ARM64::UMULLv2i32_indexed;
+ break;
+ }
+ } else
+ llvm_unreachable("Unrecognized intrinsic.");
+
+ return CurDAG->getMachineNode(SMULLOpc, SDLoc(N), N->getValueType(0), Ops);
+}
+
+/// SelectArithExtendedRegister - Select a "extended register" operand. This
+/// operand folds in an extend followed by an optional left shift.
+bool ARM64DAGToDAGISel::SelectArithExtendedRegister(SDValue N, SDValue &Reg,
+ SDValue &Shift) {
+ unsigned ShiftVal = 0;
+ ARM64_AM::ExtendType Ext;
+
+ if (N.getOpcode() == ISD::SHL) {
+ ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1));
+ if (!CSD)
+ return false;
+ ShiftVal = CSD->getZExtValue();
+ if ((ShiftVal & 0x3) != ShiftVal)
+ return false;
+
+ Ext = getExtendTypeForNode(N.getOperand(0));
+ if (Ext == ARM64_AM::InvalidExtend)
+ return false;
+
+ Reg = N.getOperand(0).getOperand(0);
+ } else {
+ Ext = getExtendTypeForNode(N);
+ if (Ext == ARM64_AM::InvalidExtend)
+ return false;
+
+ Reg = N.getOperand(0);
+ }
+
+ // ARM64 mandates that the RHS of the operation must use the smallest
+ // register classs that could contain the size being extended from. Thus,
+ // if we're folding a (sext i8), we need the RHS to be a GPR32, even though
+ // there might not be an actual 32-bit value in the program. We can
+ // (harmlessly) synthesize one by injected an EXTRACT_SUBREG here.
+ if (Reg.getValueType() == MVT::i64 && Ext != ARM64_AM::UXTX &&
+ Ext != ARM64_AM::SXTX) {
+ SDValue SubReg = CurDAG->getTargetConstant(ARM64::sub_32, MVT::i32);
+ MachineSDNode *Node = CurDAG->getMachineNode(
+ TargetOpcode::EXTRACT_SUBREG, SDLoc(N), MVT::i32, Reg, SubReg);
+ Reg = SDValue(Node, 0);
+ }
+
+ Shift = CurDAG->getTargetConstant(getArithExtendImm(Ext, ShiftVal), MVT::i32);
+ return isWorthFolding(N);
+}
+
+/// SelectAddrModeIndexed - Select a "register plus scaled unsigned 12-bit
+/// immediate" address. The "Size" argument is the size in bytes of the memory
+/// reference, which determines the scale.
+bool ARM64DAGToDAGISel::SelectAddrModeIndexed(SDValue N, unsigned Size,
+ SDValue &Base, SDValue &OffImm) {
+ const TargetLowering *TLI = getTargetLowering();
+ if (N.getOpcode() == ISD::FrameIndex) {
+ int FI = cast<FrameIndexSDNode>(N)->getIndex();
+ Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
+ OffImm = CurDAG->getTargetConstant(0, MVT::i64);
+ return true;
+ }
+
+ if (N.getOpcode() == ARM64ISD::ADDlow) {
+ GlobalAddressSDNode *GAN =
+ dyn_cast<GlobalAddressSDNode>(N.getOperand(1).getNode());
+ Base = N.getOperand(0);
+ OffImm = N.getOperand(1);
+ if (!GAN)
+ return true;
+
+ const GlobalValue *GV = GAN->getGlobal();
+ unsigned Alignment = GV->getAlignment();
+ const DataLayout *DL = TLI->getDataLayout();
+ if (Alignment == 0 && !Subtarget->isTargetDarwin())
+ Alignment = DL->getABITypeAlignment(GV->getType()->getElementType());
+
+ if (Alignment >= Size)
+ return true;
+ }
+
+ if (CurDAG->isBaseWithConstantOffset(N)) {
+ if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
+ int64_t RHSC = (int64_t)RHS->getZExtValue();
+ unsigned Scale = Log2_32(Size);
+ if ((RHSC & (Size - 1)) == 0 && RHSC >= 0 && RHSC < (0x1000 << Scale)) {
+ Base = N.getOperand(0);
+ if (Base.getOpcode() == ISD::FrameIndex) {
+ int FI = cast<FrameIndexSDNode>(Base)->getIndex();
+ Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
+ }
+ OffImm = CurDAG->getTargetConstant(RHSC >> Scale, MVT::i64);
+ return true;
+ }
+ }
+ }
+
+ // Before falling back to our general case, check if the unscaled
+ // instructions can handle this. If so, that's preferable.
+ if (SelectAddrModeUnscaled(N, Size, Base, OffImm))
+ return false;
+
+ // Base only. The address will be materialized into a register before
+ // the memory is accessed.
+ // add x0, Xbase, #offset
+ // ldr x0, [x0]
+ Base = N;
+ OffImm = CurDAG->getTargetConstant(0, MVT::i64);
+ return true;
+}
+
+/// SelectAddrModeUnscaled - Select a "register plus unscaled signed 9-bit
+/// immediate" address. This should only match when there is an offset that
+/// is not valid for a scaled immediate addressing mode. The "Size" argument
+/// is the size in bytes of the memory reference, which is needed here to know
+/// what is valid for a scaled immediate.
+bool ARM64DAGToDAGISel::SelectAddrModeUnscaled(SDValue N, unsigned Size,
+ SDValue &Base, SDValue &OffImm) {
+ if (!CurDAG->isBaseWithConstantOffset(N))
+ return false;
+ if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
+ int64_t RHSC = RHS->getSExtValue();
+ // If the offset is valid as a scaled immediate, don't match here.
+ if ((RHSC & (Size - 1)) == 0 && RHSC >= 0 &&
+ RHSC < (0x1000 << Log2_32(Size)))
+ return false;
+ if (RHSC >= -256 && RHSC < 256) {
+ Base = N.getOperand(0);
+ if (Base.getOpcode() == ISD::FrameIndex) {
+ int FI = cast<FrameIndexSDNode>(Base)->getIndex();
+ const TargetLowering *TLI = getTargetLowering();
+ Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
+ }
+ OffImm = CurDAG->getTargetConstant(RHSC, MVT::i64);
+ return true;
+ }
+ }
+ return false;
+}
+
+static SDValue Widen(SelectionDAG *CurDAG, SDValue N) {
+ SDValue SubReg = CurDAG->getTargetConstant(ARM64::sub_32, MVT::i32);
+ SDValue ImpDef = SDValue(
+ CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, SDLoc(N), MVT::i64),
+ 0);
+ MachineSDNode *Node = CurDAG->getMachineNode(
+ TargetOpcode::INSERT_SUBREG, SDLoc(N), MVT::i64, ImpDef, N, SubReg);
+ return SDValue(Node, 0);
+}
+
+static SDValue WidenIfNeeded(SelectionDAG *CurDAG, SDValue N) {
+ if (N.getValueType() == MVT::i32) {
+ return Widen(CurDAG, N);
+ }
+
+ return N;
+}
+
+/// \brief Check if the given SHL node (\p N), can be used to form an
+/// extended register for an addressing mode.
+bool ARM64DAGToDAGISel::SelectExtendedSHL(SDValue N, unsigned Size,
+ SDValue &Offset, SDValue &Imm) {
+ assert(N.getOpcode() == ISD::SHL && "Invalid opcode.");
+ ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1));
+ if (CSD && (CSD->getZExtValue() & 0x7) == CSD->getZExtValue()) {
+
+ ARM64_AM::ExtendType Ext = getExtendTypeForNode(N.getOperand(0), true);
+ if (Ext == ARM64_AM::InvalidExtend) {
+ Ext = ARM64_AM::UXTX;
+ Offset = WidenIfNeeded(CurDAG, N.getOperand(0));
+ } else {
+ Offset = WidenIfNeeded(CurDAG, N.getOperand(0).getOperand(0));
+ }
+
+ unsigned LegalShiftVal = Log2_32(Size);
+ unsigned ShiftVal = CSD->getZExtValue();
+
+ if (ShiftVal != 0 && ShiftVal != LegalShiftVal)
+ return false;
+
+ Imm = CurDAG->getTargetConstant(
+ ARM64_AM::getMemExtendImm(Ext, ShiftVal != 0), MVT::i32);
+ if (isWorthFolding(N))
+ return true;
+ }
+ return false;
+}
+
+bool ARM64DAGToDAGISel::SelectAddrModeRO(SDValue N, unsigned Size,
+ SDValue &Base, SDValue &Offset,
+ SDValue &Imm) {
+ if (N.getOpcode() != ISD::ADD)
+ return false;
+ SDValue LHS = N.getOperand(0);
+ SDValue RHS = N.getOperand(1);
+
+ // We don't want to match immediate adds here, because they are better lowered
+ // to the register-immediate addressing modes.
+ if (isa<ConstantSDNode>(LHS) || isa<ConstantSDNode>(RHS))
+ return false;
+
+ // Check if this particular node is reused in any non-memory related
+ // operation. If yes, do not try to fold this node into the address
+ // computation, since the computation will be kept.
+ const SDNode *Node = N.getNode();
+ for (SDNode::use_iterator UI = Node->use_begin(), UE = Node->use_end();
+ UI != UE; ++UI) {
+ if (!isa<MemSDNode>(*UI))
+ return false;
+ }
+
+ // Remember if it is worth folding N when it produces extended register.
+ bool IsExtendedRegisterWorthFolding = isWorthFolding(N);
+
+ // Try to match a shifted extend on the RHS.
+ if (IsExtendedRegisterWorthFolding && RHS.getOpcode() == ISD::SHL &&
+ SelectExtendedSHL(RHS, Size, Offset, Imm)) {
+ Base = LHS;
+ return true;
+ }
+
+ // Try to match a shifted extend on the LHS.
+ if (IsExtendedRegisterWorthFolding && LHS.getOpcode() == ISD::SHL &&
+ SelectExtendedSHL(LHS, Size, Offset, Imm)) {
+ Base = RHS;
+ return true;
+ }
+
+ ARM64_AM::ExtendType Ext = ARM64_AM::UXTX;
+ // Try to match an unshifted extend on the LHS.
+ if (IsExtendedRegisterWorthFolding &&
+ (Ext = getExtendTypeForNode(LHS, true)) != ARM64_AM::InvalidExtend) {
+ Base = RHS;
+ Offset = WidenIfNeeded(CurDAG, LHS.getOperand(0));
+ Imm = CurDAG->getTargetConstant(ARM64_AM::getMemExtendImm(Ext, false),
+ MVT::i32);
+ if (isWorthFolding(LHS))
+ return true;
+ }
+
+ // Try to match an unshifted extend on the RHS.
