aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/X86
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Target/X86')
-rw-r--r--lib/Target/X86/AsmParser/CMakeLists.txt8
-rw-r--r--lib/Target/X86/AsmParser/LLVMBuild.txt1
-rw-r--r--lib/Target/X86/CMakeLists.txt15
-rw-r--r--lib/Target/X86/Disassembler/CMakeLists.txt6
-rw-r--r--lib/Target/X86/Disassembler/LLVMBuild.txt1
-rw-r--r--lib/Target/X86/InstPrinter/CMakeLists.txt6
-rw-r--r--lib/Target/X86/InstPrinter/LLVMBuild.txt1
-rw-r--r--lib/Target/X86/InstPrinter/X86InstComments.cpp244
-rw-r--r--lib/Target/X86/LLVMBuild.txt4
-rw-r--r--lib/Target/X86/MCTargetDesc/CMakeLists.txt7
-rw-r--r--lib/Target/X86/MCTargetDesc/LLVMBuild.txt1
-rw-r--r--lib/Target/X86/MCTargetDesc/X86AsmBackend.cpp13
-rw-r--r--lib/Target/X86/MCTargetDesc/X86BaseInfo.h20
-rw-r--r--lib/Target/X86/MCTargetDesc/X86MCAsmInfo.cpp14
-rw-r--r--lib/Target/X86/MCTargetDesc/X86MCAsmInfo.h8
-rw-r--r--lib/Target/X86/MCTargetDesc/X86MCCodeEmitter.cpp99
-rw-r--r--lib/Target/X86/MCTargetDesc/X86MCTargetDesc.cpp6
-rw-r--r--lib/Target/X86/README-SSE.txt13
-rw-r--r--lib/Target/X86/TargetInfo/CMakeLists.txt6
-rw-r--r--lib/Target/X86/TargetInfo/LLVMBuild.txt1
-rw-r--r--lib/Target/X86/Utils/CMakeLists.txt5
-rw-r--r--lib/Target/X86/Utils/LLVMBuild.txt1
-rw-r--r--lib/Target/X86/Utils/X86ShuffleDecode.cpp110
-rw-r--r--lib/Target/X86/Utils/X86ShuffleDecode.h47
-rw-r--r--lib/Target/X86/X86.td18
-rw-r--r--lib/Target/X86/X86CallingConv.td13
-rw-r--r--lib/Target/X86/X86CodeEmitter.cpp2
-rw-r--r--lib/Target/X86/X86FastISel.cpp10
-rw-r--r--lib/Target/X86/X86FrameLowering.cpp145
-rw-r--r--lib/Target/X86/X86ISelLowering.cpp900
-rw-r--r--lib/Target/X86/X86ISelLowering.h25
-rw-r--r--lib/Target/X86/X86InstrFMA.td388
-rw-r--r--lib/Target/X86/X86InstrFormats.td37
-rw-r--r--lib/Target/X86/X86InstrFragmentsSIMD.td30
-rw-r--r--lib/Target/X86/X86InstrInfo.cpp37
-rw-r--r--lib/Target/X86/X86InstrInfo.td5
-rw-r--r--lib/Target/X86/X86InstrSSE.td801
-rw-r--r--lib/Target/X86/X86InstrXOP.td243
-rw-r--r--lib/Target/X86/X86JITInfo.cpp2
-rw-r--r--lib/Target/X86/X86MCInstLower.cpp4
-rw-r--r--lib/Target/X86/X86RegisterInfo.cpp22
-rw-r--r--lib/Target/X86/X86Subtarget.cpp6
-rw-r--r--lib/Target/X86/X86Subtarget.h4
-rw-r--r--lib/Target/X86/X86TargetMachine.cpp18
-rw-r--r--lib/Target/X86/X86TargetMachine.h6
-rw-r--r--lib/Target/X86/X86VZeroUpper.cpp2
46 files changed, 2046 insertions, 1309 deletions
diff --git a/lib/Target/X86/AsmParser/CMakeLists.txt b/lib/Target/X86/AsmParser/CMakeLists.txt
index 94aca7a..47489bb 100644
--- a/lib/Target/X86/AsmParser/CMakeLists.txt
+++ b/lib/Target/X86/AsmParser/CMakeLists.txt
@@ -5,12 +5,4 @@ add_llvm_library(LLVMX86AsmParser
X86AsmParser.cpp
)
-add_llvm_library_dependencies(LLVMX86AsmParser
- LLVMMC
- LLVMMCParser
- LLVMSupport
- LLVMX86Desc
- LLVMX86Info
- )
-
add_dependencies(LLVMX86AsmParser X86CommonTableGen)
diff --git a/lib/Target/X86/AsmParser/LLVMBuild.txt b/lib/Target/X86/AsmParser/LLVMBuild.txt
index 6c2405a..9f94d5d 100644
--- a/lib/Target/X86/AsmParser/LLVMBuild.txt
+++ b/lib/Target/X86/AsmParser/LLVMBuild.txt
@@ -21,4 +21,3 @@ name = X86AsmParser
parent = X86
required_libraries = MC MCParser Support X86Desc X86Info
add_to_library_groups = X86
-
diff --git a/lib/Target/X86/CMakeLists.txt b/lib/Target/X86/CMakeLists.txt
index 4542d4b..be15899 100644
--- a/lib/Target/X86/CMakeLists.txt
+++ b/lib/Target/X86/CMakeLists.txt
@@ -51,21 +51,6 @@ endif()
add_llvm_target(X86CodeGen ${sources})
-add_llvm_library_dependencies(LLVMX86CodeGen
- LLVMAnalysis
- LLVMAsmPrinter
- LLVMCodeGen
- LLVMCore
- LLVMMC
- LLVMSelectionDAG
- LLVMSupport
- LLVMTarget
- LLVMX86AsmPrinter
- LLVMX86Desc
- LLVMX86Info
- LLVMX86Utils
- )
-
add_subdirectory(AsmParser)
add_subdirectory(Disassembler)
add_subdirectory(InstPrinter)
diff --git a/lib/Target/X86/Disassembler/CMakeLists.txt b/lib/Target/X86/Disassembler/CMakeLists.txt
index 4f570d5..0cd6db9 100644
--- a/lib/Target/X86/Disassembler/CMakeLists.txt
+++ b/lib/Target/X86/Disassembler/CMakeLists.txt
@@ -5,12 +5,6 @@ add_llvm_library(LLVMX86Disassembler
X86DisassemblerDecoder.c
)
-add_llvm_library_dependencies(LLVMX86Disassembler
- LLVMMC
- LLVMSupport
- LLVMX86Info
- )
-
# workaround for hanging compilation on MSVC9 and 10
if( MSVC_VERSION EQUAL 1400 OR MSVC_VERSION EQUAL 1500 OR MSVC_VERSION EQUAL 1600 )
set_property(
diff --git a/lib/Target/X86/Disassembler/LLVMBuild.txt b/lib/Target/X86/Disassembler/LLVMBuild.txt
index cd748cf..cac7adf 100644
--- a/lib/Target/X86/Disassembler/LLVMBuild.txt
+++ b/lib/Target/X86/Disassembler/LLVMBuild.txt
@@ -21,4 +21,3 @@ name = X86Disassembler
parent = X86
required_libraries = MC Support X86Info
add_to_library_groups = X86
-
diff --git a/lib/Target/X86/InstPrinter/CMakeLists.txt b/lib/Target/X86/InstPrinter/CMakeLists.txt
index 2a2b5db..28e2460 100644
--- a/lib/Target/X86/InstPrinter/CMakeLists.txt
+++ b/lib/Target/X86/InstPrinter/CMakeLists.txt
@@ -6,10 +6,4 @@ add_llvm_library(LLVMX86AsmPrinter
X86InstComments.cpp
)
-add_llvm_library_dependencies(LLVMX86AsmPrinter
- LLVMMC
- LLVMSupport
- LLVMX86Utils
- )
-
add_dependencies(LLVMX86AsmPrinter X86CommonTableGen)
diff --git a/lib/Target/X86/InstPrinter/LLVMBuild.txt b/lib/Target/X86/InstPrinter/LLVMBuild.txt
index fb01323..6868dde 100644
--- a/lib/Target/X86/InstPrinter/LLVMBuild.txt
+++ b/lib/Target/X86/InstPrinter/LLVMBuild.txt
@@ -21,4 +21,3 @@ name = X86AsmPrinter
parent = X86
required_libraries = MC Support X86Utils
add_to_library_groups = X86
-
diff --git a/lib/Target/X86/InstPrinter/X86InstComments.cpp b/lib/Target/X86/InstPrinter/X86InstComments.cpp
index 6e87efa..6e4b1b9 100644
--- a/lib/Target/X86/InstPrinter/X86InstComments.cpp
+++ b/lib/Target/X86/InstPrinter/X86InstComments.cpp
@@ -106,28 +106,92 @@ void llvm::EmitAnyX86InstComments(const MCInst *MI, raw_ostream &OS,
// FALL THROUGH.
case X86::PUNPCKHBWrm:
Src1Name = getRegName(MI->getOperand(0).getReg());
- DecodePUNPCKHMask(16, ShuffleMask);
+ DecodeUNPCKHMask(MVT::v16i8, ShuffleMask);
+ break;
+ case X86::VPUNPCKHBWrr:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::VPUNPCKHBWrm:
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ DecodeUNPCKHMask(MVT::v16i8, ShuffleMask);
+ break;
+ case X86::VPUNPCKHBWYrr:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::VPUNPCKHBWYrm:
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ DecodeUNPCKHMask(MVT::v32i8, ShuffleMask);
break;
case X86::PUNPCKHWDrr:
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
case X86::PUNPCKHWDrm:
Src1Name = getRegName(MI->getOperand(0).getReg());
- DecodePUNPCKHMask(8, ShuffleMask);
+ DecodeUNPCKHMask(MVT::v8i16, ShuffleMask);
+ break;
+ case X86::VPUNPCKHWDrr:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::VPUNPCKHWDrm:
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ DecodeUNPCKHMask(MVT::v8i16, ShuffleMask);
+ break;
+ case X86::VPUNPCKHWDYrr:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::VPUNPCKHWDYrm:
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ DecodeUNPCKHMask(MVT::v16i16, ShuffleMask);
break;
case X86::PUNPCKHDQrr:
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
case X86::PUNPCKHDQrm:
Src1Name = getRegName(MI->getOperand(0).getReg());
- DecodePUNPCKHMask(4, ShuffleMask);
+ DecodeUNPCKHMask(MVT::v4i32, ShuffleMask);
+ break;
+ case X86::VPUNPCKHDQrr:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::VPUNPCKHDQrm:
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ DecodeUNPCKHMask(MVT::v4i32, ShuffleMask);
+ break;
+ case X86::VPUNPCKHDQYrr:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::VPUNPCKHDQYrm:
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ DecodeUNPCKHMask(MVT::v8i32, ShuffleMask);
break;
case X86::PUNPCKHQDQrr:
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
case X86::PUNPCKHQDQrm:
Src1Name = getRegName(MI->getOperand(0).getReg());
- DecodePUNPCKHMask(2, ShuffleMask);
+ DecodeUNPCKHMask(MVT::v2i64, ShuffleMask);
+ break;
+ case X86::VPUNPCKHQDQrr:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::VPUNPCKHQDQrm:
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ DecodeUNPCKHMask(MVT::v2i64, ShuffleMask);
+ break;
+ case X86::VPUNPCKHQDQYrr:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::VPUNPCKHQDQYrm:
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ DecodeUNPCKHMask(MVT::v4i64, ShuffleMask);
break;
case X86::PUNPCKLBWrr:
@@ -135,42 +199,117 @@ void llvm::EmitAnyX86InstComments(const MCInst *MI, raw_ostream &OS,
// FALL THROUGH.
case X86::PUNPCKLBWrm:
Src1Name = getRegName(MI->getOperand(0).getReg());
- DecodePUNPCKLBWMask(16, ShuffleMask);
+ DecodeUNPCKLMask(MVT::v16i8, ShuffleMask);
+ break;
+ case X86::VPUNPCKLBWrr:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::VPUNPCKLBWrm:
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ DecodeUNPCKLMask(MVT::v16i8, ShuffleMask);
+ break;
+ case X86::VPUNPCKLBWYrr:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::VPUNPCKLBWYrm:
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ DecodeUNPCKLMask(MVT::v32i8, ShuffleMask);
break;
case X86::PUNPCKLWDrr:
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
case X86::PUNPCKLWDrm:
Src1Name = getRegName(MI->getOperand(0).getReg());
- DecodePUNPCKLWDMask(8, ShuffleMask);
+ DecodeUNPCKLMask(MVT::v8i16, ShuffleMask);
+ break;
+ case X86::VPUNPCKLWDrr:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::VPUNPCKLWDrm:
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ DecodeUNPCKLMask(MVT::v8i16, ShuffleMask);
+ break;
+ case X86::VPUNPCKLWDYrr:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::VPUNPCKLWDYrm:
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ DecodeUNPCKLMask(MVT::v16i16, ShuffleMask);
break;
case X86::PUNPCKLDQrr:
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
case X86::PUNPCKLDQrm:
Src1Name = getRegName(MI->getOperand(0).getReg());
- DecodePUNPCKLDQMask(4, ShuffleMask);
+ DecodeUNPCKLMask(MVT::v4i32, ShuffleMask);
+ break;
+ case X86::VPUNPCKLDQrr:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::VPUNPCKLDQrm:
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ DecodeUNPCKLMask(MVT::v4i32, ShuffleMask);
+ break;
+ case X86::VPUNPCKLDQYrr:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::VPUNPCKLDQYrm:
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ DecodeUNPCKLMask(MVT::v8i32, ShuffleMask);
break;
case X86::PUNPCKLQDQrr:
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
case X86::PUNPCKLQDQrm:
Src1Name = getRegName(MI->getOperand(0).getReg());
- DecodePUNPCKLQDQMask(2, ShuffleMask);
+ DecodeUNPCKLMask(MVT::v2i64, ShuffleMask);
+ break;
+ case X86::VPUNPCKLQDQrr:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::VPUNPCKLQDQrm:
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ DecodeUNPCKLMask(MVT::v2i64, ShuffleMask);
+ break;
+ case X86::VPUNPCKLQDQYrr:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::VPUNPCKLQDQYrm:
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ DecodeUNPCKLMask(MVT::v4i64, ShuffleMask);
break;
case X86::SHUFPDrri:
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
case X86::SHUFPDrmi:
- DecodeSHUFPSMask(2, MI->getOperand(3).getImm(), ShuffleMask);
+ DecodeSHUFPMask(MVT::v2f64, MI->getOperand(MI->getNumOperands()-1).getImm(),
+ ShuffleMask);
Src1Name = getRegName(MI->getOperand(0).getReg());
break;
case X86::VSHUFPDrri:
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
case X86::VSHUFPDrmi:
- DecodeSHUFPSMask(2, MI->getOperand(3).getImm(), ShuffleMask);
+ DecodeSHUFPMask(MVT::v2f64, MI->getOperand(MI->getNumOperands()-1).getImm(),
+ ShuffleMask);
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ break;
+ case X86::VSHUFPDYrri:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::VSHUFPDYrmi:
+ DecodeSHUFPMask(MVT::v4f64, MI->getOperand(MI->getNumOperands()-1).getImm(),
+ ShuffleMask);
Src1Name = getRegName(MI->getOperand(1).getReg());
DestName = getRegName(MI->getOperand(0).getReg());
break;
@@ -179,14 +318,25 @@ void llvm::EmitAnyX86InstComments(const MCInst *MI, raw_ostream &OS,
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
case X86::SHUFPSrmi:
- DecodeSHUFPSMask(4, MI->getOperand(3).getImm(), ShuffleMask);
+ DecodeSHUFPMask(MVT::v4f32, MI->getOperand(MI->getNumOperands()-1).getImm(),
+ ShuffleMask);
Src1Name = getRegName(MI->getOperand(0).getReg());
break;
case X86::VSHUFPSrri:
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
case X86::VSHUFPSrmi:
- DecodeSHUFPSMask(4, MI->getOperand(3).getImm(), ShuffleMask);
+ DecodeSHUFPMask(MVT::v4f32, MI->getOperand(MI->getNumOperands()-1).getImm(),
+ ShuffleMask);
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ break;
+ case X86::VSHUFPSYrri:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::VSHUFPSYrmi:
+ DecodeSHUFPMask(MVT::v8f32, MI->getOperand(MI->getNumOperands()-1).getImm(),
+ ShuffleMask);
Src1Name = getRegName(MI->getOperand(1).getReg());
DestName = getRegName(MI->getOperand(0).getReg());
break;
@@ -195,14 +345,14 @@ void llvm::EmitAnyX86InstComments(const MCInst *MI, raw_ostream &OS,
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
case X86::UNPCKLPDrm:
- DecodeUNPCKLPMask(MVT::v2f64, ShuffleMask);
+ DecodeUNPCKLMask(MVT::v2f64, ShuffleMask);
Src1Name = getRegName(MI->getOperand(0).getReg());
break;
case X86::VUNPCKLPDrr:
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
case X86::VUNPCKLPDrm:
- DecodeUNPCKLPMask(MVT::v2f64, ShuffleMask);
+ DecodeUNPCKLMask(MVT::v2f64, ShuffleMask);
Src1Name = getRegName(MI->getOperand(1).getReg());
DestName = getRegName(MI->getOperand(0).getReg());
break;
@@ -210,7 +360,7 @@ void llvm::EmitAnyX86InstComments(const MCInst *MI, raw_ostream &OS,
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
case X86::VUNPCKLPDYrm:
- DecodeUNPCKLPMask(MVT::v4f64, ShuffleMask);
+ DecodeUNPCKLMask(MVT::v4f64, ShuffleMask);
Src1Name = getRegName(MI->getOperand(1).getReg());
DestName = getRegName(MI->getOperand(0).getReg());
break;
@@ -218,14 +368,14 @@ void llvm::EmitAnyX86InstComments(const MCInst *MI, raw_ostream &OS,
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
case X86::UNPCKLPSrm:
- DecodeUNPCKLPMask(MVT::v4f32, ShuffleMask);
+ DecodeUNPCKLMask(MVT::v4f32, ShuffleMask);
Src1Name = getRegName(MI->getOperand(0).getReg());
break;
case X86::VUNPCKLPSrr:
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
case X86::VUNPCKLPSrm:
- DecodeUNPCKLPMask(MVT::v4f32, ShuffleMask);
+ DecodeUNPCKLMask(MVT::v4f32, ShuffleMask);
Src1Name = getRegName(MI->getOperand(1).getReg());
DestName = getRegName(MI->getOperand(0).getReg());
break;
@@ -233,7 +383,7 @@ void llvm::EmitAnyX86InstComments(const MCInst *MI, raw_ostream &OS,
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
case X86::VUNPCKLPSYrm:
- DecodeUNPCKLPMask(MVT::v8f32, ShuffleMask);
+ DecodeUNPCKLMask(MVT::v8f32, ShuffleMask);
Src1Name = getRegName(MI->getOperand(1).getReg());
DestName = getRegName(MI->getOperand(0).getReg());
break;
@@ -241,14 +391,14 @@ void llvm::EmitAnyX86InstComments(const MCInst *MI, raw_ostream &OS,
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
case X86::UNPCKHPDrm:
- DecodeUNPCKHPMask(MVT::v2f64, ShuffleMask);
+ DecodeUNPCKHMask(MVT::v2f64, ShuffleMask);
Src1Name = getRegName(MI->getOperand(0).getReg());
break;
case X86::VUNPCKHPDrr:
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
case X86::VUNPCKHPDrm:
- DecodeUNPCKHPMask(MVT::v2f64, ShuffleMask);
+ DecodeUNPCKHMask(MVT::v2f64, ShuffleMask);
Src1Name = getRegName(MI->getOperand(1).getReg());
DestName = getRegName(MI->getOperand(0).getReg());
break;
@@ -256,7 +406,7 @@ void llvm::EmitAnyX86InstComments(const MCInst *MI, raw_ostream &OS,
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
case X86::VUNPCKHPDYrm:
- DecodeUNPCKLPMask(MVT::v4f64, ShuffleMask);
+ DecodeUNPCKHMask(MVT::v4f64, ShuffleMask);
Src1Name = getRegName(MI->getOperand(1).getReg());
DestName = getRegName(MI->getOperand(0).getReg());
break;
@@ -264,14 +414,14 @@ void llvm::EmitAnyX86InstComments(const MCInst *MI, raw_ostream &OS,
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
case X86::UNPCKHPSrm:
- DecodeUNPCKHPMask(MVT::v4f32, ShuffleMask);
+ DecodeUNPCKHMask(MVT::v4f32, ShuffleMask);
Src1Name = getRegName(MI->getOperand(0).getReg());
break;
case X86::VUNPCKHPSrr:
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
case X86::VUNPCKHPSrm:
- DecodeUNPCKHPMask(MVT::v4f32, ShuffleMask);
+ DecodeUNPCKHMask(MVT::v4f32, ShuffleMask);
Src1Name = getRegName(MI->getOperand(1).getReg());
DestName = getRegName(MI->getOperand(0).getReg());
break;
@@ -279,34 +429,52 @@ void llvm::EmitAnyX86InstComments(const MCInst *MI, raw_ostream &OS,
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
case X86::VUNPCKHPSYrm:
- DecodeUNPCKHPMask(MVT::v8f32, ShuffleMask);
+ DecodeUNPCKHMask(MVT::v8f32, ShuffleMask);
Src1Name = getRegName(MI->getOperand(1).getReg());
DestName = getRegName(MI->getOperand(0).getReg());
break;
case X86::VPERMILPSri:
- DecodeVPERMILPSMask(4, MI->getOperand(2).getImm(),
- ShuffleMask);
- Src1Name = getRegName(MI->getOperand(0).getReg());
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ // FALL THROUGH.
+ case X86::VPERMILPSmi:
+ DecodeVPERMILPMask(MVT::v4f32, MI->getOperand(MI->getNumOperands()-1).getImm(),
+ ShuffleMask);
+ DestName = getRegName(MI->getOperand(0).getReg());
break;
case X86::VPERMILPSYri:
- DecodeVPERMILPSMask(8, MI->getOperand(2).getImm(),
- ShuffleMask);
- Src1Name = getRegName(MI->getOperand(0).getReg());
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ // FALL THROUGH.
+ case X86::VPERMILPSYmi:
+ DecodeVPERMILPMask(MVT::v8f32, MI->getOperand(MI->getNumOperands()-1).getImm(),
+ ShuffleMask);
+ DestName = getRegName(MI->getOperand(0).getReg());
break;
case X86::VPERMILPDri:
- DecodeVPERMILPDMask(2, MI->getOperand(2).getImm(),
- ShuffleMask);
- Src1Name = getRegName(MI->getOperand(0).getReg());
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ // FALL THROUGH.
+ case X86::VPERMILPDmi:
+ DecodeVPERMILPMask(MVT::v2f64, MI->getOperand(MI->getNumOperands()-1).getImm(),
+ ShuffleMask);
+ DestName = getRegName(MI->getOperand(0).getReg());
break;
case X86::VPERMILPDYri:
- DecodeVPERMILPDMask(4, MI->getOperand(2).getImm(),
- ShuffleMask);
- Src1Name = getRegName(MI->getOperand(0).getReg());
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ // FALL THROUGH.
+ case X86::VPERMILPDYmi:
+ DecodeVPERMILPMask(MVT::v4f64, MI->getOperand(MI->getNumOperands()-1).getImm(),
+ ShuffleMask);
+ DestName = getRegName(MI->getOperand(0).getReg());
break;
case X86::VPERM2F128rr:
- DecodeVPERM2F128Mask(MI->getOperand(3).getImm(), ShuffleMask);
- Src1Name = getRegName(MI->getOperand(1).getReg());
+ case X86::VPERM2I128rr:
Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::VPERM2F128rm:
+ case X86::VPERM2I128rm:
+ DecodeVPERM2F128Mask(MI->getOperand(MI->getNumOperands()-1).getImm(),
+ ShuffleMask);
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
break;
}
diff --git a/lib/Target/X86/LLVMBuild.txt b/lib/Target/X86/LLVMBuild.txt
index 514566c..87305e0 100644
--- a/lib/Target/X86/LLVMBuild.txt
+++ b/lib/Target/X86/LLVMBuild.txt
@@ -15,6 +15,9 @@
;
;===------------------------------------------------------------------------===;
+[common]
+subdirectories = AsmParser Disassembler InstPrinter MCTargetDesc TargetInfo Utils
+
[component_0]
type = TargetGroup
name = X86
@@ -30,4 +33,3 @@ name = X86CodeGen
parent = X86
required_libraries = Analysis AsmPrinter CodeGen Core MC SelectionDAG Support Target X86AsmPrinter X86Desc X86Info X86Utils
add_to_library_groups = X86
-
diff --git a/lib/Target/X86/MCTargetDesc/CMakeLists.txt b/lib/Target/X86/MCTargetDesc/CMakeLists.txt
index 264e791..ab2ebb4 100644
--- a/lib/Target/X86/MCTargetDesc/CMakeLists.txt
+++ b/lib/Target/X86/MCTargetDesc/CMakeLists.txt
@@ -6,13 +6,6 @@ add_llvm_library(LLVMX86Desc
X86MachObjectWriter.cpp
)
-add_llvm_library_dependencies(LLVMX86Desc
- LLVMMC
- LLVMSupport
- LLVMX86AsmPrinter
- LLVMX86Info
- )
-
add_dependencies(LLVMX86Desc X86CommonTableGen)
# Hack: we need to include 'main' target directory to grab private headers
diff --git a/lib/Target/X86/MCTargetDesc/LLVMBuild.txt b/lib/Target/X86/MCTargetDesc/LLVMBuild.txt
index 3d09301..9e1d29c 100644
--- a/lib/Target/X86/MCTargetDesc/LLVMBuild.txt
+++ b/lib/Target/X86/MCTargetDesc/LLVMBuild.txt
@@ -21,4 +21,3 @@ name = X86Desc
parent = X86
required_libraries = MC Support X86AsmPrinter X86Info
add_to_library_groups = X86
-
diff --git a/lib/Target/X86/MCTargetDesc/X86AsmBackend.cpp b/lib/Target/X86/MCTargetDesc/X86AsmBackend.cpp
index 69ad7d7..87b2b05 100644
--- a/lib/Target/X86/MCTargetDesc/X86AsmBackend.cpp
+++ b/lib/Target/X86/MCTargetDesc/X86AsmBackend.cpp
@@ -107,6 +107,11 @@ public:
bool MayNeedRelaxation(const MCInst &Inst) const;
+ bool fixupNeedsRelaxation(const MCFixup &Fixup,
+ uint64_t Value,
+ const MCInstFragment *DF,
+ const MCAsmLayout &Layout) const;
+
void RelaxInstruction(const MCInst &Inst, MCInst &Res) const;
bool WriteNopData(uint64_t Count, MCObjectWriter *OW) const;
@@ -244,6 +249,14 @@ bool X86AsmBackend::MayNeedRelaxation(const MCInst &Inst) const {
return hasExp && !hasRIP;
}
+bool X86AsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup,
+ uint64_t Value,
+ const MCInstFragment *DF,
+ const MCAsmLayout &Layout) const {
+ // Relax if the value is too big for a (signed) i8.