+ if (IsExtendedRegisterWorthFolding &&
+ (Ext = getExtendTypeForNode(RHS, true)) != ARM64_AM::InvalidExtend) {
+ Base = LHS;
+ Offset = WidenIfNeeded(CurDAG, RHS.getOperand(0));
+ Imm = CurDAG->getTargetConstant(ARM64_AM::getMemExtendImm(Ext, false),
+ MVT::i32);
+ if (isWorthFolding(RHS))
+ return true;
+ }
+
+ // Match any non-shifted, non-extend, non-immediate add expression.
+ Base = LHS;
+ Offset = WidenIfNeeded(CurDAG, RHS);
+ Ext = ARM64_AM::UXTX;
+ Imm = CurDAG->getTargetConstant(ARM64_AM::getMemExtendImm(Ext, false),
+ MVT::i32);
+ // Reg1 + Reg2 is free: no check needed.
+ return true;
+}
+
+SDValue ARM64DAGToDAGISel::createDTuple(ArrayRef<SDValue> Regs) {
+ static unsigned RegClassIDs[] = { ARM64::DDRegClassID, ARM64::DDDRegClassID,
+ ARM64::DDDDRegClassID };
+ static unsigned SubRegs[] = { ARM64::dsub0, ARM64::dsub1,
+ ARM64::dsub2, ARM64::dsub3 };
+
+ return createTuple(Regs, RegClassIDs, SubRegs);
+}
+
+SDValue ARM64DAGToDAGISel::createQTuple(ArrayRef<SDValue> Regs) {
+ static unsigned RegClassIDs[] = { ARM64::QQRegClassID, ARM64::QQQRegClassID,
+ ARM64::QQQQRegClassID };
+ static unsigned SubRegs[] = { ARM64::qsub0, ARM64::qsub1,
+ ARM64::qsub2, ARM64::qsub3 };
+
+ return createTuple(Regs, RegClassIDs, SubRegs);
+}
+
+SDValue ARM64DAGToDAGISel::createTuple(ArrayRef<SDValue> Regs,
+ unsigned RegClassIDs[],
+ unsigned SubRegs[]) {
+ // There's no special register-class for a vector-list of 1 element: it's just
+ // a vector.
+ if (Regs.size() == 1)
+ return Regs[0];
+
+ assert(Regs.size() >= 2 && Regs.size() <= 4);
+
+ SDLoc DL(Regs[0].getNode());
+
+ SmallVector<SDValue, 4> Ops;
+
+ // First operand of REG_SEQUENCE is the desired RegClass.
+ Ops.push_back(
+ CurDAG->getTargetConstant(RegClassIDs[Regs.size() - 2], MVT::i32));
+
+ // Then we get pairs of source & subregister-position for the components.
+ for (unsigned i = 0; i < Regs.size(); ++i) {
+ Ops.push_back(Regs[i]);
+ Ops.push_back(CurDAG->getTargetConstant(SubRegs[i], MVT::i32));
+ }
+
+ SDNode *N =
+ CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, MVT::Untyped, Ops);
+ return SDValue(N, 0);
+}
+
+SDNode *ARM64DAGToDAGISel::SelectTable(SDNode *N, unsigned NumVecs,
+ unsigned Opc, bool isExt) {
+ SDLoc dl(N);
+ EVT VT = N->getValueType(0);
+
+ unsigned ExtOff = isExt;
+
+ // Form a REG_SEQUENCE to force register allocation.
+ unsigned Vec0Off = ExtOff + 1;
+ SmallVector<SDValue, 4> Regs(N->op_begin() + Vec0Off,
+ N->op_begin() + Vec0Off + NumVecs);
+ SDValue RegSeq = createQTuple(Regs);
+
+ SmallVector<SDValue, 6> Ops;
+ if (isExt)
+ Ops.push_back(N->getOperand(1));
+ Ops.push_back(RegSeq);
+ Ops.push_back(N->getOperand(NumVecs + ExtOff + 1));
+ return CurDAG->getMachineNode(Opc, dl, VT, Ops);
+}
+
+SDNode *ARM64DAGToDAGISel::SelectIndexedLoad(SDNode *N, bool &Done) {
+ LoadSDNode *LD = cast<LoadSDNode>(N);
+ if (LD->isUnindexed())
+ return NULL;
+ EVT VT = LD->getMemoryVT();
+ EVT DstVT = N->getValueType(0);
+ ISD::MemIndexedMode AM = LD->getAddressingMode();
+ bool IsPre = AM == ISD::PRE_INC || AM == ISD::PRE_DEC;
+
+ // We're not doing validity checking here. That was done when checking
+ // if we should mark the load as indexed or not. We're just selecting
+ // the right instruction.
+ unsigned Opcode = 0;
+
+ ISD::LoadExtType ExtType = LD->getExtensionType();
+ bool InsertTo64 = false;
+ if (VT == MVT::i64)
+ Opcode = IsPre ? ARM64::LDRXpre_isel : ARM64::LDRXpost_isel;
+ else if (VT == MVT::i32) {
+ if (ExtType == ISD::NON_EXTLOAD)
+ Opcode = IsPre ? ARM64::LDRWpre_isel : ARM64::LDRWpost_isel;
+ else if (ExtType == ISD::SEXTLOAD)
+ Opcode = IsPre ? ARM64::LDRSWpre_isel : ARM64::LDRSWpost_isel;
+ else {
+ Opcode = IsPre ? ARM64::LDRWpre_isel : ARM64::LDRWpost_isel;
+ InsertTo64 = true;
+ // The result of the load is only i32. It's the subreg_to_reg that makes
+ // it into an i64.
+ DstVT = MVT::i32;
+ }
+ } else if (VT == MVT::i16) {
+ if (ExtType == ISD::SEXTLOAD) {
+ if (DstVT == MVT::i64)
+ Opcode = IsPre ? ARM64::LDRSHXpre_isel : ARM64::LDRSHXpost_isel;
+ else
+ Opcode = IsPre ? ARM64::LDRSHWpre_isel : ARM64::LDRSHWpost_isel;
+ } else {
+ Opcode = IsPre ? ARM64::LDRHHpre_isel : ARM64::LDRHHpost_isel;
+ InsertTo64 = DstVT == MVT::i64;
+ // The result of the load is only i32. It's the subreg_to_reg that makes
+ // it into an i64.
+ DstVT = MVT::i32;
+ }
+ } else if (VT == MVT::i8) {
+ if (ExtType == ISD::SEXTLOAD) {
+ if (DstVT == MVT::i64)
+ Opcode = IsPre ? ARM64::LDRSBXpre_isel : ARM64::LDRSBXpost_isel;
+ else
+ Opcode = IsPre ? ARM64::LDRSBWpre_isel : ARM64::LDRSBWpost_isel;
+ } else {
+ Opcode = IsPre ? ARM64::LDRBBpre_isel : ARM64::LDRBBpost_isel;
+ InsertTo64 = DstVT == MVT::i64;
+ // The result of the load is only i32. It's the subreg_to_reg that makes
+ // it into an i64.
+ DstVT = MVT::i32;
+ }
+ } else if (VT == MVT::f32) {
+ Opcode = IsPre ? ARM64::LDRSpre_isel : ARM64::LDRSpost_isel;
+ } else if (VT == MVT::f64) {
+ Opcode = IsPre ? ARM64::LDRDpre_isel : ARM64::LDRDpost_isel;
+ } else
+ return NULL;
+ SDValue Chain = LD->getChain();
+ SDValue Base = LD->getBasePtr();
+ ConstantSDNode *OffsetOp = cast<ConstantSDNode>(LD->getOffset());
+ int OffsetVal = (int)OffsetOp->getZExtValue();
+ SDValue Offset = CurDAG->getTargetConstant(OffsetVal, MVT::i64);
+ SDValue Ops[] = { Base, Offset, Chain };
+ SDNode *Res = CurDAG->getMachineNode(Opcode, SDLoc(N), DstVT, MVT::i64,
+ MVT::Other, Ops);
+ // Either way, we're replacing the node, so tell the caller that.
+ Done = true;
+ if (InsertTo64) {
+ SDValue SubReg = CurDAG->getTargetConstant(ARM64::sub_32, MVT::i32);
+ SDNode *Sub = CurDAG->getMachineNode(
+ ARM64::SUBREG_TO_REG, SDLoc(N), MVT::i64,
+ CurDAG->getTargetConstant(0, MVT::i64), SDValue(Res, 0), SubReg);
+ ReplaceUses(SDValue(N, 0), SDValue(Sub, 0));
+ ReplaceUses(SDValue(N, 1), SDValue(Res, 1));
+ ReplaceUses(SDValue(N, 2), SDValue(Res, 2));
+ return 0;
+ }
+ return Res;
+}
+
+SDNode *ARM64DAGToDAGISel::SelectLoad(SDNode *N, unsigned NumVecs, unsigned Opc,
+ unsigned SubRegIdx) {
+ SDLoc dl(N);
+ EVT VT = N->getValueType(0);
+ SDValue Chain = N->getOperand(0);
+
+ SmallVector<SDValue, 6> Ops;
+ Ops.push_back(N->getOperand(2)); // Mem operand;
+ Ops.push_back(Chain);
+
+ std::vector<EVT> ResTys;
+ ResTys.push_back(MVT::Untyped);
+ ResTys.push_back(MVT::Other);
+
+ SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
+ SDValue SuperReg = SDValue(Ld, 0);
+
+ // MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
+ // MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
+ // cast<MachineSDNode>(Ld)->setMemRefs(MemOp, MemOp + 1);
+
+ switch (NumVecs) {
+ case 4:
+ ReplaceUses(SDValue(N, 3), CurDAG->getTargetExtractSubreg(SubRegIdx + 3, dl,
+ VT, SuperReg));
+ // FALLTHROUGH
+ case 3:
+ ReplaceUses(SDValue(N, 2), CurDAG->getTargetExtractSubreg(SubRegIdx + 2, dl,
+ VT, SuperReg));
+ // FALLTHROUGH
+ case 2:
+ ReplaceUses(SDValue(N, 1), CurDAG->getTargetExtractSubreg(SubRegIdx + 1, dl,
+ VT, SuperReg));
+ ReplaceUses(SDValue(N, 0),
+ CurDAG->getTargetExtractSubreg(SubRegIdx, dl, VT, SuperReg));
+ break;
+ case 1:
+ ReplaceUses(SDValue(N, 0), SuperReg);
+ break;
+ }
+
+ ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 1));
+
+ return 0;
+}
+
+SDNode *ARM64DAGToDAGISel::SelectStore(SDNode *N, unsigned NumVecs,
+ unsigned Opc) {
+ SDLoc dl(N);
+ EVT VT = N->getOperand(2)->getValueType(0);
+
+ // Form a REG_SEQUENCE to force register allocation.