+ return int64_t(Value) != int64_t(int8_t(Value));
+}
+
// FIXME: Can tblgen help at all here to verify there aren't other instructions
// we can relax?
void X86AsmBackend::RelaxInstruction(const MCInst &Inst, MCInst &Res) const {
diff --git a/lib/Target/X86/MCTargetDesc/X86BaseInfo.h b/lib/Target/X86/MCTargetDesc/X86BaseInfo.h
index c50f785..662ac1d 100644
--- a/lib/Target/X86/MCTargetDesc/X86BaseInfo.h
+++ b/lib/Target/X86/MCTargetDesc/X86BaseInfo.h
@@ -304,6 +304,12 @@ namespace X86II {
// TAXD - Prefix before and after 0x0F. Combination of TA and XD.
TAXD = 19 << Op0Shift,
+ // XOP8 - Prefix to include use of imm byte.
+ XOP8 = 20 << Op0Shift,
+
+ // XOP9 - Prefix to exclude use of imm byte.
+ XOP9 = 21 << Op0Shift,
+
//===------------------------------------------------------------------===//
// REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
// They are used to specify GPRs and SSE registers, 64-bit operand size,
@@ -418,7 +424,16 @@ namespace X86II {
/// storing a classifier in the imm8 field. To simplify our implementation,
/// we handle this by storeing the classifier in the opcode field and using
/// this flag to indicate that the encoder should do the wacky 3DNow! thing.
- Has3DNow0F0FOpcode = 1U << 7
+ Has3DNow0F0FOpcode = 1U << 7,
+
+ /// XOP_W - Same bit as VEX_W. Used to indicate swapping of
+ /// operand 3 and 4 to be encoded in ModRM or I8IMM. This is used
+ /// for FMA4 and XOP instructions.
+ XOP_W = 1U << 8,
+
+ /// XOP - Opcode prefix used by XOP instructions.
+ XOP = 1U << 9
+
};
// getBaseOpcodeFor - This function returns the "base" X86 opcode for the
@@ -488,9 +503,12 @@ namespace X86II {
return 0;
case X86II::MRMSrcMem: {
bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
+ bool HasXOP_W = (TSFlags >> X86II::VEXShift) & X86II::XOP_W;
unsigned FirstMemOp = 1;
if (HasVEX_4V)
++FirstMemOp;// Skip the register source (which is encoded in VEX_VVVV).
+ if (HasXOP_W)
+ ++FirstMemOp;// Skip the register source (which is encoded in I8IMM).
// FIXME: Maybe lea should have its own form? This is a horrible hack.
//if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
diff --git a/lib/Target/X86/MCTargetDesc/X86MCAsmInfo.cpp b/lib/Target/X86/MCTargetDesc/X86MCAsmInfo.cpp
index 2703100..eb64ad1 100644
--- a/lib/Target/X86/MCTargetDesc/X86MCAsmInfo.cpp
+++ b/lib/Target/X86/MCTargetDesc/X86MCAsmInfo.cpp
@@ -125,7 +125,19 @@ getNonexecutableStackSection(MCContext &Ctx) const {
0, SectionKind::getMetadata());
}
-X86MCAsmInfoCOFF::X86MCAsmInfoCOFF(const Triple &Triple) {
+X86MCAsmInfoMicrosoft::X86MCAsmInfoMicrosoft(const Triple &Triple) {
+ if (Triple.getArch() == Triple::x86_64) {
+ GlobalPrefix = "";
+ PrivateGlobalPrefix = ".L";
+ }
+
+ AsmTransCBE = x86_asm_table;
+ AssemblerDialect = AsmWriterFlavor;
+
+ TextAlignFillValue = 0x90;
+}
+
+X86MCAsmInfoGNUCOFF::X86MCAsmInfoGNUCOFF(const Triple &Triple) {
if (Triple.getArch() == Triple::x86_64) {
GlobalPrefix = "";
PrivateGlobalPrefix = ".L";
diff --git a/lib/Target/X86/MCTargetDesc/X86MCAsmInfo.h b/lib/Target/X86/MCTargetDesc/X86MCAsmInfo.h
index 2cd4c8e..5d619e8 100644
--- a/lib/Target/X86/MCTargetDesc/X86MCAsmInfo.h
+++ b/lib/Target/X86/MCTargetDesc/X86MCAsmInfo.h
@@ -38,8 +38,12 @@ namespace llvm {
virtual const MCSection *getNonexecutableStackSection(MCContext &Ctx) const;
};
- struct X86MCAsmInfoCOFF : public MCAsmInfoCOFF {
- explicit X86MCAsmInfoCOFF(const Triple &Triple);
+ struct X86MCAsmInfoMicrosoft : public MCAsmInfoMicrosoft {
+ explicit X86MCAsmInfoMicrosoft(const Triple &Triple);
+ };
+
+ struct X86MCAsmInfoGNUCOFF : public MCAsmInfoGNUCOFF {
+ explicit X86MCAsmInfoGNUCOFF(const Triple &Triple);
};
} // namespace llvm
diff --git a/lib/Target/X86/MCTargetDesc/X86MCCodeEmitter.cpp b/lib/Target/X86/MCTargetDesc/X86MCCodeEmitter.cpp
index 1ab469c..8e14cb1 100644
--- a/lib/Target/X86/MCTargetDesc/X86MCCodeEmitter.cpp
+++ b/lib/Target/X86/MCTargetDesc/X86MCCodeEmitter.cpp
@@ -169,23 +169,36 @@ static bool Is32BitMemOperand(const MCInst &MI, unsigned Op) {
return false;
}
-/// StartsWithGlobalOffsetTable - Return true for the simple cases where this
-/// expression starts with _GLOBAL_OFFSET_TABLE_. This is a needed to support
-/// PIC on ELF i386 as that symbol is magic. We check only simple case that
+/// StartsWithGlobalOffsetTable - Check if this expression starts with
+/// _GLOBAL_OFFSET_TABLE_ and if it is of the form
+/// _GLOBAL_OFFSET_TABLE_-symbol. This is needed to support PIC on ELF
+/// i386 as _GLOBAL_OFFSET_TABLE_ is magical. We check only simple case that
/// are know to be used: _GLOBAL_OFFSET_TABLE_ by itself or at the start
/// of a binary expression.
-static bool StartsWithGlobalOffsetTable(const MCExpr *Expr) {
+enum GlobalOffsetTableExprKind {
+ GOT_None,
+ GOT_Normal,
+ GOT_SymDiff
+};
+static GlobalOffsetTableExprKind
+StartsWithGlobalOffsetTable(const MCExpr *Expr) {
+ const MCExpr *RHS = 0;
if (Expr->getKind() == MCExpr::Binary) {
const MCBinaryExpr *BE = static_cast<const MCBinaryExpr *>(Expr);
Expr = BE->getLHS();
+ RHS = BE->getRHS();
}
if (Expr->getKind() != MCExpr::SymbolRef)
- return false;
+ return GOT_None;
const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
const MCSymbol &S = Ref->getSymbol();
- return S.getName() == "_GLOBAL_OFFSET_TABLE_";
+ if (S.getName() != "_GLOBAL_OFFSET_TABLE_")
+ return GOT_None;
+ if (RHS && RHS->getKind() == MCExpr::SymbolRef)
+ return GOT_SymDiff;
+ return GOT_Normal;
}
void X86MCCodeEmitter::
@@ -209,12 +222,15 @@ EmitImmediate(const MCOperand &DispOp, unsigned Size, MCFixupKind FixupKind,
// If we have an immoffset, add it to the expression.
if ((FixupKind == FK_Data_4 ||
- FixupKind == MCFixupKind(X86::reloc_signed_4byte)) &&
- StartsWithGlobalOffsetTable(Expr)) {
- assert(ImmOffset == 0);
-
- FixupKind = MCFixupKind(X86::reloc_global_offset_table);
- ImmOffset = CurByte;
+ FixupKind == MCFixupKind(X86::reloc_signed_4byte))) {
+ GlobalOffsetTableExprKind Kind = StartsWithGlobalOffsetTable(Expr);
+ if (Kind != GOT_None) {
+ assert(ImmOffset == 0);
+
+ FixupKind = MCFixupKind(X86::reloc_global_offset_table);
+ if (Kind == GOT_Normal)
+ ImmOffset = CurByte;
+ }
}
// If the fixup is pc-relative, we need to bias the value to be relative to
@@ -415,6 +431,13 @@ void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
// opcode extension, or ignored, depending on the opcode byte)
unsigned char VEX_W = 0;
+ // XOP_W: opcode specific, same bit as VEX_W, but used to
+ // swap operand 3 and 4 for FMA4 and XOP instructions
+ unsigned char XOP_W = 0;
+
+ // XOP: Use XOP prefix byte 0x8f instead of VEX.
+ unsigned char XOP = 0;
+
// VEX_5M (VEX m-mmmmm field):
//
// 0b00000: Reserved for future use
@@ -422,7 +445,8 @@ void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
// 0b00010: implied 0F 38 leading opcode bytes
// 0b00011: implied 0F 3A leading opcode bytes
// 0b00100-0b11111: Reserved for future use
- //
+ // 0b01000: XOP map select - 08h instructions with imm byte
+ // 0b10001: XOP map select - 09h instructions with no imm byte
unsigned char VEX_5M = 0x1;
// VEX_4V (VEX vvvv field): a register specifier
@@ -453,6 +477,12 @@ void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
if ((TSFlags >> X86II::VEXShift) & X86II::VEX_W)
VEX_W = 1;
+ if ((TSFlags >> X86II::VEXShift) & X86II::XOP_W)
+ XOP_W = 1;
+
+ if ((TSFlags >> X86II::VEXShift) & X86II::XOP)
+ XOP = 1;
+
if ((TSFlags >> X86II::VEXShift) & X86II::VEX_L)
VEX_L = 1;
@@ -482,6 +512,12 @@ void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
case X86II::XD: // F2 0F
VEX_PP = 0x3;
break;
+ case X86II::XOP8:
+ VEX_5M = 0x8;
+ break;
+ case X86II::XOP9:
+ VEX_5M = 0x9;
+ break;
case X86II::A6: // Bypass: Not used by VEX
case X86II::A7: // Bypass: Not used by VEX
case X86II::TB: // Bypass: Not used by VEX
@@ -489,6 +525,7 @@ void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
break; // No prefix!
}
+
// Set the vector length to 256-bit if YMM0-YMM15 is used
for (unsigned i = 0; i != MI.getNumOperands(); ++i) {
if (!MI.getOperand(i).isReg())
@@ -529,6 +566,9 @@ void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
// src1(ModR/M), MemAddr, imm8
// src1(ModR/M), MemAddr, src2(VEX_I8IMM)
//
+ // FMA4:
+ // dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
+ // dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M),
if (X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
VEX_R = 0x0;
@@ -620,16 +660,16 @@ void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
//
unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
- if (VEX_B && VEX_X && !VEX_W && (VEX_5M == 1)) { // 2 byte VEX prefix
+ if (VEX_B && VEX_X && !VEX_W && !XOP && (VEX_5M == 1)) { // 2 byte VEX prefix
EmitByte(0xC5, CurByte, OS);
EmitByte(LastByte | (VEX_R << 7), CurByte, OS);
return;
}
// 3 byte VEX prefix
- EmitByte(0xC4, CurByte, OS);
+ EmitByte(XOP ? 0x8F : 0xC4, CurByte, OS);
EmitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, CurByte, OS);
- EmitByte(LastByte | (VEX_W << 7), CurByte, OS);
+ EmitByte(LastByte | ((VEX_W | XOP_W) << 7), CurByte, OS);
}
/// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
@@ -889,6 +929,8 @@ EncodeInstruction(const MCInst &MI, raw_ostream &OS,
// It uses the VEX.VVVV field?
bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3;
+ bool HasXOP_W = (TSFlags >> X86II::VEXShift) & X86II::XOP_W;
+ unsigned XOP_W_I8IMMOperand = 2;
// Determine where the memory operand starts, if present.
int MemoryOperand = X86II::getMemoryOperandNo(TSFlags, Opcode);
@@ -961,9 +1003,14 @@ EncodeInstruction(const MCInst &MI, raw_ostream &OS,
if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
SrcRegNum++;
+ if(HasXOP_W) // Skip 2nd src (which is encoded in I8IMM)
+ SrcRegNum++;
+
EmitRegModRMByte(MI.getOperand(SrcRegNum),
GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
- CurOp = SrcRegNum + 1;
+
+ // 2 operands skipped with HasXOP_W, comensate accordingly
+ CurOp = HasXOP_W ? SrcRegNum : SrcRegNum + 1;
if (HasVEX_4VOp3)
++CurOp;
break;
@@ -975,6 +1022,8 @@ EncodeInstruction(const MCInst &MI, raw_ostream &OS,
++AddrOperands;
++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV).
}
+ if(HasXOP_W) // Skip second register source (encoded in I8IMM)
+ ++FirstMemOp;
EmitByte(BaseOpcode, CurByte, OS);
@@ -1062,12 +1111,24 @@ EncodeInstruction(const MCInst &MI, raw_ostream &OS,
// according to the right size for the instruction.
if (CurOp != NumOps) {
// The last source register of a 4 operand instruction in AVX is encoded
- // in bits[7:4] of a immediate byte, and bits[3:0] are ignored.
+ // in bits[7:4] of a immediate byte.
if ((TSFlags >> X86II::VEXShift) & X86II::VEX_I8IMM) {
- const MCOperand &MO = MI.getOperand(CurOp++);
+ const MCOperand &MO = MI.getOperand(HasXOP_W ? XOP_W_I8IMMOperand
+ : CurOp);
+ CurOp++;
bool IsExtReg = X86II::isX86_64ExtendedReg(MO.getReg());
unsigned RegNum = (IsExtReg ? (1 << 7) : 0);
RegNum |= GetX86RegNum(MO) << 4;
+ // If there is an additional 5th operand it must be an immediate, which
+ // is encoded in bits[3:0]
+ if(CurOp != NumOps) {
+ const MCOperand &MIMM = MI.getOperand(CurOp++);
+ if(MIMM.isImm()) {
+ unsigned Val = MIMM.getImm();
+ assert(Val < 16 && "Immediate operand value out of range");
+ RegNum |= Val;
+ }
+ }
EmitImmediate(MCOperand::CreateImm(RegNum), 1, FK_Data_1, CurByte, OS,
Fixups);
} else {
diff --git a/lib/Target/X86/MCTargetDesc/X86MCTargetDesc.cpp b/lib/Target/X86/MCTargetDesc/X86MCTargetDesc.cpp
index a843515..f2a34ed 100644
--- a/lib/Target/X86/MCTargetDesc/X86MCTargetDesc.cpp
+++ b/lib/Target/X86/MCTargetDesc/X86MCTargetDesc.cpp
@@ -361,8 +361,10 @@ static MCAsmInfo *createX86MCAsmInfo(const Target &T, StringRef TT) {
MAI = new X86_64MCAsmInfoDarwin(TheTriple);
else
MAI = new X86MCAsmInfoDarwin(TheTriple);
- } else if (TheTriple.isOSWindows()) {
- MAI = new X86MCAsmInfoCOFF(TheTriple);
+ } else if (TheTriple.getOS() == Triple::Win32) {
+ MAI = new X86MCAsmInfoMicrosoft(TheTriple);
+ } else if (TheTriple.getOS() == Triple::MinGW32 || TheTriple.getOS() == Triple::Cygwin) {
+ MAI = new X86MCAsmInfoGNUCOFF(TheTriple);
} else {
MAI = new X86ELFMCAsmInfo(TheTriple);
}
diff --git a/lib/Target/X86/README-SSE.txt b/lib/Target/X86/README-SSE.txt
index 7d901af..a581993 100644
--- a/lib/Target/X86/README-SSE.txt
+++ b/lib/Target/X86/README-SSE.txt
@@ -922,16 +922,3 @@ _test2: ## @test2
The insertps's of $0 are pointless complex copies.
//===---------------------------------------------------------------------===//
-
-If SSE4.1 is available we should inline rounding functions instead of emitting
-a libcall.
-
-floor: roundsd $0x01, %xmm, %xmm
-ceil: roundsd $0x02, %xmm, %xmm
-
-and likewise for the single precision versions.
-
-Currently, SelectionDAGBuilder doesn't turn calls to these functions into the
-corresponding nodes and some targets (including X86) aren't ready for them.
-
-//===---------------------------------------------------------------------===//
diff --git a/lib/Target/X86/TargetInfo/CMakeLists.txt b/lib/Target/X86/TargetInfo/CMakeLists.txt
index 4da00fa..b1d0b9f 100644
--- a/lib/Target/X86/TargetInfo/CMakeLists.txt
+++ b/lib/Target/X86/TargetInfo/CMakeLists.txt
@@ -4,10 +4,4 @@ add_llvm_library(LLVMX86Info
X86TargetInfo.cpp
)
-add_llvm_library_dependencies(LLVMX86Info
- LLVMMC
- LLVMSupport
- LLVMTarget
- )
-
add_dependencies(LLVMX86Info X86CommonTableGen)
diff --git a/lib/Target/X86/TargetInfo/LLVMBuild.txt b/lib/Target/X86/TargetInfo/LLVMBuild.txt
index ee015bd..3c64a22 100644
--- a/lib/Target/X86/TargetInfo/LLVMBuild.txt
+++ b/lib/Target/X86/TargetInfo/LLVMBuild.txt
@@ -21,4 +21,3 @@ name = X86Info
parent = X86
required_libraries = MC Support Target
add_to_library_groups = X86
-
diff --git a/lib/Target/X86/Utils/CMakeLists.txt b/lib/Target/X86/Utils/CMakeLists.txt
index caffd8b..2e72c34 100644
--- a/lib/Target/X86/Utils/CMakeLists.txt
+++ b/lib/Target/X86/Utils/CMakeLists.txt
@@ -4,9 +4,4 @@ add_llvm_library(LLVMX86Utils
X86ShuffleDecode.cpp
)
-add_llvm_library_dependencies(LLVMX86Utils
- LLVMCore
- LLVMSupport
- )
-
add_dependencies(LLVMX86Utils X86CommonTableGen)
diff --git a/lib/Target/X86/Utils/LLVMBuild.txt b/lib/Target/X86/Utils/LLVMBuild.txt
index 3ee441e..de0a30f 100644
--- a/lib/Target/X86/Utils/LLVMBuild.txt
+++ b/lib/Target/X86/Utils/LLVMBuild.txt
@@ -21,4 +21,3 @@ name = X86Utils
parent = X86
required_libraries = Core Support
add_to_library_groups = X86
-
diff --git a/lib/Target/X86/Utils/X86ShuffleDecode.cpp b/lib/Target/X86/Utils/X86ShuffleDecode.cpp
index f6c9d7b..e7631b6 100644
--- a/lib/Target/X86/Utils/X86ShuffleDecode.cpp
+++ b/lib/Target/X86/Utils/X86ShuffleDecode.cpp
@@ -95,54 +95,31 @@ void DecodePSHUFLWMask(unsigned Imm,
ShuffleMask.push_back(7);
}
-void DecodePUNPCKLBWMask(unsigned NElts,
- SmallVectorImpl<unsigned> &ShuffleMask) {
- DecodeUNPCKLPMask(MVT::getVectorVT(MVT::i8, NElts), ShuffleMask);
-}
-
-void DecodePUNPCKLWDMask(unsigned NElts,
- SmallVectorImpl<unsigned> &ShuffleMask) {
- DecodeUNPCKLPMask(MVT::getVectorVT(MVT::i16, NElts), ShuffleMask);
-}
-
-void DecodePUNPCKLDQMask(unsigned NElts,
- SmallVectorImpl<unsigned> &ShuffleMask) {
- DecodeUNPCKLPMask(MVT::getVectorVT(MVT::i32, NElts), ShuffleMask);
-}
-
-void DecodePUNPCKLQDQMask(unsigned NElts,
- SmallVectorImpl<unsigned> &ShuffleMask) {
- DecodeUNPCKLPMask(MVT::getVectorVT(MVT::i64, NElts), ShuffleMask);
-}
-
-void DecodePUNPCKLMask(EVT VT,
- SmallVectorImpl<unsigned> &ShuffleMask) {
- DecodeUNPCKLPMask(VT, ShuffleMask);
-}
+void DecodeSHUFPMask(EVT VT, unsigned Imm,
+ SmallVectorImpl<unsigned> &ShuffleMask) {
+ unsigned NumElts = VT.getVectorNumElements();
-void DecodePUNPCKHMask(unsigned NElts,
- SmallVectorImpl<unsigned> &ShuffleMask) {
- for (unsigned i = 0; i != NElts/2; ++i) {
- ShuffleMask.push_back(i+NElts/2);
- ShuffleMask.push_back(i+NElts+NElts/2);
- }
-}
+ unsigned NumLanes = VT.getSizeInBits() / 128;
+ unsigned NumLaneElts = NumElts / NumLanes;
-void DecodeSHUFPSMask(unsigned NElts, unsigned Imm,
- SmallVectorImpl<unsigned> &ShuffleMask) {
- // Part that reads from dest.
- for (unsigned i = 0; i != NElts/2; ++i) {
- ShuffleMask.push_back(Imm % NElts);
- Imm /= NElts;
- }
- // Part that reads from src.
- for (unsigned i = 0; i != NElts/2; ++i) {
- ShuffleMask.push_back(Imm % NElts + NElts);
- Imm /= NElts;
+ int NewImm = Imm;
+ for (unsigned l = 0; l < NumLanes; ++l) {
+ unsigned LaneStart = l * NumLaneElts;
+ // Part that reads from dest.
+ for (unsigned i = 0; i != NumLaneElts/2; ++i) {
+ ShuffleMask.push_back(NewImm % NumLaneElts + LaneStart);
+ NewImm /= NumLaneElts;
+ }
+ // Part that reads from src.
+ for (unsigned i = 0; i != NumLaneElts/2; ++i) {
+ ShuffleMask.push_back(NewImm % NumLaneElts + NumElts + LaneStart);
+ NewImm /= NumLaneElts;
+ }
+ if (NumLaneElts == 4) NewImm = Imm; // reload imm
}
}
-void DecodeUNPCKHPMask(EVT VT, SmallVectorImpl<unsigned> &ShuffleMask) {
+void DecodeUNPCKHMask(EVT VT, SmallVectorImpl<unsigned> &ShuffleMask) {
unsigned NumElts = VT.getVectorNumElements();
// Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
@@ -161,10 +138,10 @@ void DecodeUNPCKHPMask(EVT VT, SmallVectorImpl<unsigned> &ShuffleMask) {
}
}
-/// DecodeUNPCKLPMask - This decodes the shuffle masks for unpcklps/unpcklpd
+/// DecodeUNPCKLMask - This decodes the shuffle masks for unpcklps/unpcklpd
/// etc. VT indicates the type of the vector allowing it to handle different
/// datatypes and vector widths.
-void DecodeUNPCKLPMask(EVT VT, SmallVectorImpl<unsigned> &ShuffleMask) {
+void DecodeUNPCKLMask(EVT VT, SmallVectorImpl<unsigned> &ShuffleMask) {
unsigned NumElts = VT.getVectorNumElements();
// Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
@@ -183,36 +160,23 @@ void DecodeUNPCKLPMask(EVT VT, SmallVectorImpl<unsigned> &ShuffleMask) {
}
}
-// DecodeVPERMILPSMask - Decodes VPERMILPS permutes for any 128-bit 32-bit
-// elements. For 256-bit vectors, it's considered as two 128 lanes, the
-// referenced elements can't cross lanes and the mask of the first lane must
-// be the same of the second.
-void DecodeVPERMILPSMask(unsigned NumElts, unsigned Imm,
- SmallVectorImpl<unsigned> &ShuffleMask) {
- unsigned NumLanes = (NumElts*32)/128;
- unsigned LaneSize = NumElts/NumLanes;
-
- for (unsigned l = 0; l != NumLanes; ++l) {
- for (unsigned i = 0; i != LaneSize; ++i) {
- unsigned Idx = (Imm >> (i*2)) & 0x3 ;
- ShuffleMask.push_back(Idx+(l*LaneSize));
- }
- }
-}
+// DecodeVPERMILPMask - Decodes VPERMILPS/ VPERMILPD permutes for any 128-bit
+// 32-bit or 64-bit elements. For 256-bit vectors, it's considered as two 128
+// lanes. For VPERMILPS, referenced elements can't cross lanes and the mask of
+// the first lane must be the same of the second.
+void DecodeVPERMILPMask(EVT VT, unsigned Imm,
+ SmallVectorImpl<unsigned> &ShuffleMask) {
+ unsigned NumElts = VT.getVectorNumElements();
-// DecodeVPERMILPDMask - Decodes VPERMILPD permutes for any 128-bit 64-bit
-// elements. For 256-bit vectors, it's considered as two 128 lanes, the
-// referenced elements can't cross lanes but the mask of the first lane can
-// be the different of the second (not like VPERMILPS).