+ bool Is128Bit = VT.getSizeInBits() == 128;
+ SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs);
+ SDValue RegSeq = Is128Bit ? createQTuple(Regs) : createDTuple(Regs);
+
+ SmallVector<SDValue, 6> Ops;
+ Ops.push_back(RegSeq);
+ Ops.push_back(N->getOperand(NumVecs + 2));
+ Ops.push_back(N->getOperand(0));
+ SDNode *St = CurDAG->getMachineNode(Opc, dl, N->getValueType(0), Ops);
+
+ return St;
+}
+
+/// WidenVector - Given a value in the V64 register class, produce the
+/// equivalent value in the V128 register class.
+class WidenVector {
+ SelectionDAG &DAG;
+
+public:
+ WidenVector(SelectionDAG &DAG) : DAG(DAG) {}
+
+ SDValue operator()(SDValue V64Reg) {
+ EVT VT = V64Reg.getValueType();
+ unsigned NarrowSize = VT.getVectorNumElements();
+ MVT EltTy = VT.getVectorElementType().getSimpleVT();
+ MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize);
+ SDLoc DL(V64Reg);
+
+ SDValue Undef =
+ SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, WideTy), 0);
+ return DAG.getTargetInsertSubreg(ARM64::dsub, DL, WideTy, Undef, V64Reg);
+ }
+};
+
+/// NarrowVector - Given a value in the V128 register class, produce the
+/// equivalent value in the V64 register class.
+static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) {
+ EVT VT = V128Reg.getValueType();
+ unsigned WideSize = VT.getVectorNumElements();
+ MVT EltTy = VT.getVectorElementType().getSimpleVT();
+ MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2);
+
+ return DAG.getTargetExtractSubreg(ARM64::dsub, SDLoc(V128Reg), NarrowTy,
+ V128Reg);
+}
+
+SDNode *ARM64DAGToDAGISel::SelectLoadLane(SDNode *N, unsigned NumVecs,
+ unsigned Opc) {
+ SDLoc dl(N);
+ EVT VT = N->getValueType(0);
+ bool Narrow = VT.getSizeInBits() == 64;
+
+ // Form a REG_SEQUENCE to force register allocation.
+ SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs);
+
+ if (Narrow)
+ std::transform(Regs.begin(), Regs.end(), Regs.begin(),
+ WidenVector(*CurDAG));
+
+ SDValue RegSeq = createQTuple(Regs);
+
+ std::vector<EVT> ResTys;
+ ResTys.push_back(MVT::Untyped);
+ ResTys.push_back(MVT::Other);
+
+ unsigned LaneNo =
+ cast<ConstantSDNode>(N->getOperand(NumVecs + 2))->getZExtValue();
+
+ SmallVector<SDValue, 6> Ops;
+ Ops.push_back(RegSeq);
+ Ops.push_back(CurDAG->getTargetConstant(LaneNo, MVT::i64));
+ Ops.push_back(N->getOperand(NumVecs + 3));
+ Ops.push_back(N->getOperand(0));
+ SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
+ SDValue SuperReg = SDValue(Ld, 0);
+
+ EVT WideVT = RegSeq.getOperand(1)->getValueType(0);
+ switch (NumVecs) {
+ case 4: {
+ SDValue NV3 =
+ CurDAG->getTargetExtractSubreg(ARM64::qsub3, dl, WideVT, SuperReg);
+ if (Narrow)
+ ReplaceUses(SDValue(N, 3), NarrowVector(NV3, *CurDAG));
+ else
+ ReplaceUses(SDValue(N, 3), NV3);
+ }
+ // FALLTHROUGH
+ case 3: {
+ SDValue NV2 =
+ CurDAG->getTargetExtractSubreg(ARM64::qsub2, dl, WideVT, SuperReg);
+ if (Narrow)
+ ReplaceUses(SDValue(N, 2), NarrowVector(NV2, *CurDAG));
+ else
+ ReplaceUses(SDValue(N, 2), NV2);
+ }
+ // FALLTHROUGH
+ case 2: {
+ SDValue NV1 =
+ CurDAG->getTargetExtractSubreg(ARM64::qsub1, dl, WideVT, SuperReg);
+ SDValue NV0 =
+ CurDAG->getTargetExtractSubreg(ARM64::qsub0, dl, WideVT, SuperReg);
+ if (Narrow) {
+ ReplaceUses(SDValue(N, 1), NarrowVector(NV1, *CurDAG));
+ ReplaceUses(SDValue(N, 0), NarrowVector(NV0, *CurDAG));
+ } else {
+ ReplaceUses(SDValue(N, 1), NV1);
+ ReplaceUses(SDValue(N, 0), NV0);
+ }
+ break;
+ }
+ }
+
+ ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 1));
+
+ return Ld;
+}
+
+SDNode *ARM64DAGToDAGISel::SelectStoreLane(SDNode *N, unsigned NumVecs,
+ unsigned Opc) {
+ SDLoc dl(N);
+ EVT VT = N->getOperand(2)->getValueType(0);
+ bool Narrow = VT.getSizeInBits() == 64;
+
+ // Form a REG_SEQUENCE to force register allocation.
+ SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs);
+
+ if (Narrow)
+ std::transform(Regs.begin(), Regs.end(), Regs.begin(),
+ WidenVector(*CurDAG));
+
+ SDValue RegSeq = createQTuple(Regs);
+
+ unsigned LaneNo =
+ cast<ConstantSDNode>(N->getOperand(NumVecs + 2))->getZExtValue();
+
+ SmallVector<SDValue, 6> Ops;
+ Ops.push_back(RegSeq);
+ Ops.push_back(CurDAG->getTargetConstant(LaneNo, MVT::i64));
+ Ops.push_back(N->getOperand(NumVecs + 3));
+ Ops.push_back(N->getOperand(0));
+ SDNode *St = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops);
+
+ // Transfer memoperands.
+ MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
+ MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
+ cast<MachineSDNode>(St)->setMemRefs(MemOp, MemOp + 1);
+
+ return St;
+}
+
+SDNode *ARM64DAGToDAGISel::SelectAtomic(SDNode *Node, unsigned Op8,
+ unsigned Op16, unsigned Op32,
+ unsigned Op64) {
+ // Mostly direct translation to the given operations, except that we preserve
+ // the AtomicOrdering for use later on.
+ AtomicSDNode *AN = cast<AtomicSDNode>(Node);
+ EVT VT = AN->getMemoryVT();
+
+ unsigned Op;
+ if (VT == MVT::i8)
+ Op = Op8;
+ else if (VT == MVT::i16)
+ Op = Op16;
+ else if (VT == MVT::i32)
+ Op = Op32;
+ else if (VT == MVT::i64)
+ Op = Op64;
+ else
+ llvm_unreachable("Unexpected atomic operation");
+
+ SmallVector<SDValue, 4> Ops;
+ for (unsigned i = 1; i < AN->getNumOperands(); ++i)
+ Ops.push_back(AN->getOperand(i));
+
+ Ops.push_back(CurDAG->getTargetConstant(AN->getOrdering(), MVT::i32));
+ Ops.push_back(AN->getOperand(0)); // Chain moves to the end
+
+ return CurDAG->SelectNodeTo(Node, Op, AN->getValueType(0), MVT::Other,
+ &Ops[0], Ops.size());
+}
+
+static bool isBitfieldExtractOpFromAnd(SelectionDAG *CurDAG, SDNode *N,
+ unsigned &Opc, SDValue &Opd0,
+ unsigned &LSB, unsigned &MSB,
+ unsigned NumberOfIgnoredLowBits,
+ bool BiggerPattern) {
+ assert(N->getOpcode() == ISD::AND &&
+ "N must be a AND operation to call this function");
+
+ EVT VT = N->getValueType(0);
+
+ // Here we can test the type of VT and return false when the type does not
+ // match, but since it is done prior to that call in the current context
+ // we turned that into an assert to avoid redundant code.
+ assert((VT == MVT::i32 || VT == MVT::i64) &&
+ "Type checking must have been done before calling this function");
+
+ // FIXME: simplify-demanded-bits in DAGCombine will probably have
+ // changed the AND node to a 32-bit mask operation. We'll have to
+ // undo that as part of the transform here if we want to catch all
+ // the opportunities.
+ // Currently the NumberOfIgnoredLowBits argument helps to recover
+ // form these situations when matching bigger pattern (bitfield insert).
+
+ // For unsigned extracts, check for a shift right and mask
+ uint64_t And_imm = 0;
+ if (!isOpcWithIntImmediate(N, ISD::AND, And_imm))
+ return false;
+
+ const SDNode *Op0 = N->getOperand(0).getNode();
+
+ // Because of simplify-demanded-bits in DAGCombine, the mask may have been
+ // simplified. Try to undo that
+ And_imm |= (1 << NumberOfIgnoredLowBits) - 1;
+
+ // The immediate is a mask of the low bits iff imm & (imm+1) == 0
+ if (And_imm & (And_imm + 1))
+ return false;
+
+ bool ClampMSB = false;
+ uint64_t Srl_imm = 0;
+ // Handle the SRL + ANY_EXTEND case.
+ if (VT == MVT::i64 && Op0->getOpcode() == ISD::ANY_EXTEND &&
+ isOpcWithIntImmediate(Op0->getOperand(0).getNode(), ISD::SRL, Srl_imm)) {
+ // Extend the incoming operand of the SRL to 64-bit.
+ Opd0 = Widen(CurDAG, Op0->getOperand(0).getOperand(0));
+ // Make sure to clamp the MSB so that we preserve the semantics of the
+ // original operations.
+ ClampMSB = true;
+ } else if (isOpcWithIntImmediate(Op0, ISD::SRL, Srl_imm)) {
+ Opd0 = Op0->getOperand(0);
+ } else if (BiggerPattern) {
+ // Let's pretend a 0 shift right has been performed.
+ // The resulting code will be at least as good as the original one
+ // plus it may expose more opportunities for bitfield insert pattern.
+ // FIXME: Currently we limit this to the bigger pattern, because
+ // some optimizations expect AND and not UBFM
+ Opd0 = N->getOperand(0);
+ } else
+ return false;
+
+ assert((BiggerPattern || (Srl_imm > 0 && Srl_imm < VT.getSizeInBits())) &&
+ "bad amount in shift node!");
+
+ LSB = Srl_imm;
+ MSB = Srl_imm + (VT == MVT::i32 ? CountTrailingOnes_32(And_imm)
+ : CountTrailingOnes_64(And_imm)) -
+ 1;
+ if (ClampMSB)
+ // Since we're moving the extend before the right shift operation, we need
+ // to clamp the MSB to make sure we don't shift in undefined bits instead of
+ // the zeros which would get shifted in with the original right shift
+ // operation.