-void DecodeVPERMILPDMask(unsigned NumElts, unsigned Imm,
- SmallVectorImpl<unsigned> &ShuffleMask) {
- unsigned NumLanes = (NumElts*64)/128;
- unsigned LaneSize = NumElts/NumLanes;
+ unsigned NumLanes = VT.getSizeInBits() / 128;
+ unsigned NumLaneElts = NumElts / NumLanes;
- for (unsigned l = 0; l < NumLanes; ++l) {
- for (unsigned i = l*LaneSize; i < LaneSize*(l+1); ++i) {
- unsigned Idx = (Imm >> i) & 0x1;
- ShuffleMask.push_back(Idx+(l*LaneSize));
+ for (unsigned l = 0; l != NumLanes; ++l) {
+ unsigned LaneStart = l*NumLaneElts;
+ for (unsigned i = 0; i != NumLaneElts; ++i) {
+ unsigned Idx = NumLaneElts == 4 ? (Imm >> (i*2)) & 0x3
+ : (Imm >> (i+LaneStart)) & 0x1;
+ ShuffleMask.push_back(Idx+LaneStart);
}
}
}
diff --git a/lib/Target/X86/Utils/X86ShuffleDecode.h b/lib/Target/X86/Utils/X86ShuffleDecode.h
index 35f6530..243728f 100644
--- a/lib/Target/X86/Utils/X86ShuffleDecode.h
+++ b/lib/Target/X86/Utils/X86ShuffleDecode.h
@@ -46,50 +46,25 @@ void DecodePSHUFHWMask(unsigned Imm,
void DecodePSHUFLWMask(unsigned Imm,
SmallVectorImpl<unsigned> &ShuffleMask);
-void DecodePUNPCKLBWMask(unsigned NElts,
- SmallVectorImpl<unsigned> &ShuffleMask);
-
-void DecodePUNPCKLWDMask(unsigned NElts,
- SmallVectorImpl<unsigned> &ShuffleMask);
-
-void DecodePUNPCKLDQMask(unsigned NElts,
- SmallVectorImpl<unsigned> &ShuffleMask);
-
-void DecodePUNPCKLQDQMask(unsigned NElts,
- SmallVectorImpl<unsigned> &ShuffleMask);
-
-void DecodePUNPCKLMask(EVT VT,
- SmallVectorImpl<unsigned> &ShuffleMask);
-
-void DecodePUNPCKHMask(unsigned NElts,
- SmallVectorImpl<unsigned> &ShuffleMask);
-
-void DecodeSHUFPSMask(unsigned NElts, unsigned Imm,
- SmallVectorImpl<unsigned> &ShuffleMask);
+void DecodeSHUFPMask(EVT VT, unsigned Imm,
+ SmallVectorImpl<unsigned> &ShuffleMask);
-/// DecodeUNPCKHPMask - This decodes the shuffle masks for unpckhps/unpckhpd
+/// DecodeUNPCKHMask - This decodes the shuffle masks for unpckhps/unpckhpd
/// etc. VT indicates the type of the vector allowing it to handle different
/// datatypes and vector widths.
-void DecodeUNPCKHPMask(EVT VT, SmallVectorImpl<unsigned> &ShuffleMask);
+void DecodeUNPCKHMask(EVT VT, SmallVectorImpl<unsigned> &ShuffleMask);
-/// DecodeUNPCKLPMask - This decodes the shuffle masks for unpcklps/unpcklpd
+/// DecodeUNPCKLMask - This decodes the shuffle masks for unpcklps/unpcklpd
/// etc. VT indicates the type of the vector allowing it to handle different
/// datatypes and vector widths.
-void DecodeUNPCKLPMask(EVT VT, SmallVectorImpl<unsigned> &ShuffleMask);
-
+void DecodeUNPCKLMask(EVT VT, SmallVectorImpl<unsigned> &ShuffleMask);
-// DecodeVPERMILPSMask - Decodes VPERMILPS permutes for any 128-bit 32-bit
-// elements. For 256-bit vectors, it's considered as two 128 lanes, the
-// referenced elements can't cross lanes and the mask of the first lane must
-// be the same of the second.
-void DecodeVPERMILPSMask(unsigned NElts, unsigned Imm,
- SmallVectorImpl<unsigned> &ShuffleMask);
-// DecodeVPERMILPDMask - Decodes VPERMILPD permutes for any 128-bit 64-bit
-// elements. For 256-bit vectors, it's considered as two 128 lanes, the
-// referenced elements can't cross lanes but the mask of the first lane can
-// be the different of the second (not like VPERMILPS).
-void DecodeVPERMILPDMask(unsigned NElts, unsigned Imm,
+// DecodeVPERMILPMask - Decodes VPERMILPS/ VPERMILPD permutes for any 128-bit
+// 32-bit or 64-bit elements. For 256-bit vectors, it's considered as two 128
+// lanes. For VPERMILPS, referenced elements can't cross lanes and the mask of
+// the first lane must be the same of the second.
+void DecodeVPERMILPMask(EVT VT, unsigned Imm,
SmallVectorImpl<unsigned> &ShuffleMask);
void DecodeVPERM2F128Mask(unsigned Imm,
diff --git a/lib/Target/X86/X86.td b/lib/Target/X86/X86.td
index 62a7016..8229ca5 100644
--- a/lib/Target/X86/X86.td
+++ b/lib/Target/X86/X86.td
@@ -91,6 +91,8 @@ def FeatureFMA3 : SubtargetFeature<"fma3", "HasFMA3", "true",
"Enable three-operand fused multiple-add">;
def FeatureFMA4 : SubtargetFeature<"fma4", "HasFMA4", "true",
"Enable four-operand fused multiple-add">;
+def FeatureXOP : SubtargetFeature<"xop", "HasXOP", "true",
+ "Enable XOP instructions">;
def FeatureVectorUAMem : SubtargetFeature<"vector-unaligned-mem",
"HasVectorUAMem", "true",
"Allow unaligned memory operands on vector/SIMD instructions">;
@@ -194,14 +196,16 @@ def : Proc<"opteron-sse3", [FeatureSSE3, Feature3DNowA, FeatureCMPXCHG16B,
def : Proc<"athlon64-sse3", [FeatureSSE3, Feature3DNowA, FeatureCMPXCHG16B,
FeatureSlowBTMem]>;
def : Proc<"amdfam10", [FeatureSSE3, FeatureSSE4A,
- Feature3DNowA, FeatureCMPXCHG16B,
+ Feature3DNowA, FeatureCMPXCHG16B, FeatureLZCNT,
FeatureSlowBTMem]>;
-def : Proc<"barcelona", [FeatureSSE3, FeatureSSE4A,
- Feature3DNowA, FeatureCMPXCHG16B,
- FeatureSlowBTMem]>;
-def : Proc<"istanbul", [Feature3DNowA, FeatureCMPXCHG16B,
- FeatureSSE4A]>;
-def : Proc<"shanghai", [Feature3DNowA, FeatureCMPXCHG16B, FeatureSSE4A]>;
+// FIXME: Disabling AVX for now since it's not ready.
+def : Proc<"bdver1", [FeatureSSE42, FeatureSSE4A, FeatureCMPXCHG16B,
+ FeatureAES, FeatureCLMUL, FeatureFMA4,
+ FeatureXOP, FeatureLZCNT]>;
+def : Proc<"bdver2", [FeatureSSE42, FeatureSSE4A, FeatureCMPXCHG16B,
+ FeatureAES, FeatureCLMUL, FeatureFMA4,
+ FeatureXOP, FeatureF16C, FeatureLZCNT,
+ FeatureBMI]>;
def : Proc<"winchip-c6", [FeatureMMX]>;
def : Proc<"winchip2", [Feature3DNow]>;
diff --git a/lib/Target/X86/X86CallingConv.td b/lib/Target/X86/X86CallingConv.td
index 77b9905..aab2a05 100644
--- a/lib/Target/X86/X86CallingConv.td
+++ b/lib/Target/X86/X86CallingConv.td
@@ -158,10 +158,15 @@ def CC_X86_64_C : CallingConv<[
CCIfSubtarget<"hasXMM()",
CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>>,
- // The first 8 256-bit vector arguments are passed in YMM registers.
- CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
- CCIfSubtarget<"hasAVX()",
- CCAssignToReg<[YMM0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7]>>>,
+ // The first 8 256-bit vector arguments are passed in YMM registers, unless
+ // this is a vararg function.
+ // FIXME: This isn't precisely correct; the x86-64 ABI document says that
+ // fixed arguments to vararg functions are supposed to be passed in
+ // registers. Actually modeling that would be a lot of work, though.
+ CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
+ CCIfSubtarget<"hasAVX()",
+ CCAssignToReg<[YMM0, YMM1, YMM2, YMM3,
+ YMM4, YMM5, YMM6, YMM7]>>>>,
// Integer/FP values get stored in stack slots that are 8 bytes in size and
// 8-byte aligned if there are no more registers to hold them.
diff --git a/lib/Target/X86/X86CodeEmitter.cpp b/lib/Target/X86/X86CodeEmitter.cpp
index ba615a8..ed16e88 100644
--- a/lib/Target/X86/X86CodeEmitter.cpp
+++ b/lib/Target/X86/X86CodeEmitter.cpp
@@ -1004,7 +1004,7 @@ void Emitter<CodeEmitter>::emitInstruction(MachineInstr &MI,
break;
}
- if (!Desc->isVariadic() && CurOp != NumOps) {
+ if (!MI.isVariadic() && CurOp != NumOps) {
#ifndef NDEBUG
dbgs() << "Cannot encode all operands of: " << MI << "\n";
#endif
diff --git a/lib/Target/X86/X86FastISel.cpp b/lib/Target/X86/X86FastISel.cpp
index 32f1770..1589439 100644
--- a/lib/Target/X86/X86FastISel.cpp
+++ b/lib/Target/X86/X86FastISel.cpp
@@ -728,7 +728,7 @@ bool X86FastISel::X86SelectRet(const Instruction *I) {
// fastcc with -tailcallopt is intended to provide a guaranteed
// tail call optimization. Fastisel doesn't know how to do that.
- if (CC == CallingConv::Fast && GuaranteedTailCallOpt)
+ if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt)
return false;
// Let SDISel handle vararg functions.
@@ -1529,7 +1529,7 @@ bool X86FastISel::DoSelectCall(const Instruction *I, const char *MemIntName) {
// fastcc with -tailcallopt is intended to provide a guaranteed
// tail call optimization. Fastisel doesn't know how to do that.
- if (CC == CallingConv::Fast && GuaranteedTailCallOpt)
+ if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt)
return false;
PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
@@ -1543,7 +1543,7 @@ bool X86FastISel::DoSelectCall(const Instruction *I, const char *MemIntName) {
// Fast-isel doesn't know about callee-pop yet.
if (X86::isCalleePop(CC, Subtarget->is64Bit(), isVarArg,
- GuaranteedTailCallOpt))
+ TM.Options.GuaranteedTailCallOpt))
return false;
// Check whether the function can return without sret-demotion.
@@ -2121,7 +2121,7 @@ unsigned X86FastISel::TargetMaterializeFloatZero(const ConstantFP *CF) {
default: return false;
case MVT::f32:
if (X86ScalarSSEf32) {
- Opc = Subtarget->hasAVX() ? X86::VFsFLD0SS : X86::FsFLD0SS;
+ Opc = X86::FsFLD0SS;
RC = X86::FR32RegisterClass;
} else {
Opc = X86::LD_Fp032;
@@ -2130,7 +2130,7 @@ unsigned X86FastISel::TargetMaterializeFloatZero(const ConstantFP *CF) {
break;
case MVT::f64:
if (X86ScalarSSEf64) {
- Opc = Subtarget->hasAVX() ? X86::VFsFLD0SD : X86::FsFLD0SD;
+ Opc = X86::FsFLD0SD;
RC = X86::FR64RegisterClass;
} else {
Opc = X86::LD_Fp064;
diff --git a/lib/Target/X86/X86FrameLowering.cpp b/lib/Target/X86/X86FrameLowering.cpp
index 819d242..6a40cc1 100644
--- a/lib/Target/X86/X86FrameLowering.cpp
+++ b/lib/Target/X86/X86FrameLowering.cpp
@@ -47,7 +47,7 @@ bool X86FrameLowering::hasFP(const MachineFunction &MF) const {
const MachineModuleInfo &MMI = MF.getMMI();
const TargetRegisterInfo *RI = TM.getRegisterInfo();
- return (DisableFramePointerElim(MF) ||
+ return (MF.getTarget().Options.DisableFramePointerElim(MF) ||
RI->needsStackRealignment(MF) ||
MFI->hasVarSizedObjects() ||
MFI->isFrameAddressTaken() ||
@@ -210,7 +210,7 @@ static
void mergeSPUpdatesDown(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MBBI,
unsigned StackPtr, uint64_t *NumBytes = NULL) {
- // FIXME: THIS ISN'T RUN!!!
+ // FIXME: THIS ISN'T RUN!!!
return;
if (MBBI == MBB.end()) return;
@@ -351,20 +351,22 @@ void X86FrameLowering::emitCalleeSavedFrameMoves(MachineFunction &MF,
/// register. The number corresponds to the enum lists in
/// compact_unwind_encoding.h.
static int getCompactUnwindRegNum(const unsigned *CURegs, unsigned Reg) {
- int Idx = 1;
- for (; *CURegs; ++CURegs, ++Idx)
+ for (int Idx = 1; *CURegs; ++CURegs, ++Idx)
if (*CURegs == Reg)
return Idx;
return -1;
}
+// Number of registers that can be saved in a compact unwind encoding.
+#define CU_NUM_SAVED_REGS 6
+
/// encodeCompactUnwindRegistersWithoutFrame - Create the permutation encoding
/// used with frameless stacks. It is passed the number of registers to be saved
/// and an array of the registers saved.
-static uint32_t encodeCompactUnwindRegistersWithoutFrame(unsigned SavedRegs[6],
- unsigned RegCount,
- bool Is64Bit) {
+static uint32_t
+encodeCompactUnwindRegistersWithoutFrame(unsigned SavedRegs[CU_NUM_SAVED_REGS],
+ unsigned RegCount, bool Is64Bit) {
// The saved registers are numbered from 1 to 6. In order to encode the order
// in which they were saved, we re-number them according to their place in the
// register order. The re-numbering is relative to the last re-numbered
@@ -385,14 +387,21 @@ static uint32_t encodeCompactUnwindRegistersWithoutFrame(unsigned SavedRegs[6],
};
const unsigned *CURegs = (Is64Bit ? CU64BitRegs : CU32BitRegs);
- uint32_t RenumRegs[6];
- for (unsigned i = 6 - RegCount; i < 6; ++i) {
+ for (unsigned i = 0; i != CU_NUM_SAVED_REGS; ++i) {
int CUReg = getCompactUnwindRegNum(CURegs, SavedRegs[i]);
if (CUReg == -1) return ~0U;
SavedRegs[i] = CUReg;
+ }
+
+ // Reverse the list.