+ MSB = MSB > 31 ? 31 : MSB;
+
+ Opc = VT == MVT::i32 ? ARM64::UBFMWri : ARM64::UBFMXri;
+ return true;
+}
+
+static bool isOneBitExtractOpFromShr(SDNode *N, unsigned &Opc, SDValue &Opd0,
+ unsigned &LSB, unsigned &MSB) {
+ // We are looking for the following pattern which basically extracts a single
+ // bit from the source value and places it in the LSB of the destination
+ // value, all other bits of the destination value or set to zero:
+ //
+ // Value2 = AND Value, MaskImm
+ // SRL Value2, ShiftImm
+ //
+ // with MaskImm >> ShiftImm == 1.
+ //
+ // This gets selected into a single UBFM:
+ //
+ // UBFM Value, ShiftImm, ShiftImm
+ //
+
+ if (N->getOpcode() != ISD::SRL)
+ return false;
+
+ uint64_t And_mask = 0;
+ if (!isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, And_mask))
+ return false;
+
+ Opd0 = N->getOperand(0).getOperand(0);
+
+ uint64_t Srl_imm = 0;
+ if (!isIntImmediate(N->getOperand(1), Srl_imm))
+ return false;
+
+ // Check whether we really have a one bit extract here.
+ if (And_mask >> Srl_imm == 0x1) {
+ if (N->getValueType(0) == MVT::i32)
+ Opc = ARM64::UBFMWri;
+ else
+ Opc = ARM64::UBFMXri;
+
+ LSB = MSB = Srl_imm;
+
+ return true;
+ }
+
+ return false;
+}
+
+static bool isBitfieldExtractOpFromShr(SDNode *N, unsigned &Opc, SDValue &Opd0,
+ unsigned &LSB, unsigned &MSB,
+ bool BiggerPattern) {
+ assert((N->getOpcode() == ISD::SRA || N->getOpcode() == ISD::SRL) &&
+ "N must be a SHR/SRA operation to call this function");
+
+ EVT VT = N->getValueType(0);
+
+ // Here we can test the type of VT and return false when the type does not
+ // match, but since it is done prior to that call in the current context
+ // we turned that into an assert to avoid redundant code.
+ assert((VT == MVT::i32 || VT == MVT::i64) &&
+ "Type checking must have been done before calling this function");
+
+ // Check for AND + SRL doing a one bit extract.
+ if (isOneBitExtractOpFromShr(N, Opc, Opd0, LSB, MSB))
+ return true;
+
+ // we're looking for a shift of a shift
+ uint64_t Shl_imm = 0;
+ if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SHL, Shl_imm)) {
+ Opd0 = N->getOperand(0).getOperand(0);
+ } else if (BiggerPattern) {
+ // Let's pretend a 0 shift left has been performed.
+ // FIXME: Currently we limit this to the bigger pattern case,
+ // because some optimizations expect AND and not UBFM
+ Opd0 = N->getOperand(0);
+ } else
+ return false;
+
+ assert(Shl_imm < VT.getSizeInBits() && "bad amount in shift node!");
+ uint64_t Srl_imm = 0;
+ if (!isIntImmediate(N->getOperand(1), Srl_imm))
+ return false;
+
+ assert(Srl_imm > 0 && Srl_imm < VT.getSizeInBits() &&
+ "bad amount in shift node!");
+ // Note: The width operand is encoded as width-1.
+ unsigned Width = VT.getSizeInBits() - Srl_imm - 1;
+ int sLSB = Srl_imm - Shl_imm;
+ if (sLSB < 0)
+ return false;
+ LSB = sLSB;
+ MSB = LSB + Width;
+ // SRA requires a signed extraction
+ if (VT == MVT::i32)
+ Opc = N->getOpcode() == ISD::SRA ? ARM64::SBFMWri : ARM64::UBFMWri;
+ else
+ Opc = N->getOpcode() == ISD::SRA ? ARM64::SBFMXri : ARM64::UBFMXri;
+ return true;
+}
+
+static bool isBitfieldExtractOp(SelectionDAG *CurDAG, SDNode *N, unsigned &Opc,
+ SDValue &Opd0, unsigned &LSB, unsigned &MSB,
+ unsigned NumberOfIgnoredLowBits = 0,
+ bool BiggerPattern = false) {
+ if (N->getValueType(0) != MVT::i32 && N->getValueType(0) != MVT::i64)
+ return false;
+
+ switch (N->getOpcode()) {
+ default:
+ if (!N->isMachineOpcode())
+ return false;
+ break;
+ case ISD::AND:
+ return isBitfieldExtractOpFromAnd(CurDAG, N, Opc, Opd0, LSB, MSB,
+ NumberOfIgnoredLowBits, BiggerPattern);
+ case ISD::SRL:
+ case ISD::SRA:
+ return isBitfieldExtractOpFromShr(N, Opc, Opd0, LSB, MSB, BiggerPattern);
+ }
+
+ unsigned NOpc = N->getMachineOpcode();
+ switch (NOpc) {
+ default:
+ return false;
+ case ARM64::SBFMWri:
+ case ARM64::UBFMWri:
+ case ARM64::SBFMXri:
+ case ARM64::UBFMXri:
+ Opc = NOpc;
+ Opd0 = N->getOperand(0);
+ LSB = cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
+ MSB = cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
+ return true;
+ }
+ // Unreachable
+ return false;
+}
+
+SDNode *ARM64DAGToDAGISel::SelectBitfieldExtractOp(SDNode *N) {
+ unsigned Opc, LSB, MSB;
+ SDValue Opd0;
+ if (!isBitfieldExtractOp(CurDAG, N, Opc, Opd0, LSB, MSB))
+ return NULL;
+
+ EVT VT = N->getValueType(0);
+ SDValue Ops[] = { Opd0, CurDAG->getTargetConstant(LSB, VT),
+ CurDAG->getTargetConstant(MSB, VT) };
+ return CurDAG->SelectNodeTo(N, Opc, VT, Ops, 3);
+}
+
+// Is mask a i32 or i64 binary sequence 1..10..0 and
+// CountTrailingZeros(mask) == ExpectedTrailingZeros
+static bool isHighMask(uint64_t Mask, unsigned ExpectedTrailingZeros,
+ unsigned NumberOfIgnoredHighBits, EVT VT) {
+ assert((VT == MVT::i32 || VT == MVT::i64) &&
+ "i32 or i64 mask type expected!");
+
+ uint64_t ExpectedMask;
+ if (VT == MVT::i32) {
+ uint32_t ExpectedMaski32 = ~0 << ExpectedTrailingZeros;
+ ExpectedMask = ExpectedMaski32;
+ if (NumberOfIgnoredHighBits) {
+ uint32_t highMask = ~0 << (32 - NumberOfIgnoredHighBits);
+ Mask |= highMask;
+ }
+ } else {
+ ExpectedMask = ((uint64_t) ~0) << ExpectedTrailingZeros;
+ if (NumberOfIgnoredHighBits)
+ Mask |= ((uint64_t) ~0) << (64 - NumberOfIgnoredHighBits);
+ }
+
+ return Mask == ExpectedMask;
+}
+
+// Look for bits that will be useful for later uses.
+// A bit is consider useless as soon as it is dropped and never used
+// before it as been dropped.
+// E.g., looking for useful bit of x
+// 1. y = x & 0x7
+// 2. z = y >> 2
+// After #1, x useful bits are 0x7, then the useful bits of x, live through
+// y.
+// After #2, the useful bits of x are 0x4.
+// However, if x is used on an unpredicatable instruction, then all its bits
+// are useful.
+// E.g.
+// 1. y = x & 0x7
+// 2. z = y >> 2
+// 3. str x, [@x]
+static void getUsefulBits(SDValue Op, APInt &UsefulBits, unsigned Depth = 0);
+
+static void getUsefulBitsFromAndWithImmediate(SDValue Op, APInt &UsefulBits,
+ unsigned Depth) {
+ uint64_t Imm =
+ cast<const ConstantSDNode>(Op.getOperand(1).getNode())->getZExtValue();
+ Imm = ARM64_AM::decodeLogicalImmediate(Imm, UsefulBits.getBitWidth());
+ UsefulBits &= APInt(UsefulBits.getBitWidth(), Imm);
+ getUsefulBits(Op, UsefulBits, Depth + 1);
+}
+
+static void getUsefulBitsFromBitfieldMoveOpd(SDValue Op, APInt &UsefulBits,
+ uint64_t Imm, uint64_t MSB,
+ unsigned Depth) {
+ // inherit the bitwidth value
+ APInt OpUsefulBits(UsefulBits);
+ OpUsefulBits = 1;
+
+ if (MSB >= Imm) {
+ OpUsefulBits = OpUsefulBits.shl(MSB - Imm + 1);
+ --OpUsefulBits;
+ // The interesting part will be in the lower part of the result
+ getUsefulBits(Op, OpUsefulBits, Depth + 1);
+ // The interesting part was starting at Imm in the argument
+ OpUsefulBits = OpUsefulBits.shl(Imm);
+ } else {
+ OpUsefulBits = OpUsefulBits.shl(MSB + 1);
+ --OpUsefulBits;
+ // The interesting part will be shifted in the result
+ OpUsefulBits = OpUsefulBits.shl(OpUsefulBits.getBitWidth() - Imm);
+ getUsefulBits(Op, OpUsefulBits, Depth + 1);
+ // The interesting part was at zero in the argument
+ OpUsefulBits = OpUsefulBits.lshr(OpUsefulBits.getBitWidth() - Imm);
+ }
+
+ UsefulBits &= OpUsefulBits;
+}
+
+static void getUsefulBitsFromUBFM(SDValue Op, APInt &UsefulBits,
+ unsigned Depth) {
+ uint64_t Imm =
+ cast<const ConstantSDNode>(Op.getOperand(1).getNode())->getZExtValue();
+ uint64_t MSB =
+ cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
+
+ getUsefulBitsFromBitfieldMoveOpd(Op, UsefulBits, Imm, MSB, Depth);
+}
+
+static void getUsefulBitsFromOrWithShiftedReg(SDValue Op, APInt &UsefulBits,
+ unsigned Depth) {
+ uint64_t ShiftTypeAndValue =
+ cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
+ APInt Mask(UsefulBits);
+ Mask.clearAllBits();
+ Mask.flipAllBits();
+
+ if (ARM64_AM::getShiftType(ShiftTypeAndValue) == ARM64_AM::LSL) {
+ // Shift Left
+ uint64_t ShiftAmt = ARM64_AM::getShiftValue(ShiftTypeAndValue);
+ Mask = Mask.shl(ShiftAmt);
+ getUsefulBits(Op, Mask, Depth + 1);
+ Mask = Mask.lshr(ShiftAmt);
+ } else if (ARM64_AM::getShiftType(ShiftTypeAndValue) == ARM64_AM::LSR) {
+ // Shift Right
+ // We do not handle ARM64_AM::ASR, because the sign will change the
+ // number of useful bits
+ uint64_t ShiftAmt = ARM64_AM::getShiftValue(ShiftTypeAndValue);
+ Mask = Mask.lshr(ShiftAmt);
+ getUsefulBits(Op, Mask, Depth + 1);
+ Mask = Mask.shl(ShiftAmt);
+ } else
+ return;
+
+ UsefulBits &= Mask;
+}
+
+static void getUsefulBitsFromBFM(SDValue Op, SDValue Orig, APInt &UsefulBits,
+ unsigned Depth) {
+ uint64_t Imm =
+ cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
+ uint64_t MSB =
+ cast<const ConstantSDNode>(Op.getOperand(3).getNode())->getZExtValue();
+
+ if (Op.getOperand(1) == Orig)
+ return getUsefulBitsFromBitfieldMoveOpd(Op, UsefulBits, Imm, MSB, Depth);
+
+ APInt OpUsefulBits(UsefulBits);
+ OpUsefulBits = 1;
+
+ if (MSB >= Imm) {
+ OpUsefulBits = OpUsefulBits.shl(MSB - Imm + 1);
+ --OpUsefulBits;
+ UsefulBits &= ~OpUsefulBits;
+ getUsefulBits(Op, UsefulBits, Depth + 1);
+ } else {
+ OpUsefulBits = OpUsefulBits.shl(MSB + 1);
+ --OpUsefulBits;
+ UsefulBits = ~(OpUsefulBits.shl(OpUsefulBits.getBitWidth() - Imm));
+ getUsefulBits(Op, UsefulBits, Depth + 1);
+ }
+}
+
+static void getUsefulBitsForUse(SDNode *UserNode, APInt &UsefulBits,
+ SDValue Orig, unsigned Depth) {
+
+ // Users of this node should have already been instruction selected
+ // FIXME: Can we turn that into an assert?