+ std::swap(SavedRegs[0], SavedRegs[5]);
+ std::swap(SavedRegs[1], SavedRegs[4]);
+ std::swap(SavedRegs[2], SavedRegs[3]);
+ uint32_t RenumRegs[CU_NUM_SAVED_REGS];
+ for (unsigned i = CU_NUM_SAVED_REGS - RegCount; i < CU_NUM_SAVED_REGS; ++i) {
unsigned Countless = 0;
- for (unsigned j = 6 - RegCount; j < i; ++j)
+ for (unsigned j = CU_NUM_SAVED_REGS - RegCount; j < i; ++j)
if (SavedRegs[j] < SavedRegs[i])
++Countless;
@@ -435,8 +444,9 @@ static uint32_t encodeCompactUnwindRegistersWithoutFrame(unsigned SavedRegs[6],
/// encodeCompactUnwindRegistersWithFrame - Return the registers encoded for a
/// compact encoding with a frame pointer.
-static uint32_t encodeCompactUnwindRegistersWithFrame(unsigned SavedRegs[6],
- bool Is64Bit) {
+static uint32_t
+encodeCompactUnwindRegistersWithFrame(unsigned SavedRegs[CU_NUM_SAVED_REGS],
+ bool Is64Bit) {
static const unsigned CU32BitRegs[] = {
X86::EBX, X86::ECX, X86::EDX, X86::EDI, X86::ESI, X86::EBP, 0
};
@@ -448,13 +458,16 @@ static uint32_t encodeCompactUnwindRegistersWithFrame(unsigned SavedRegs[6],
// Encode the registers in the order they were saved, 3-bits per register. The
// registers are numbered from 1 to 6.
uint32_t RegEnc = 0;
- for (int I = 5; I >= 0; --I) {
+ for (int I = 0; I != 6; --I) {
unsigned Reg = SavedRegs[I];
if (Reg == 0) break;
int CURegNum = getCompactUnwindRegNum(CURegs, Reg);
if (CURegNum == -1)
return ~0U;
- RegEnc |= (CURegNum & 0x7) << (5 - I);
+
+ // Encode the 3-bit register number in order, skipping over 3-bits for each
+ // register.
+ RegEnc |= (CURegNum & 0x7) << ((5 - I) * 3);
}
assert((RegEnc & 0x7FFF) == RegEnc && "Invalid compact register encoding!");
@@ -466,14 +479,11 @@ uint32_t X86FrameLowering::getCompactUnwindEncoding(MachineFunction &MF) const {
unsigned FramePtr = RegInfo->getFrameRegister(MF);
unsigned StackPtr = RegInfo->getStackRegister();
- X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
- int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
-
bool Is64Bit = STI.is64Bit();
bool HasFP = hasFP(MF);
- unsigned SavedRegs[6] = { 0, 0, 0, 0, 0, 0 };
- int SavedRegIdx = 6;
+ unsigned SavedRegs[CU_NUM_SAVED_REGS] = { 0, 0, 0, 0, 0, 0 };
+ unsigned SavedRegIdx = 0;
unsigned OffsetSize = (Is64Bit ? 8 : 4);
@@ -481,14 +491,13 @@ uint32_t X86FrameLowering::getCompactUnwindEncoding(MachineFunction &MF) const {
unsigned PushInstrSize = 1;
unsigned MoveInstr = (Is64Bit ? X86::MOV64rr : X86::MOV32rr);
unsigned MoveInstrSize = (Is64Bit ? 3 : 2);
- unsigned SubtractInstr = getSUBriOpcode(Is64Bit, -TailCallReturnAddrDelta);
unsigned SubtractInstrIdx = (Is64Bit ? 3 : 2);
unsigned StackDivide = (Is64Bit ? 8 : 4);
unsigned InstrOffset = 0;
- unsigned CFAOffset = 0;
unsigned StackAdjust = 0;
+ unsigned StackSize = 0;
MachineBasicBlock &MBB = MF.front(); // Prologue is in entry BB.
bool ExpectEnd = false;
@@ -504,10 +513,10 @@ uint32_t X86FrameLowering::getCompactUnwindEncoding(MachineFunction &MF) const {
if (Opc == PushInstr) {
// If there are too many saved registers, we cannot use compact encoding.
- if (--SavedRegIdx < 0) return 0;
+ if (SavedRegIdx >= CU_NUM_SAVED_REGS) return 0;
- SavedRegs[SavedRegIdx] = MI.getOperand(0).getReg();
- CFAOffset += OffsetSize;
+ SavedRegs[SavedRegIdx++] = MI.getOperand(0).getReg();
+ StackAdjust += OffsetSize;
InstrOffset += PushInstrSize;
} else if (Opc == MoveInstr) {
unsigned SrcReg = MI.getOperand(1).getReg();
@@ -516,13 +525,14 @@ uint32_t X86FrameLowering::getCompactUnwindEncoding(MachineFunction &MF) const {
if (DstReg != FramePtr || SrcReg != StackPtr)
return 0;
- CFAOffset = 0;
+ StackAdjust = 0;
memset(SavedRegs, 0, sizeof(SavedRegs));
- SavedRegIdx = 6;
+ SavedRegIdx = 0;
InstrOffset += MoveInstrSize;
- } else if (Opc == SubtractInstr) {
- if (StackAdjust)
- // We all ready have a stack pointer adjustment.
+ } else if (Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
+ Opc == X86::SUB32ri || Opc == X86::SUB32ri8) {
+ if (StackSize)
+ // We already have a stack size.
return 0;
if (!MI.getOperand(0).isReg() ||
@@ -533,7 +543,7 @@ uint32_t X86FrameLowering::getCompactUnwindEncoding(MachineFunction &MF) const {
// %RSP<def> = SUB64ri8 %RSP, 48
return 0;
- StackAdjust = MI.getOperand(2).getImm() / StackDivide;
+ StackSize = MI.getOperand(2).getImm() / StackDivide;
SubtractInstrIdx += InstrOffset;
ExpectEnd = true;
}
@@ -541,28 +551,30 @@ uint32_t X86FrameLowering::getCompactUnwindEncoding(MachineFunction &MF) const {
// Encode that we are using EBP/RBP as the frame pointer.
uint32_t CompactUnwindEncoding = 0;
- CFAOffset /= StackDivide;
+ StackAdjust /= StackDivide;
if (HasFP) {
- if ((CFAOffset & 0xFF) != CFAOffset)
+ if ((StackAdjust & 0xFF) != StackAdjust)
// Offset was too big for compact encoding.
return 0;
// Get the encoding of the saved registers when we have a frame pointer.
uint32_t RegEnc = encodeCompactUnwindRegistersWithFrame(SavedRegs, Is64Bit);
- if (RegEnc == ~0U)
- return 0;
+ if (RegEnc == ~0U) return 0;
CompactUnwindEncoding |= 0x01000000;
- CompactUnwindEncoding |= (CFAOffset & 0xFF) << 16;
+ CompactUnwindEncoding |= (StackAdjust & 0xFF) << 16;
CompactUnwindEncoding |= RegEnc & 0x7FFF;
} else {
- unsigned FullOffset = CFAOffset + StackAdjust;
- if ((FullOffset & 0xFF) == FullOffset) {
- // Frameless stack.
+ ++StackAdjust;
+ uint32_t TotalStackSize = StackAdjust + StackSize;
+ if ((TotalStackSize & 0xFF) == TotalStackSize) {
+ // Frameless stack with a small stack size.
CompactUnwindEncoding |= 0x02000000;
- CompactUnwindEncoding |= (FullOffset & 0xFF) << 16;
+
+ // Encode the stack size.
+ CompactUnwindEncoding |= (TotalStackSize & 0xFF) << 16;
} else {
- if ((CFAOffset & 0x7) != CFAOffset)
+ if ((StackAdjust & 0x7) != StackAdjust)
// The extra stack adjustments are too big for us to handle.
return 0;
@@ -573,16 +585,21 @@ uint32_t X86FrameLowering::getCompactUnwindEncoding(MachineFunction &MF) const {
// instruction.
CompactUnwindEncoding |= (SubtractInstrIdx & 0xFF) << 16;
- // Encode any extra stack stack changes (done via push instructions).
- CompactUnwindEncoding |= (CFAOffset & 0x7) << 13;
+ // Encode any extra stack stack adjustments (done via push instructions).
+ CompactUnwindEncoding |= (StackAdjust & 0x7) << 13;
}
+ // Encode the number of registers saved.
+ CompactUnwindEncoding |= (SavedRegIdx & 0x7) << 10;
+
// Get the encoding of the saved registers when we don't have a frame
// pointer.
- uint32_t RegEnc = encodeCompactUnwindRegistersWithoutFrame(SavedRegs,
- 6 - SavedRegIdx,
- Is64Bit);
+ uint32_t RegEnc =
+ encodeCompactUnwindRegistersWithoutFrame(SavedRegs, SavedRegIdx,
+ Is64Bit);
if (RegEnc == ~0U) return 0;
+
+ // Encode the register encoding.
CompactUnwindEncoding |= RegEnc & 0x3FF;
}
@@ -638,10 +655,10 @@ void X86FrameLowering::emitPrologue(MachineFunction &MF) const {
// stack pointer (we fit in the Red Zone).
if (Is64Bit && !Fn->hasFnAttr(Attribute::NoRedZone) &&
!RegInfo->needsStackRealignment(MF) &&
- !MFI->hasVarSizedObjects() && // No dynamic alloca.
- !MFI->adjustsStack() && // No calls.
- !IsWin64 && // Win64 has no Red Zone
- !EnableSegmentedStacks) { // Regular stack
+ !MFI->hasVarSizedObjects() && // No dynamic alloca.
+ !MFI->adjustsStack() && // No calls.
+ !IsWin64 && // Win64 has no Red Zone
+ !MF.getTarget().Options.EnableSegmentedStacks) { // Regular stack
uint64_t MinSize = X86FI->getCalleeSavedFrameSize();
if (HasFP) MinSize += SlotSize;
StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0);
@@ -978,7 +995,7 @@ void X86FrameLowering::emitEpilogue(MachineFunction &MF,
unsigned Opc = PI->getOpcode();
if (Opc != X86::POP32r && Opc != X86::POP64r && Opc != X86::DBG_VALUE &&
- !PI->getDesc().isTerminator())
+ !PI->isTerminator())
break;
--MBBI;
@@ -1306,6 +1323,10 @@ GetScratchRegister(bool Is64Bit, const MachineFunction &MF) {
}
}
+// The stack limit in the TCB is set to this many bytes above the actual stack
+// limit.
+static const uint64_t kSplitStackAvailable = 256;
+
void
X86FrameLowering::adjustForSegmentedStacks(MachineFunction &MF) const {
MachineBasicBlock &prologueMBB = MF.front();
@@ -1360,16 +1381,24 @@ X86FrameLowering::adjustForSegmentedStacks(MachineFunction &MF) const {
TlsReg = X86::FS;
TlsOffset = 0x70;
- BuildMI(checkMBB, DL, TII.get(X86::LEA64r), ScratchReg).addReg(X86::RSP)
- .addImm(0).addReg(0).addImm(-StackSize).addReg(0);
+ if (StackSize < kSplitStackAvailable)
+ ScratchReg = X86::RSP;
+ else
+ BuildMI(checkMBB, DL, TII.get(X86::LEA64r), ScratchReg).addReg(X86::RSP)
+ .addImm(0).addReg(0).addImm(-StackSize).addReg(0);
+
BuildMI(checkMBB, DL, TII.get(X86::CMP64rm)).addReg(ScratchReg)
.addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg);
} else {
TlsReg = X86::GS;
TlsOffset = 0x30;
- BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP)
- .addImm(0).addReg(0).addImm(-StackSize).addReg(0);
+ if (StackSize < kSplitStackAvailable)
+ ScratchReg = X86::ESP;
+ else
+ BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP)
+ .addImm(0).addReg(0).addImm(-StackSize).addReg(0);
+
BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg)
.addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg);
}
@@ -1394,9 +1423,6 @@ X86FrameLowering::adjustForSegmentedStacks(MachineFunction &MF) const {
MF.getRegInfo().setPhysRegUsed(X86::R10);
MF.getRegInfo().setPhysRegUsed(X86::R11);
} else {
- // Since we'll call __morestack, stack alignment needs to be preserved.
- BuildMI(allocMBB, DL, TII.get(X86::SUB32ri), X86::ESP).addReg(X86::ESP)
- .addImm(8);
BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
.addImm(X86FI->getArgumentStackSize());
BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
@@ -1411,11 +1437,6 @@ X86FrameLowering::adjustForSegmentedStacks(MachineFunction &MF) const {
BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32))
.addExternalSymbol("__morestack");
- // __morestack only seems to remove 8 bytes off the stack. Add back the
- // additional 8 bytes we added before pushing the arguments.