+ if (!UserNode->isMachineOpcode())
+ return;
+
+ switch (UserNode->getMachineOpcode()) {
+ default:
+ return;
+ case ARM64::ANDSWri:
+ case ARM64::ANDSXri:
+ case ARM64::ANDWri:
+ case ARM64::ANDXri:
+ // We increment Depth only when we call the getUsefulBits
+ return getUsefulBitsFromAndWithImmediate(SDValue(UserNode, 0), UsefulBits,
+ Depth);
+ case ARM64::UBFMWri:
+ case ARM64::UBFMXri:
+ return getUsefulBitsFromUBFM(SDValue(UserNode, 0), UsefulBits, Depth);
+
+ case ARM64::ORRWrs:
+ case ARM64::ORRXrs:
+ if (UserNode->getOperand(1) != Orig)
+ return;
+ return getUsefulBitsFromOrWithShiftedReg(SDValue(UserNode, 0), UsefulBits,
+ Depth);
+ case ARM64::BFMWri:
+ case ARM64::BFMXri:
+ return getUsefulBitsFromBFM(SDValue(UserNode, 0), Orig, UsefulBits, Depth);
+ }
+}
+
+static void getUsefulBits(SDValue Op, APInt &UsefulBits, unsigned Depth) {
+ if (Depth >= 6)
+ return;
+ // Initialize UsefulBits
+ if (!Depth) {
+ unsigned Bitwidth = Op.getValueType().getScalarType().getSizeInBits();
+ // At the beginning, assume every produced bits is useful
+ UsefulBits = APInt(Bitwidth, 0);
+ UsefulBits.flipAllBits();
+ }
+ APInt UsersUsefulBits(UsefulBits.getBitWidth(), 0);
+
+ for (SDNode::use_iterator UseIt = Op.getNode()->use_begin(),
+ UseEnd = Op.getNode()->use_end();
+ UseIt != UseEnd; ++UseIt) {
+ // A use cannot produce useful bits
+ APInt UsefulBitsForUse = APInt(UsefulBits);
+ getUsefulBitsForUse(*UseIt, UsefulBitsForUse, Op, Depth);
+ UsersUsefulBits |= UsefulBitsForUse;
+ }
+ // UsefulBits contains the produced bits that are meaningful for the
+ // current definition, thus a user cannot make a bit meaningful at
+ // this point
+ UsefulBits &= UsersUsefulBits;
+}
+
+// Given a OR operation, check if we have the following pattern
+// ubfm c, b, imm, imm2 (or something that does the same jobs, see
+// isBitfieldExtractOp)
+// d = e & mask2 ; where mask is a binary sequence of 1..10..0 and
+// countTrailingZeros(mask2) == imm2 - imm + 1
+// f = d | c
+// if yes, given reference arguments will be update so that one can replace
+// the OR instruction with:
+// f = Opc Opd0, Opd1, LSB, MSB ; where Opc is a BFM, LSB = imm, and MSB = imm2
+static bool isBitfieldInsertOpFromOr(SDNode *N, unsigned &Opc, SDValue &Opd0,
+ SDValue &Opd1, unsigned &LSB,
+ unsigned &MSB, SelectionDAG *CurDAG) {
+ assert(N->getOpcode() == ISD::OR && "Expect a OR operation");
+
+ // Set Opc
+ EVT VT = N->getValueType(0);
+ if (VT == MVT::i32)
+ Opc = ARM64::BFMWri;
+ else if (VT == MVT::i64)
+ Opc = ARM64::BFMXri;
+ else
+ return false;
+
+ // Because of simplify-demanded-bits in DAGCombine, involved masks may not
+ // have the expected shape. Try to undo that.
+ APInt UsefulBits;
+ getUsefulBits(SDValue(N, 0), UsefulBits);
+
+ unsigned NumberOfIgnoredLowBits = UsefulBits.countTrailingZeros();
+ unsigned NumberOfIgnoredHighBits = UsefulBits.countLeadingZeros();
+
+ // OR is commutative, check both possibilities (does llvm provide a
+ // way to do that directely, e.g., via code matcher?)
+ SDValue OrOpd1Val = N->getOperand(1);
+ SDNode *OrOpd0 = N->getOperand(0).getNode();
+ SDNode *OrOpd1 = N->getOperand(1).getNode();
+ for (int i = 0; i < 2;
+ ++i, std::swap(OrOpd0, OrOpd1), OrOpd1Val = N->getOperand(0)) {
+ unsigned BFXOpc;
+ // Set Opd1, LSB and MSB arguments by looking for
+ // c = ubfm b, imm, imm2
+ if (!isBitfieldExtractOp(CurDAG, OrOpd0, BFXOpc, Opd1, LSB, MSB,
+ NumberOfIgnoredLowBits, true))
+ continue;
+
+ // Check that the returned opcode is compatible with the pattern,
+ // i.e., same type and zero extended (U and not S)
+ if ((BFXOpc != ARM64::UBFMXri && VT == MVT::i64) ||
+ (BFXOpc != ARM64::UBFMWri && VT == MVT::i32))
+ continue;
+
+ // Compute the width of the bitfield insertion
+ int sMSB = MSB - LSB + 1;
+ // FIXME: This constraints is to catch bitfield insertion we may
+ // want to widen the pattern if we want to grab general bitfied
+ // move case
+ if (sMSB <= 0)
+ continue;
+
+ // Check the second part of the pattern
+ EVT VT = OrOpd1->getValueType(0);
+ if (VT != MVT::i32 && VT != MVT::i64)
+ continue;
+
+ // Compute the Known Zero for the candidate of the first operand.
+ // This allows to catch more general case than just looking for
+ // AND with imm. Indeed, simplify-demanded-bits may have removed
+ // the AND instruction because it proves it was useless.
+ APInt KnownZero, KnownOne;
+ CurDAG->ComputeMaskedBits(OrOpd1Val, KnownZero, KnownOne);
+
+ // Check if there is enough room for the second operand to appear
+ // in the first one
+ if (KnownZero.countTrailingOnes() < (unsigned)sMSB)
+ continue;
+
+ // Set the first operand
+ uint64_t Imm;
+ if (isOpcWithIntImmediate(OrOpd1, ISD::AND, Imm) &&
+ isHighMask(Imm, sMSB, NumberOfIgnoredHighBits, VT))
+ // In that case, we can eliminate the AND
+ Opd0 = OrOpd1->getOperand(0);
+ else
+ // Maybe the AND has been removed by simplify-demanded-bits
+ // or is useful because it discards more bits
+ Opd0 = OrOpd1Val;
+
+ // both parts match
+ return true;
+ }
+
+ return false;
+}
+
+SDNode *ARM64DAGToDAGISel::SelectBitfieldInsertOp(SDNode *N) {
+ if (N->getOpcode() != ISD::OR)
+ return NULL;
+
+ unsigned Opc;
+ unsigned LSB, MSB;
+ SDValue Opd0, Opd1;
+
+ if (!isBitfieldInsertOpFromOr(N, Opc, Opd0, Opd1, LSB, MSB, CurDAG))
+ return NULL;
+
+ EVT VT = N->getValueType(0);
+ SDValue Ops[] = { Opd0,
+ Opd1,
+ CurDAG->getTargetConstant(LSB, VT),
+ CurDAG->getTargetConstant(MSB, VT) };
+ return CurDAG->SelectNodeTo(N, Opc, VT, Ops, 4);
+}
+
+SDNode *ARM64DAGToDAGISel::SelectLIBM(SDNode *N) {
+ EVT VT = N->getValueType(0);
+ unsigned Variant;
+ unsigned Opc;
+ unsigned FRINTXOpcs[] = { ARM64::FRINTXSr, ARM64::FRINTXDr };
+
+ if (VT == MVT::f32) {
+ Variant = 0;
+ } else if (VT == MVT::f64) {
+ Variant = 1;
+ } else
+ return 0; // Unrecognized argument type. Fall back on default codegen.
+
+ // Pick the FRINTX variant needed to set the flags.
+ unsigned FRINTXOpc = FRINTXOpcs[Variant];
+
+ switch (N->getOpcode()) {
+ default:
+ return 0; // Unrecognized libm ISD node. Fall back on default codegen.