- if (!Is64Bit)
- BuildMI(allocMBB, DL, TII.get(X86::ADD32ri), X86::ESP).addReg(X86::ESP)
- .addImm(8);
if (IsNested)
BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10));
else
diff --git a/lib/Target/X86/X86ISelLowering.cpp b/lib/Target/X86/X86ISelLowering.cpp
index 96c6f41..03727a2 100644
--- a/lib/Target/X86/X86ISelLowering.cpp
+++ b/lib/Target/X86/X86ISelLowering.cpp
@@ -256,7 +256,7 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
if (Subtarget->is64Bit()) {
setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote);
setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Expand);
- } else if (!UseSoftFloat) {
+ } else if (!TM.Options.UseSoftFloat) {
// We have an algorithm for SSE2->double, and we turn this into a
// 64-bit FILD followed by conditional FADD for other targets.
setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Custom);
@@ -270,7 +270,7 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote);
setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote);
- if (!UseSoftFloat) {
+ if (!TM.Options.UseSoftFloat) {
// SSE has no i16 to fp conversion, only i32
if (X86ScalarSSEf32) {
setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
@@ -313,7 +313,7 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
if (Subtarget->is64Bit()) {
setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Expand);
setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote);
- } else if (!UseSoftFloat) {
+ } else if (!TM.Options.UseSoftFloat) {
// Since AVX is a superset of SSE3, only check for SSE here.
if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
// Expand FP_TO_UINT into a select.
@@ -378,6 +378,10 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
setOperationAction(ISD::FREM , MVT::f80 , Expand);
setOperationAction(ISD::FLT_ROUNDS_ , MVT::i32 , Custom);
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF , MVT::i8 , Expand);
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF , MVT::i16 , Expand);
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF , MVT::i32 , Expand);
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF , MVT::i64 , Expand);
if (Subtarget->hasBMI()) {
setOperationAction(ISD::CTTZ , MVT::i8 , Promote);
} else {
@@ -388,6 +392,10 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
setOperationAction(ISD::CTTZ , MVT::i64 , Custom);
}
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF , MVT::i8 , Expand);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF , MVT::i16 , Expand);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF , MVT::i32 , Expand);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF , MVT::i64 , Expand);
if (Subtarget->hasLZCNT()) {
setOperationAction(ISD::CTLZ , MVT::i8 , Promote);
} else {
@@ -537,14 +545,14 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
MVT::i64 : MVT::i32, Custom);
- else if (EnableSegmentedStacks)
+ else if (TM.Options.EnableSegmentedStacks)
setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
MVT::i64 : MVT::i32, Custom);
else
setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
MVT::i64 : MVT::i32, Expand);
- if (!UseSoftFloat && X86ScalarSSEf64) {
+ if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
// f32 and f64 use SSE.
// Set up the FP register classes.
addRegisterClass(MVT::f32, X86::FR32RegisterClass);
@@ -576,7 +584,7 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
// cases we handle.
addLegalFPImmediate(APFloat(+0.0)); // xorpd
addLegalFPImmediate(APFloat(+0.0f)); // xorps
- } else if (!UseSoftFloat && X86ScalarSSEf32) {
+ } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
// Use SSE for f32, x87 for f64.
// Set up the FP register classes.
addRegisterClass(MVT::f32, X86::FR32RegisterClass);
@@ -605,11 +613,11 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
- if (!UnsafeFPMath) {
+ if (!TM.Options.UnsafeFPMath) {
setOperationAction(ISD::FSIN , MVT::f64 , Expand);
setOperationAction(ISD::FCOS , MVT::f64 , Expand);
}
- } else if (!UseSoftFloat) {
+ } else if (!TM.Options.UseSoftFloat) {
// f32 and f64 in x87.
// Set up the FP register classes.
addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
@@ -620,7 +628,7 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
- if (!UnsafeFPMath) {
+ if (!TM.Options.UnsafeFPMath) {
setOperationAction(ISD::FSIN , MVT::f64 , Expand);
setOperationAction(ISD::FCOS , MVT::f64 , Expand);
}
@@ -639,7 +647,7 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
setOperationAction(ISD::FMA, MVT::f32, Expand);
// Long double always uses X87.
- if (!UseSoftFloat) {
+ if (!TM.Options.UseSoftFloat) {
addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
setOperationAction(ISD::UNDEF, MVT::f80, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
@@ -658,11 +666,16 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
addLegalFPImmediate(TmpFlt2); // FLD1/FCHS
}
- if (!UnsafeFPMath) {
+ if (!TM.Options.UnsafeFPMath) {
setOperationAction(ISD::FSIN , MVT::f80 , Expand);
setOperationAction(ISD::FCOS , MVT::f80 , Expand);
}
+ setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
+ setOperationAction(ISD::FCEIL, MVT::f80, Expand);
+ setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
+ setOperationAction(ISD::FRINT, MVT::f80, Expand);
+ setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
setOperationAction(ISD::FMA, MVT::f80, Expand);
}
@@ -714,7 +727,9 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
@@ -748,7 +763,7 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
// FIXME: In order to prevent SSE instructions being expanded to MMX ones
// with -msoft-float, disable use of MMX as well.
- if (!UseSoftFloat && Subtarget->hasMMX()) {
+ if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
// No operations on x86mmx supported, everything uses intrinsics.
}
@@ -785,7 +800,7 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
setOperationAction(ISD::BITCAST, MVT::v2i32, Expand);
setOperationAction(ISD::BITCAST, MVT::v1i64, Expand);
- if (!UseSoftFloat && Subtarget->hasXMM()) {
+ if (!TM.Options.UseSoftFloat && Subtarget->hasXMM()) {
addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
setOperationAction(ISD::FADD, MVT::v4f32, Legal);
@@ -802,7 +817,7 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
setOperationAction(ISD::SETCC, MVT::v4f32, Custom);
}
- if (!UseSoftFloat && Subtarget->hasXMMInt()) {
+ if (!TM.Options.UseSoftFloat && Subtarget->hasXMMInt()) {
addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
// FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
@@ -983,7 +998,7 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
if (Subtarget->hasSSE42orAVX())
setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
- if (!UseSoftFloat && Subtarget->hasAVX()) {
+ if (!TM.Options.UseSoftFloat && Subtarget->hasAVX()) {
addRegisterClass(MVT::v32i8, X86::VR256RegisterClass);
addRegisterClass(MVT::v16i16, X86::VR256RegisterClass);
addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
@@ -1211,10 +1226,10 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
- setPrefLoopAlignment(16);
+ setPrefLoopAlignment(4); // 2^4 bytes.
benefitFromCodePlacementOpt = true;
- setPrefFunctionAlignment(4);
+ setPrefFunctionAlignment(4); // 2^4 bytes.
}
@@ -1709,7 +1724,8 @@ bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
/// FuncIsMadeTailCallSafe - Return true if the function is being made into
/// a tailcall target by changing its ABI.
-static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
+static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
+ bool GuaranteedTailCallOpt) {
return GuaranteedTailCallOpt && IsTailCallConvention(CC);
}
@@ -1723,7 +1739,8 @@ X86TargetLowering::LowerMemArgument(SDValue Chain,
unsigned i) const {
// Create the nodes corresponding to a load from this parameter slot.
ISD::ArgFlagsTy Flags = Ins[i].Flags;
- bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
+ bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv,
+ getTargetMachine().Options.GuaranteedTailCallOpt);
bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
EVT ValVT;
@@ -1873,7 +1890,8 @@ X86TargetLowering::LowerFormalArguments(SDValue Chain,
unsigned StackSize = CCInfo.getNextStackOffset();
// Align stack specially for tail calls.
- if (FuncIsMadeTailCallSafe(CallConv))
+ if (FuncIsMadeTailCallSafe(CallConv,
+ MF.getTarget().Options.GuaranteedTailCallOpt))
StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
// If the function takes variable number of arguments, make a frame index for
@@ -1918,9 +1936,11 @@ X86TargetLowering::LowerFormalArguments(SDValue Chain,
bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
assert(!(NumXMMRegs && !Subtarget->hasXMM()) &&
"SSE register cannot be used when SSE is disabled!");
- assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
+ assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
+ NoImplicitFloatOps) &&
"SSE register cannot be used when SSE is disabled!");
- if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasXMM())
+ if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
+ !Subtarget->hasXMM())
// Kernel mode asks for SSE to be disabled, so don't push them
// on the stack.
TotalNumXMMRegs = 0;
@@ -1998,7 +2018,8 @@ X86TargetLowering::LowerFormalArguments(SDValue Chain,
}
// Some CCs need callee pop.
- if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, GuaranteedTailCallOpt)) {
+ if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
+ MF.getTarget().Options.GuaranteedTailCallOpt)) {
FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
} else {
FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
@@ -2098,7 +2119,7 @@ X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
// Sibcalls are automatically detected tailcalls which do not require
// ABI changes.
- if (!GuaranteedTailCallOpt && isTailCall)
+ if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
IsSibcall = true;
if (isTailCall)
@@ -2126,7 +2147,8 @@ X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
// This is a sibcall. The memory operands are available in caller's
// own caller's stack.
NumBytes = 0;
- else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
+ else if (getTargetMachine().Options.GuaranteedTailCallOpt &&
+ IsTailCallConvention(CallConv))
NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
int FPDiff = 0;
@@ -2305,7 +2327,7 @@ X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
int FI = 0;
// Do not flag preceding copytoreg stuff together with the following stuff.
InFlag = SDValue();
- if (GuaranteedTailCallOpt) {
+ if (getTargetMachine().Options.GuaranteedTailCallOpt) {
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
if (VA.isRegLoc())
@@ -2485,7 +2507,8 @@ X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
// Create the CALLSEQ_END node.
unsigned NumBytesForCalleeToPush;
- if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, GuaranteedTailCallOpt))
+ if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
+ getTargetMachine().Options.GuaranteedTailCallOpt))
NumBytesForCalleeToPush = NumBytes; // Callee pops everything
else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
// If this is a call to a struct-return function, the callee
@@ -2643,7 +2666,7 @@ X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
CallingConv::ID CallerCC = CallerF->getCallingConv();
bool CCMatch = CallerCC == CalleeCC;
- if (GuaranteedTailCallOpt) {
+ if (getTargetMachine().Options.GuaranteedTailCallOpt) {
if (IsTailCallConvention(CalleeCC) && CCMatch)
return true;
return false;
@@ -2843,23 +2866,10 @@ static bool isTargetShuffle(unsigned Opcode) {
case X86ISD::MOVDDUP:
case X86ISD::MOVSS:
case X86ISD::MOVSD:
- case X86ISD::UNPCKLPS:
- case X86ISD::UNPCKLPD:
- case X86ISD::PUNPCKLWD:
- case X86ISD::PUNPCKLBW:
- case X86ISD::PUNPCKLDQ:
- case X86ISD::PUNPCKLQDQ:
- case X86ISD::UNPCKHPS:
- case X86ISD::UNPCKHPD:
- case X86ISD::PUNPCKHWD:
- case X86ISD::PUNPCKHBW:
- case X86ISD::PUNPCKHDQ:
- case X86ISD::PUNPCKHQDQ:
- case X86ISD::VPERMILPS:
- case X86ISD::VPERMILPSY:
- case X86ISD::VPERMILPD:
- case X86ISD::VPERMILPDY:
- case X86ISD::VPERM2F128:
+ case X86ISD::UNPCKL:
+ case X86ISD::UNPCKH:
+ case X86ISD::VPERMILP:
+ case X86ISD::VPERM2X128:
return true;
}
return false;
@@ -2885,10 +2895,7 @@ static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
case X86ISD::PSHUFD:
case X86ISD::PSHUFHW:
case X86ISD::PSHUFLW:
- case X86ISD::VPERMILPS:
- case X86ISD::VPERMILPSY:
- case X86ISD::VPERMILPD:
- case X86ISD::VPERMILPDY:
+ case X86ISD::VPERMILP:
return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
}
@@ -2902,7 +2909,7 @@ static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
case X86ISD::PALIGN:
case X86ISD::SHUFPD:
case X86ISD::SHUFPS:
- case X86ISD::VPERM2F128:
+ case X86ISD::VPERM2X128:
return DAG.getNode(Opc, dl, VT, V1, V2,
DAG.getConstant(TargetMask, MVT::i8));
}
@@ -2920,18 +2927,8 @@ static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
case X86ISD::MOVLPD:
case X86ISD::MOVSS:
case X86ISD::MOVSD:
- case X86ISD::UNPCKLPS:
- case X86ISD::UNPCKLPD:
- case X86ISD::PUNPCKLWD:
- case X86ISD::PUNPCKLBW:
- case X86ISD::PUNPCKLDQ:
- case X86ISD::PUNPCKLQDQ:
- case X86ISD::UNPCKHPS:
- case X86ISD::UNPCKHPD:
- case X86ISD::PUNPCKHWD:
- case X86ISD::PUNPCKHBW:
- case X86ISD::PUNPCKHDQ:
- case X86ISD::PUNPCKHQDQ:
+ case X86ISD::UNPCKL:
+ case X86ISD::UNPCKH:
return DAG.getNode(Opc, dl, VT, V1, V2);
}
return SDValue();
@@ -3231,7 +3228,7 @@ bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
bool hasSSSE3OrAVX) {
int i, e = VT.getVectorNumElements();
- if (VT.getSizeInBits() != 128 && VT.getSizeInBits() != 64)
+ if (VT.getSizeInBits() != 128)
return false;
// Do not handle v2i64 / v2f64 shuffles with palignr.
@@ -3261,17 +3258,17 @@ static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
return true;
}
-/// isVSHUFPSYMask - Return true if the specified VECTOR_SHUFFLE operand
+/// isVSHUFPYMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to 256-bit
/// VSHUFPSY.