+ case ISD::FCEIL: {
+ unsigned FRINTPOpcs[] = { ARM64::FRINTPSr, ARM64::FRINTPDr };
+ Opc = FRINTPOpcs[Variant];
+ break;
+ }
+ case ISD::FFLOOR: {
+ unsigned FRINTMOpcs[] = { ARM64::FRINTMSr, ARM64::FRINTMDr };
+ Opc = FRINTMOpcs[Variant];
+ break;
+ }
+ case ISD::FTRUNC: {
+ unsigned FRINTZOpcs[] = { ARM64::FRINTZSr, ARM64::FRINTZDr };
+ Opc = FRINTZOpcs[Variant];
+ break;
+ }
+ case ISD::FROUND: {
+ unsigned FRINTAOpcs[] = { ARM64::FRINTASr, ARM64::FRINTADr };
+ Opc = FRINTAOpcs[Variant];
+ break;
+ }
+ }
+
+ SDLoc dl(N);
+ SDValue In = N->getOperand(0);
+ SmallVector<SDValue, 2> Ops;
+ Ops.push_back(In);
+
+ if (!TM.Options.UnsafeFPMath) {
+ SDNode *FRINTX = CurDAG->getMachineNode(FRINTXOpc, dl, VT, MVT::Glue, In);
+ Ops.push_back(SDValue(FRINTX, 1));
+ }
+
+ return CurDAG->getMachineNode(Opc, dl, VT, Ops);
+}
+
+SDNode *ARM64DAGToDAGISel::Select(SDNode *Node) {
+ // Dump information about the Node being selected
+ DEBUG(errs() << "Selecting: ");
+ DEBUG(Node->dump(CurDAG));
+ DEBUG(errs() << "\n");
+
+ // If we have a custom node, we already have selected!
+ if (Node->isMachineOpcode()) {
+ DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n");
+ Node->setNodeId(-1);
+ return NULL;
+ }
+
+ // Few custom selection stuff.
+ SDNode *ResNode = 0;
+ EVT VT = Node->getValueType(0);
+
+ switch (Node->getOpcode()) {
+ default:
+ break;
+
+ case ISD::ADD:
+ if (SDNode *I = SelectMLAV64LaneV128(Node))
+ return I;
+ break;
+
+ case ISD::ATOMIC_LOAD_ADD:
+ return SelectAtomic(Node, ARM64::ATOMIC_LOAD_ADD_I8,
+ ARM64::ATOMIC_LOAD_ADD_I16, ARM64::ATOMIC_LOAD_ADD_I32,
+ ARM64::ATOMIC_LOAD_ADD_I64);
+ case ISD::ATOMIC_LOAD_SUB:
+ return SelectAtomic(Node, ARM64::ATOMIC_LOAD_SUB_I8,
+ ARM64::ATOMIC_LOAD_SUB_I16, ARM64::ATOMIC_LOAD_SUB_I32,
+ ARM64::ATOMIC_LOAD_SUB_I64);
+ case ISD::ATOMIC_LOAD_AND:
+ return SelectAtomic(Node, ARM64::ATOMIC_LOAD_AND_I8,
+ ARM64::ATOMIC_LOAD_AND_I16, ARM64::ATOMIC_LOAD_AND_I32,
+ ARM64::ATOMIC_LOAD_AND_I64);
+ case ISD::ATOMIC_LOAD_OR:
+ return SelectAtomic(Node, ARM64::ATOMIC_LOAD_OR_I8,
+ ARM64::ATOMIC_LOAD_OR_I16, ARM64::ATOMIC_LOAD_OR_I32,
+ ARM64::ATOMIC_LOAD_OR_I64);
+ case ISD::ATOMIC_LOAD_XOR:
+ return SelectAtomic(Node, ARM64::ATOMIC_LOAD_XOR_I8,
+ ARM64::ATOMIC_LOAD_XOR_I16, ARM64::ATOMIC_LOAD_XOR_I32,
+ ARM64::ATOMIC_LOAD_XOR_I64);
+ case ISD::ATOMIC_LOAD_NAND:
+ return SelectAtomic(
+ Node, ARM64::ATOMIC_LOAD_NAND_I8, ARM64::ATOMIC_LOAD_NAND_I16,
+ ARM64::ATOMIC_LOAD_NAND_I32, ARM64::ATOMIC_LOAD_NAND_I64);
+ case ISD::ATOMIC_LOAD_MIN:
+ return SelectAtomic(Node, ARM64::ATOMIC_LOAD_MIN_I8,
+ ARM64::ATOMIC_LOAD_MIN_I16, ARM64::ATOMIC_LOAD_MIN_I32,
+ ARM64::ATOMIC_LOAD_MIN_I64);
+ case ISD::ATOMIC_LOAD_MAX:
+ return SelectAtomic(Node, ARM64::ATOMIC_LOAD_MAX_I8,
+ ARM64::ATOMIC_LOAD_MAX_I16, ARM64::ATOMIC_LOAD_MAX_I32,
+ ARM64::ATOMIC_LOAD_MAX_I64);
+ case ISD::ATOMIC_LOAD_UMIN:
+ return SelectAtomic(
+ Node, ARM64::ATOMIC_LOAD_UMIN_I8, ARM64::ATOMIC_LOAD_UMIN_I16,
+ ARM64::ATOMIC_LOAD_UMIN_I32, ARM64::ATOMIC_LOAD_UMIN_I64);
+ case ISD::ATOMIC_LOAD_UMAX:
+ return SelectAtomic(
+ Node, ARM64::ATOMIC_LOAD_UMAX_I8, ARM64::ATOMIC_LOAD_UMAX_I16,
+ ARM64::ATOMIC_LOAD_UMAX_I32, ARM64::ATOMIC_LOAD_UMAX_I64);
+ case ISD::ATOMIC_SWAP:
+ return SelectAtomic(Node, ARM64::ATOMIC_SWAP_I8, ARM64::ATOMIC_SWAP_I16,
+ ARM64::ATOMIC_SWAP_I32, ARM64::ATOMIC_SWAP_I64);
+ case ISD::ATOMIC_CMP_SWAP:
+ return SelectAtomic(Node, ARM64::ATOMIC_CMP_SWAP_I8,
+ ARM64::ATOMIC_CMP_SWAP_I16, ARM64::ATOMIC_CMP_SWAP_I32,
+ ARM64::ATOMIC_CMP_SWAP_I64);
+
+ case ISD::LOAD: {
+ // Try to select as an indexed load. Fall through to normal processing
+ // if we can't.
+ bool Done = false;
+ SDNode *I = SelectIndexedLoad(Node, Done);
+ if (Done)
+ return I;
+ break;
+ }
+
+ case ISD::SRL:
+ case ISD::AND:
+ case ISD::SRA:
+ if (SDNode *I = SelectBitfieldExtractOp(Node))
+ return I;
+ break;
+
+ case ISD::OR:
+ if (SDNode *I = SelectBitfieldInsertOp(Node))
+ return I;
+ break;
+
+ case ISD::EXTRACT_VECTOR_ELT: {
+ // Extracting lane zero is a special case where we can just use a plain
+ // EXTRACT_SUBREG instruction, which will become FMOV. This is easier for
+ // the rest of the compiler, especially the register allocator and copyi
+ // propagation, to reason about, so is preferred when it's possible to
+ // use it.
+ ConstantSDNode *LaneNode = cast<ConstantSDNode>(Node->getOperand(1));
+ // Bail and use the default Select() for non-zero lanes.
+ if (LaneNode->getZExtValue() != 0)
+ break;
+ // If the element type is not the same as the result type, likewise
+ // bail and use the default Select(), as there's more to do than just
+ // a cross-class COPY. This catches extracts of i8 and i16 elements
+ // since they will need an explicit zext.
+ if (VT != Node->getOperand(0).getValueType().getVectorElementType())
+ break;
+ unsigned SubReg;
+ switch (Node->getOperand(0)
+ .getValueType()
+ .getVectorElementType()
+ .getSizeInBits()) {
+ default:
+ assert(0 && "Unexpected vector element type!");
+ case 64:
+ SubReg = ARM64::dsub;
+ break;
+ case 32:
+ SubReg = ARM64::ssub;
+ break;
+ case 16: // FALLTHROUGH
+ case 8:
+ llvm_unreachable("unexpected zext-requiring extract element!");
+ }
+ SDValue Extract = CurDAG->getTargetExtractSubreg(SubReg, SDLoc(Node), VT,
+ Node->getOperand(0));
+ DEBUG(dbgs() << "ISEL: Custom selection!\n=> ");
+ DEBUG(Extract->dumpr(CurDAG));
+ DEBUG(dbgs() << "\n");
+ return Extract.getNode();
+ }
+ case ISD::Constant: {
+ // Materialize zero constants as copies from WZR/XZR. This allows
+ // the coalescer to propagate these into other instructions.
+ ConstantSDNode *ConstNode = cast<ConstantSDNode>(Node);
+ if (ConstNode->isNullValue()) {
+ if (VT == MVT::i32)
+ return CurDAG->getCopyFromReg(CurDAG->getEntryNode(), SDLoc(Node),
+ ARM64::WZR, MVT::i32).getNode();
+ else if (VT == MVT::i64)
+ return CurDAG->getCopyFromReg(CurDAG->getEntryNode(), SDLoc(Node),
+ ARM64::XZR, MVT::i64).getNode();
+ }
+ break;
+ }
+
+ case ISD::FrameIndex: {
+ // Selects to ADDXri FI, 0 which in turn will become ADDXri SP, imm.
+ int FI = cast<FrameIndexSDNode>(Node)->getIndex();
+ unsigned Shifter = ARM64_AM::getShifterImm(ARM64_AM::LSL, 0);
+ const TargetLowering *TLI = getTargetLowering();
+ SDValue TFI = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
+ SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, MVT::i32),
+ CurDAG->getTargetConstant(Shifter, MVT::i32) };
+ return CurDAG->SelectNodeTo(Node, ARM64::ADDXri, MVT::i64, Ops, 3);
+ }
+ case ISD::INTRINSIC_W_CHAIN: {
+ unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
+ switch (IntNo) {
+ default:
+ break;
+ case Intrinsic::arm64_ldxp: {
+ SDValue MemAddr = Node->getOperand(2);
+ SDLoc DL(Node);
+ SDValue Chain = Node->getOperand(0);
+
+ SDNode *Ld = CurDAG->getMachineNode(ARM64::LDXPX, DL, MVT::i64, MVT::i64,
+ MVT::Other, MemAddr, Chain);
+
+ // Transfer memoperands.
+ MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
+ MemOp[0] = cast<MemIntrinsicSDNode>(Node)->getMemOperand();
+ cast<MachineSDNode>(Ld)->setMemRefs(MemOp, MemOp + 1);
+ return Ld;
+ }
+ case Intrinsic::arm64_stxp: {
+ SDLoc DL(Node);
+ SDValue Chain = Node->getOperand(0);
+ SDValue ValLo = Node->getOperand(2);
+ SDValue ValHi = Node->getOperand(3);
+ SDValue MemAddr = Node->getOperand(4);
+
+ // Place arguments in the right order.
+ SmallVector<SDValue, 7> Ops;
+ Ops.push_back(ValLo);
+ Ops.push_back(ValHi);
+ Ops.push_back(MemAddr);
+ Ops.push_back(Chain);
+
+ SDNode *St =
+ CurDAG->getMachineNode(ARM64::STXPX, DL, MVT::i32, MVT::Other, Ops);
+ // Transfer memoperands.
+ MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
+ MemOp[0] = cast<MemIntrinsicSDNode>(Node)->getMemOperand();
+ cast<MachineSDNode>(St)->setMemRefs(MemOp, MemOp + 1);
+
+ return St;
+ }
+ case Intrinsic::arm64_neon_ld1x2:
+ if (VT == MVT::v8i8)
+ return SelectLoad(Node, 2, ARM64::LD1Twov8b, ARM64::dsub0);
+ else if (VT == MVT::v16i8)
+ return SelectLoad(Node, 2, ARM64::LD1Twov16b, ARM64::qsub0);
+ else if (VT == MVT::v4i16)
+ return SelectLoad(Node, 2, ARM64::LD1Twov4h, ARM64::dsub0);
+ else if (VT == MVT::v8i16)
+ return SelectLoad(Node, 2, ARM64::LD1Twov8h, ARM64::qsub0);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectLoad(Node, 2, ARM64::LD1Twov2s, ARM64::dsub0);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectLoad(Node, 2, ARM64::LD1Twov4s, ARM64::qsub0);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectLoad(Node, 2, ARM64::LD1Twov1d, ARM64::dsub0);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectLoad(Node, 2, ARM64::LD1Twov2d, ARM64::qsub0);
+ break;
+ case Intrinsic::arm64_neon_ld1x3:
+ if (VT == MVT::v8i8)
+ return SelectLoad(Node, 3, ARM64::LD1Threev8b, ARM64::dsub0);
+ else if (VT == MVT::v16i8)
+ return SelectLoad(Node, 3, ARM64::LD1Threev16b, ARM64::qsub0);
+ else if (VT == MVT::v4i16)
+ return SelectLoad(Node, 3, ARM64::LD1Threev4h, ARM64::dsub0);
+ else if (VT == MVT::v8i16)
+ return SelectLoad(Node, 3, ARM64::LD1Threev8h, ARM64::qsub0);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectLoad(Node, 3, ARM64::LD1Threev2s, ARM64::dsub0);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectLoad(Node, 3, ARM64::LD1Threev4s, ARM64::qsub0);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectLoad(Node, 3, ARM64::LD1Threev1d, ARM64::dsub0);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectLoad(Node, 3, ARM64::LD1Threev2d, ARM64::qsub0);
+ break;
+ case Intrinsic::arm64_neon_ld1x4:
+ if (VT == MVT::v8i8)
+ return SelectLoad(Node, 4, ARM64::LD1Fourv8b, ARM64::dsub0);
+ else if (VT == MVT::v16i8)
+ return SelectLoad(Node, 4, ARM64::LD1Fourv16b, ARM64::qsub0);
+ else if (VT == MVT::v4i16)
+ return SelectLoad(Node, 4, ARM64::LD1Fourv4h, ARM64::dsub0);
+ else if (VT == MVT::v8i16)
+ return SelectLoad(Node, 4, ARM64::LD1Fourv8h, ARM64::qsub0);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectLoad(Node, 4, ARM64::LD1Fourv2s, ARM64::dsub0);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectLoad(Node, 4, ARM64::LD1Fourv4s, ARM64::qsub0);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectLoad(Node, 4, ARM64::LD1Fourv1d, ARM64::dsub0);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectLoad(Node, 4, ARM64::LD1Fourv2d, ARM64::qsub0);
+ break;
+ case Intrinsic::arm64_neon_ld2:
+ if (VT == MVT::v8i8)
+ return SelectLoad(Node, 2, ARM64::LD2Twov8b, ARM64::dsub0);
+ else if (VT == MVT::v16i8)
+ return SelectLoad(Node, 2, ARM64::LD2Twov16b, ARM64::qsub0);
+ else if (VT == MVT::v4i16)
+ return SelectLoad(Node, 2, ARM64::LD2Twov4h, ARM64::dsub0);
+ else if (VT == MVT::v8i16)
+ return SelectLoad(Node, 2, ARM64::LD2Twov8h, ARM64::qsub0);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectLoad(Node, 2, ARM64::LD2Twov2s, ARM64::dsub0);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectLoad(Node, 2, ARM64::LD2Twov4s, ARM64::qsub0);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectLoad(Node, 2, ARM64::LD1Twov1d, ARM64::dsub0);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectLoad(Node, 2, ARM64::LD2Twov2d, ARM64::qsub0);
+ break;
+ case Intrinsic::arm64_neon_ld3:
+ if (VT == MVT::v8i8)
+ return SelectLoad(Node, 3, ARM64::LD3Threev8b, ARM64::dsub0);
+ else if (VT == MVT::v16i8)
+ return SelectLoad(Node, 3, ARM64::LD3Threev16b, ARM64::qsub0);
+ else if (VT == MVT::v4i16)
+ return SelectLoad(Node, 3, ARM64::LD3Threev4h, ARM64::dsub0);
+ else if (VT == MVT::v8i16)
+ return SelectLoad(Node, 3, ARM64::LD3Threev8h, ARM64::qsub0);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectLoad(Node, 3, ARM64::LD3Threev2s, ARM64::dsub0);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectLoad(Node, 3, ARM64::LD3Threev4s, ARM64::qsub0);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectLoad(Node, 3, ARM64::LD1Threev1d, ARM64::dsub0);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectLoad(Node, 3, ARM64::LD3Threev2d, ARM64::qsub0);
+ break;
+ case Intrinsic::arm64_neon_ld4:
+ if (VT == MVT::v8i8)
+ return SelectLoad(Node, 4, ARM64::LD4Fourv8b, ARM64::dsub0);
+ else if (VT == MVT::v16i8)
+ return SelectLoad(Node, 4, ARM64::LD4Fourv16b, ARM64::qsub0);
+ else if (VT == MVT::v4i16)
+ return SelectLoad(Node, 4, ARM64::LD4Fourv4h, ARM64::dsub0);
+ else if (VT == MVT::v8i16)
+ return SelectLoad(Node, 4, ARM64::LD4Fourv8h, ARM64::qsub0);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectLoad(Node, 4, ARM64::LD4Fourv2s, ARM64::dsub0);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectLoad(Node, 4, ARM64::LD4Fourv4s, ARM64::qsub0);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectLoad(Node, 4, ARM64::LD1Fourv1d, ARM64::dsub0);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectLoad(Node, 4, ARM64::LD4Fourv2d, ARM64::qsub0);
+ break;
+ case Intrinsic::arm64_neon_ld2r:
+ if (VT == MVT::v8i8)
+ return SelectLoad(Node, 2, ARM64::LD2Rv8b, ARM64::dsub0);
+ else if (VT == MVT::v16i8)
+ return SelectLoad(Node, 2, ARM64::LD2Rv16b, ARM64::qsub0);
+ else if (VT == MVT::v4i16)
+ return SelectLoad(Node, 2, ARM64::LD2Rv4h, ARM64::dsub0);
+ else if (VT == MVT::v8i16)
+ return SelectLoad(Node, 2, ARM64::LD2Rv8h, ARM64::qsub0);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectLoad(Node, 2, ARM64::LD2Rv2s, ARM64::dsub0);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectLoad(Node, 2, ARM64::LD2Rv4s, ARM64::qsub0);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectLoad(Node, 2, ARM64::LD2Rv1d, ARM64::dsub0);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectLoad(Node, 2, ARM64::LD2Rv2d, ARM64::qsub0);
+ break;
+ case Intrinsic::arm64_neon_ld3r:
+ if (VT == MVT::v8i8)
+ return SelectLoad(Node, 3, ARM64::LD3Rv8b, ARM64::dsub0);
+ else if (VT == MVT::v16i8)
+ return SelectLoad(Node, 3, ARM64::LD3Rv16b, ARM64::qsub0);
+ else if (VT == MVT::v4i16)
+ return SelectLoad(Node, 3, ARM64::LD3Rv4h, ARM64::dsub0);
+ else if (VT == MVT::v8i16)
+ return SelectLoad(Node, 3, ARM64::LD3Rv8h, ARM64::qsub0);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectLoad(Node, 3, ARM64::LD3Rv2s, ARM64::dsub0);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectLoad(Node, 3, ARM64::LD3Rv4s, ARM64::qsub0);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectLoad(Node, 3, ARM64::LD3Rv1d, ARM64::dsub0);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectLoad(Node, 3, ARM64::LD3Rv2d, ARM64::qsub0);
+ break;
+ case Intrinsic::arm64_neon_ld4r:
+ if (VT == MVT::v8i8)
+ return SelectLoad(Node, 4, ARM64::LD4Rv8b, ARM64::dsub0);
+ else if (VT == MVT::v16i8)
+ return SelectLoad(Node, 4, ARM64::LD4Rv16b, ARM64::qsub0);
+ else if (VT == MVT::v4i16)
+ return SelectLoad(Node, 4, ARM64::LD4Rv4h, ARM64::dsub0);
+ else if (VT == MVT::v8i16)
+ return SelectLoad(Node, 4, ARM64::LD4Rv8h, ARM64::qsub0);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectLoad(Node, 4, ARM64::LD4Rv2s, ARM64::dsub0);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectLoad(Node, 4, ARM64::LD4Rv4s, ARM64::qsub0);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectLoad(Node, 4, ARM64::LD4Rv1d, ARM64::dsub0);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectLoad(Node, 4, ARM64::LD4Rv2d, ARM64::qsub0);
+ break;
+ case Intrinsic::arm64_neon_ld2lane:
+ if (VT == MVT::v16i8 || VT == MVT::v8i8)
+ return SelectLoadLane(Node, 2, ARM64::LD2i8);
+ else if (VT == MVT::v8i16 || VT == MVT::v4i16)
+ return SelectLoadLane(Node, 2, ARM64::LD2i16);
+ else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
+ VT == MVT::v2f32)
+ return SelectLoadLane(Node, 2, ARM64::LD2i32);
+ else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
+ VT == MVT::v1f64)
+ return SelectLoadLane(Node, 2, ARM64::LD2i64);
+ break;
+ case Intrinsic::arm64_neon_ld3lane:
+ if (VT == MVT::v16i8 || VT == MVT::v8i8)
+ return SelectLoadLane(Node, 3, ARM64::LD3i8);
+ else if (VT == MVT::v8i16 || VT == MVT::v4i16)
+ return SelectLoadLane(Node, 3, ARM64::LD3i16);
+ else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
+ VT == MVT::v2f32)
+ return SelectLoadLane(Node, 3, ARM64::LD3i32);
+ else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
+ VT == MVT::v1f64)
+ return SelectLoadLane(Node, 3, ARM64::LD3i64);
+ break;
+ case Intrinsic::arm64_neon_ld4lane:
+ if (VT == MVT::v16i8 || VT == MVT::v8i8)
+ return SelectLoadLane(Node, 4, ARM64::LD4i8);
+ else if (VT == MVT::v8i16 || VT == MVT::v4i16)
+ return SelectLoadLane(Node, 4, ARM64::LD4i16);
+ else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
+ VT == MVT::v2f32)
+ return SelectLoadLane(Node, 4, ARM64::LD4i32);
+ else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
+ VT == MVT::v1f64)
+ return SelectLoadLane(Node, 4, ARM64::LD4i64);
+ break;
+ }
+ } break;
+ case ISD::INTRINSIC_WO_CHAIN: {
+ unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
+ switch (IntNo) {
+ default:
+ break;
+ case Intrinsic::arm64_neon_tbl2:
+ return SelectTable(Node, 2, VT == MVT::v8i8 ? ARM64::TBLv8i8Two
+ : ARM64::TBLv16i8Two,
+ false);
+ case Intrinsic::arm64_neon_tbl3:
+ return SelectTable(Node, 3, VT == MVT::v8i8 ? ARM64::TBLv8i8Three
+ : ARM64::TBLv16i8Three,
+ false);
+ case Intrinsic::arm64_neon_tbl4:
+ return SelectTable(Node, 4, VT == MVT::v8i8 ? ARM64::TBLv8i8Four
+ : ARM64::TBLv16i8Four,
+ false);
+ case Intrinsic::arm64_neon_tbx2:
+ return SelectTable(Node, 2, VT == MVT::v8i8 ? ARM64::TBXv8i8Two
+ : ARM64::TBXv16i8Two,
+ true);
+ case Intrinsic::arm64_neon_tbx3:
+ return SelectTable(Node, 3, VT == MVT::v8i8 ? ARM64::TBXv8i8Three
+ : ARM64::TBXv16i8Three,
+ true);
+ case Intrinsic::arm64_neon_tbx4:
+ return SelectTable(Node, 4, VT == MVT::v8i8 ? ARM64::TBXv8i8Four
+ : ARM64::TBXv16i8Four,
+ true);
+ case Intrinsic::arm64_neon_smull:
+ case Intrinsic::arm64_neon_umull:
+ if (SDNode *N = SelectMULLV64LaneV128(IntNo, Node))
+ return N;
+ break;
+ }
+ break;
+ }
+ case ISD::INTRINSIC_VOID: {
+ unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
+ if (Node->getNumOperands() >= 3)
+ VT = Node->getOperand(2)->getValueType(0);
+ switch (IntNo) {
+ default:
+ break;
+ case Intrinsic::arm64_neon_st1x2: {
+ if (VT == MVT::v8i8)
+ return SelectStore(Node, 2, ARM64::ST1Twov8b);
+ else if (VT == MVT::v16i8)
+ return SelectStore(Node, 2, ARM64::ST1Twov16b);
+ else if (VT == MVT::v4i16)
+ return SelectStore(Node, 2, ARM64::ST1Twov4h);
+ else if (VT == MVT::v8i16)
+ return SelectStore(Node, 2, ARM64::ST1Twov8h);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectStore(Node, 2, ARM64::ST1Twov2s);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectStore(Node, 2, ARM64::ST1Twov4s);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectStore(Node, 2, ARM64::ST1Twov2d);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectStore(Node, 2, ARM64::ST1Twov1d);
+ break;
+ }
+ case Intrinsic::arm64_neon_st1x3: {
+ if (VT == MVT::v8i8)
+ return SelectStore(Node, 3, ARM64::ST1Threev8b);
+ else if (VT == MVT::v16i8)
+ return SelectStore(Node, 3, ARM64::ST1Threev16b);
+ else if (VT == MVT::v4i16)
+ return SelectStore(Node, 3, ARM64::ST1Threev4h);
+ else if (VT == MVT::v8i16)
+ return SelectStore(Node, 3, ARM64::ST1Threev8h);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectStore(Node, 3, ARM64::ST1Threev2s);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectStore(Node, 3, ARM64::ST1Threev4s);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectStore(Node, 3, ARM64::ST1Threev2d);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectStore(Node, 3, ARM64::ST1Threev1d);
+ break;
+ }
+ case Intrinsic::arm64_neon_st1x4: {
+ if (VT == MVT::v8i8)
+ return SelectStore(Node, 4, ARM64::ST1Fourv8b);
+ else if (VT == MVT::v16i8)
+ return SelectStore(Node, 4, ARM64::ST1Fourv16b);
+ else if (VT == MVT::v4i16)
+ return SelectStore(Node, 4, ARM64::ST1Fourv4h);
+ else if (VT == MVT::v8i16)
+ return SelectStore(Node, 4, ARM64::ST1Fourv8h);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectStore(Node, 4, ARM64::ST1Fourv2s);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectStore(Node, 4, ARM64::ST1Fourv4s);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectStore(Node, 4, ARM64::ST1Fourv2d);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectStore(Node, 4, ARM64::ST1Fourv1d);
+ break;
+ }
+ case Intrinsic::arm64_neon_st2: {
+ if (VT == MVT::v8i8)
+ return SelectStore(Node, 2, ARM64::ST2Twov8b);
+ else if (VT == MVT::v16i8)
+ return SelectStore(Node, 2, ARM64::ST2Twov16b);
+ else if (VT == MVT::v4i16)
+ return SelectStore(Node, 2, ARM64::ST2Twov4h);
+ else if (VT == MVT::v8i16)
+ return SelectStore(Node, 2, ARM64::ST2Twov8h);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectStore(Node, 2, ARM64::ST2Twov2s);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectStore(Node, 2, ARM64::ST2Twov4s);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectStore(Node, 2, ARM64::ST2Twov2d);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectStore(Node, 2, ARM64::ST1Twov1d);
+ break;
+ }
+ case Intrinsic::arm64_neon_st3: {
+ if (VT == MVT::v8i8)
+ return SelectStore(Node, 3, ARM64::ST3Threev8b);
+ else if (VT == MVT::v16i8)
+ return SelectStore(Node, 3, ARM64::ST3Threev16b);
+ else if (VT == MVT::v4i16)
+ return SelectStore(Node, 3, ARM64::ST3Threev4h);
+ else if (VT == MVT::v8i16)
+ return SelectStore(Node, 3, ARM64::ST3Threev8h);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectStore(Node, 3, ARM64::ST3Threev2s);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectStore(Node, 3, ARM64::ST3Threev4s);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectStore(Node, 3, ARM64::ST3Threev2d);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectStore(Node, 3, ARM64::ST1Threev1d);
+ break;
+ }
+ case Intrinsic::arm64_neon_st4: {
+ if (VT == MVT::v8i8)
+ return SelectStore(Node, 4, ARM64::ST4Fourv8b);
+ else if (VT == MVT::v16i8)
+ return SelectStore(Node, 4, ARM64::ST4Fourv16b);
+ else if (VT == MVT::v4i16)
+ return SelectStore(Node, 4, ARM64::ST4Fourv4h);
+ else if (VT == MVT::v8i16)
+ return SelectStore(Node, 4, ARM64::ST4Fourv8h);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectStore(Node, 4, ARM64::ST4Fourv2s);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectStore(Node, 4, ARM64::ST4Fourv4s);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectStore(Node, 4, ARM64::ST4Fourv2d);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectStore(Node, 4, ARM64::ST1Fourv1d);
+ break;
+ }
+ case Intrinsic::arm64_neon_st2lane: {
+ if (VT == MVT::v16i8 || VT == MVT::v8i8)
+ return SelectStoreLane(Node, 2, ARM64::ST2i8);
+ else if (VT == MVT::v8i16 || VT == MVT::v4i16)
+ return SelectStoreLane(Node, 2, ARM64::ST2i16);
+ else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
+ VT == MVT::v2f32)
+ return SelectStoreLane(Node, 2, ARM64::ST2i32);
+ else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
+ VT == MVT::v1f64)
+ return SelectStoreLane(Node, 2, ARM64::ST2i64);
+ break;
+ }
+ case Intrinsic::arm64_neon_st3lane: {
+ if (VT == MVT::v16i8 || VT == MVT::v8i8)
+ return SelectStoreLane(Node, 3, ARM64::ST3i8);
+ else if (VT == MVT::v8i16 || VT == MVT::v4i16)
+ return SelectStoreLane(Node, 3, ARM64::ST3i16);
+ else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
+ VT == MVT::v2f32)
+ return SelectStoreLane(Node, 3, ARM64::ST3i32);
+ else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
+ VT == MVT::v1f64)
+ return SelectStoreLane(Node, 3, ARM64::ST3i64);
+ break;
+ }
+ case Intrinsic::arm64_neon_st4lane: {
+ if (VT == MVT::v16i8 || VT == MVT::v8i8)
+ return SelectStoreLane(Node, 4, ARM64::ST4i8);
+ else if (VT == MVT::v8i16 || VT == MVT::v4i16)
+ return SelectStoreLane(Node, 4, ARM64::ST4i16);
+ else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
+ VT == MVT::v2f32)
+ return SelectStoreLane(Node, 4, ARM64::ST4i32);
+ else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
+ VT == MVT::v1f64)
+ return SelectStoreLane(Node, 4, ARM64::ST4i64);
+ break;
+ }
+ }
+ }
+
+ case ISD::FCEIL:
+ case ISD::FFLOOR:
+ case ISD::FTRUNC:
+ case ISD::FROUND:
+ if (SDNode *I = SelectLIBM(Node))
+ return I;
+ break;
+ }
+
+ // Select the default instruction
+ ResNode = SelectCode(Node);
+
+ DEBUG(errs() << "=> ");
+ if (ResNode == NULL || ResNode == Node)
+ DEBUG(Node->dump(CurDAG));
+ else
+ DEBUG(ResNode->dump(CurDAG));
+ DEBUG(errs() << "\n");
+
+ return ResNode;
+}
+
+/// createARM64ISelDag - This pass converts a legalized DAG into a
+/// ARM64-specific DAG, ready for instruction scheduling.
+FunctionPass *llvm::createARM64ISelDag(ARM64TargetMachine &TM,
+ CodeGenOpt::Level OptLevel) {
+ return new ARM64DAGToDAGISel(TM, OptLevel);
+}