-static bool isVSHUFPSYMask(const SmallVectorImpl<int> &Mask, EVT VT,
- const X86Subtarget *Subtarget) {
+static bool isVSHUFPYMask(const SmallVectorImpl<int> &Mask, EVT VT,
+ bool HasAVX, bool Commuted = false) {
int NumElems = VT.getVectorNumElements();
- if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256)
+ if (!HasAVX || VT.getSizeInBits() != 256)
return false;
- if (NumElems != 8)
+ if (NumElems != 4 && NumElems != 8)
return false;
// VSHUFPSY divides the resulting vector into 4 chunks.
@@ -3284,124 +3281,63 @@ static bool isVSHUFPSYMask(const SmallVectorImpl<int> &Mask, EVT VT,
// DST => Y7..Y4, Y7..Y4, X7..X4, X7..X4,
// Y3..Y0, Y3..Y0, X3..X0, X3..X0
//
- int QuarterSize = NumElems/4;
- int HalfSize = QuarterSize*2;
- for (int i = 0; i < QuarterSize; ++i)
- if (!isUndefOrInRange(Mask[i], 0, HalfSize))
- return false;
- for (int i = QuarterSize; i < QuarterSize*2; ++i)
- if (!isUndefOrInRange(Mask[i], NumElems, NumElems+HalfSize))
- return false;
-
- // The mask of the second half must be the same as the first but with
- // the appropriate offsets. This works in the same way as VPERMILPS
- // works with masks.
- for (int i = QuarterSize*2; i < QuarterSize*3; ++i) {
- if (!isUndefOrInRange(Mask[i], HalfSize, NumElems))
- return false;
- int FstHalfIdx = i-HalfSize;
- if (Mask[FstHalfIdx] < 0)
- continue;
- if (!isUndefOrEqual(Mask[i], Mask[FstHalfIdx]+HalfSize))
- return false;
- }
- for (int i = QuarterSize*3; i < NumElems; ++i) {
- if (!isUndefOrInRange(Mask[i], NumElems+HalfSize, NumElems*2))
- return false;
- int FstHalfIdx = i-HalfSize;
- if (Mask[FstHalfIdx] < 0)
- continue;
- if (!isUndefOrEqual(Mask[i], Mask[FstHalfIdx]+HalfSize))
- return false;
-
- }
-
- return true;
-}
-
-/// getShuffleVSHUFPSYImmediate - Return the appropriate immediate to shuffle
-/// the specified VECTOR_MASK mask with VSHUFPSY instruction.
-static unsigned getShuffleVSHUFPSYImmediate(SDNode *N) {
- ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
- EVT VT = SVOp->getValueType(0);
- int NumElems = VT.getVectorNumElements();
-
- assert(NumElems == 8 && VT.getSizeInBits() == 256 &&
- "Only supports v8i32 and v8f32 types");
-
- int HalfSize = NumElems/2;
- unsigned Mask = 0;
- for (int i = 0; i != NumElems ; ++i) {
- if (SVOp->getMaskElt(i) < 0)
- continue;
- // The mask of the first half must be equal to the second one.
- unsigned Shamt = (i%HalfSize)*2;
- unsigned Elt = SVOp->getMaskElt(i) % HalfSize;
- Mask |= Elt << Shamt;
- }
-
- return Mask;
-}
-
-/// isVSHUFPDYMask - Return true if the specified VECTOR_SHUFFLE operand
-/// specifies a shuffle of elements that is suitable for input to 256-bit
-/// VSHUFPDY. This shuffle doesn't have the same restriction as the PS
-/// version and the mask of the second half isn't binded with the first
-/// one.
-static bool isVSHUFPDYMask(const SmallVectorImpl<int> &Mask, EVT VT,
- const X86Subtarget *Subtarget) {
- int NumElems = VT.getVectorNumElements();
-
- if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256)
- return false;
-
- if (NumElems != 4)
- return false;
-
- // VSHUFPSY divides the resulting vector into 4 chunks.
+ // VSHUFPDY divides the resulting vector into 4 chunks.
// The sources are also splitted into 4 chunks, and each destination
// chunk must come from a different source chunk.
//
// SRC1 => X3 X2 X1 X0
// SRC2 => Y3 Y2 Y1 Y0
//
- // DST => Y2..Y3, X2..X3, Y1..Y0, X1..X0
+ // DST => Y3..Y2, X3..X2, Y1..Y0, X1..X0
//
- int QuarterSize = NumElems/4;
- int HalfSize = QuarterSize*2;
- for (int i = 0; i < QuarterSize; ++i)
- if (!isUndefOrInRange(Mask[i], 0, HalfSize))
- return false;
- for (int i = QuarterSize; i < QuarterSize*2; ++i)
- if (!isUndefOrInRange(Mask[i], NumElems, NumElems+HalfSize))
- return false;
- for (int i = QuarterSize*2; i < QuarterSize*3; ++i)
- if (!isUndefOrInRange(Mask[i], HalfSize, NumElems))
- return false;
- for (int i = QuarterSize*3; i < NumElems; ++i)
- if (!isUndefOrInRange(Mask[i], NumElems+HalfSize, NumElems*2))
- return false;
+ unsigned QuarterSize = NumElems/4;
+ unsigned HalfSize = QuarterSize*2;
+ for (unsigned l = 0; l != 2; ++l) {
+ unsigned LaneStart = l*HalfSize;
+ for (unsigned s = 0; s != 2; ++s) {
+ unsigned QuarterStart = s*QuarterSize;
+ unsigned Src = (Commuted) ? (1-s) : s;
+ unsigned SrcStart = Src*NumElems + LaneStart;
+ for (unsigned i = 0; i != QuarterSize; ++i) {
+ int Idx = Mask[i+QuarterStart+LaneStart];
+ if (!isUndefOrInRange(Idx, SrcStart, SrcStart+HalfSize))
+ return false;
+ // For VSHUFPSY, the mask of the second half must be the same as the first
+ // but with the appropriate offsets. This works in the same way as
+ // VPERMILPS works with masks.
+ if (NumElems == 4 || l == 0 || Mask[i+QuarterStart] < 0)
+ continue;
+ if (!isUndefOrEqual(Idx, Mask[i+QuarterStart]+HalfSize))
+ return false;
+ }
+ }
+ }
return true;
}
-/// getShuffleVSHUFPDYImmediate - Return the appropriate immediate to shuffle
-/// the specified VECTOR_MASK mask with VSHUFPDY instruction.
-static unsigned getShuffleVSHUFPDYImmediate(SDNode *N) {
+/// getShuffleVSHUFPYImmediate - Return the appropriate immediate to shuffle
+/// the specified VECTOR_MASK mask with VSHUFPSY/VSHUFPDY instructions.
+static unsigned getShuffleVSHUFPYImmediate(SDNode *N) {
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
EVT VT = SVOp->getValueType(0);
int NumElems = VT.getVectorNumElements();
- assert(NumElems == 4 && VT.getSizeInBits() == 256 &&
- "Only supports v4i64 and v4f64 types");
+ assert(VT.getSizeInBits() == 256 && "Only supports 256-bit types");
+ assert((NumElems == 4 || NumElems == 8) && "Only supports v4 and v8 types");
int HalfSize = NumElems/2;
+ unsigned Mul = (NumElems == 8) ? 2 : 1;
unsigned Mask = 0;
- for (int i = 0; i != NumElems ; ++i) {
- if (SVOp->getMaskElt(i) < 0)
+ for (int i = 0; i != NumElems; ++i) {
+ int Elt = SVOp->getMaskElt(i);
+ if (Elt < 0)
continue;
- int Elt = SVOp->getMaskElt(i) % HalfSize;
- Mask |= Elt << i;
+ Elt %= HalfSize;
+ unsigned Shamt = i;
+ // For VSHUFPSY, the mask of the first half must be equal to the second one.
+ if (NumElems == 8) Shamt %= HalfSize;
+ Mask |= Elt << (Shamt*Mul);
}
return Mask;
@@ -3409,8 +3345,8 @@ static unsigned getShuffleVSHUFPDYImmediate(SDNode *N) {
/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
/// the two vector operands have swapped position.
-static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
- unsigned NumElems = VT.getVectorNumElements();
+static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
+ unsigned NumElems) {
for (unsigned i = 0; i != NumElems; ++i) {
int idx = Mask[i];
if (idx < 0)
@@ -3422,31 +3358,13 @@ static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
}
}
-/// isCommutedVSHUFP() - Return true if swapping operands will
-/// allow to use the "vshufpd" or "vshufps" instruction
-/// for 256-bit vectors
-static bool isCommutedVSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT,
- const X86Subtarget *Subtarget) {
-
- unsigned NumElems = VT.getVectorNumElements();
- if ((VT.getSizeInBits() != 256) || ((NumElems != 4) && (NumElems != 8)))
- return false;
-
- SmallVector<int, 8> CommutedMask;
- for (unsigned i = 0; i < NumElems; ++i)
- CommutedMask.push_back(Mask[i]);
-
- CommuteVectorShuffleMask(CommutedMask, VT);
- return (NumElems == 4) ? isVSHUFPDYMask(CommutedMask, VT, Subtarget):
- isVSHUFPSYMask(CommutedMask, VT, Subtarget);
-}
-
-
/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to 128-bit
-/// SHUFPS and SHUFPD.
-static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
- int NumElems = VT.getVectorNumElements();
+/// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
+/// reverse of what x86 shuffles want.
+static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT,
+ bool Commuted = false) {
+ unsigned NumElems = VT.getVectorNumElements();
if (VT.getSizeInBits() != 128)
return false;
@@ -3454,12 +3372,14 @@ static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
if (NumElems != 2 && NumElems != 4)
return false;
- int Half = NumElems / 2;
- for (int i = 0; i < Half; ++i)
- if (!isUndefOrInRange(Mask[i], 0, NumElems))
+ unsigned Half = NumElems / 2;
+ unsigned SrcStart = Commuted ? NumElems : 0;
+ for (unsigned i = 0; i != Half; ++i)
+ if (!isUndefOrInRange(Mask[i], SrcStart, SrcStart+NumElems))
return false;
- for (int i = Half; i < NumElems; ++i)
- if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
+ SrcStart = Commuted ? 0 : NumElems;
+ for (unsigned i = Half; i != NumElems; ++i)
+ if (!isUndefOrInRange(Mask[i], SrcStart, SrcStart+NumElems))
return false;
return true;
@@ -3471,32 +3391,6 @@ bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
return ::isSHUFPMask(M, N->getValueType(0));
}
-/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
-/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
-/// half elements to come from vector 1 (which would equal the dest.) and
-/// the upper half to come from vector 2.
-static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
- int NumElems = VT.getVectorNumElements();
-
- if (NumElems != 2 && NumElems != 4)
- return false;
-
- int Half = NumElems / 2;
- for (int i = 0; i < Half; ++i)
- if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
- return false;
- for (int i = Half; i < NumElems; ++i)
- if (!isUndefOrInRange(Mask[i], 0, NumElems))
- return false;
- return true;
-}
-
-static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
- SmallVector<int, 8> M;
- N->getMask(M);
- return isCommutedSHUFPMask(M, N->getValueType(0));
-}
-
/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
@@ -3765,15 +3659,15 @@ bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
return ::isMOVLMask(M, N->getValueType(0));
}
-/// isVPERM2F128Mask - Match 256-bit shuffles where the elements are considered
+/// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
/// as permutations between 128-bit chunks or halves. As an example: this
/// shuffle bellow:
/// vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
/// The first half comes from the second half of V1 and the second half from the
/// the second half of V2.
-static bool isVPERM2F128Mask(const SmallVectorImpl<int> &Mask, EVT VT,
- const X86Subtarget *Subtarget) {
- if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256)
+static bool isVPERM2X128Mask(const SmallVectorImpl<int> &Mask, EVT VT,
+ bool HasAVX) {
+ if (!HasAVX || VT.getSizeInBits() != 256)
return false;
// The shuffle result is divided into half A and half B. In total the two
@@ -3801,10 +3695,9 @@ static bool isVPERM2F128Mask(const SmallVectorImpl<int> &Mask, EVT VT,
return MatchA && MatchB;
}
-/// getShuffleVPERM2F128Immediate - Return the appropriate immediate to shuffle
-/// the specified VECTOR_MASK mask with VPERM2F128 instructions.
-static unsigned getShuffleVPERM2F128Immediate(SDNode *N) {
- ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
+/// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
+/// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
+static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
EVT VT = SVOp->getValueType(0);
int HalfSize = VT.getVectorNumElements()/2;
@@ -3826,81 +3719,47 @@ static unsigned getShuffleVPERM2F128Immediate(SDNode *N) {
return (FstHalf | (SndHalf << 4));
}
-/// isVPERMILPDMask - Return true if the specified VECTOR_SHUFFLE operand
+/// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
/// Note that VPERMIL mask matching is different depending whether theunderlying
/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
/// to the same elements of the low, but to the higher half of the source.
/// In VPERMILPD the two lanes could be shuffled independently of each other
/// with the same restriction that lanes can't be crossed.
-static bool isVPERMILPDMask(const SmallVectorImpl<int> &Mask, EVT VT,
- const X86Subtarget *Subtarget) {
+static bool isVPERMILPMask(const SmallVectorImpl<int> &Mask, EVT VT,
+ bool HasAVX) {
int NumElts = VT.getVectorNumElements();
int NumLanes = VT.getSizeInBits()/128;
- if (!Subtarget->hasAVX())
+ if (!HasAVX)
return false;
- // Only match 256-bit with 64-bit types
- if (VT.getSizeInBits() != 256 || NumElts != 4)
+ // Only match 256-bit with 32/64-bit types
+ if (VT.getSizeInBits() != 256 || (NumElts != 4 && NumElts != 8))
return false;
- // The mask on the high lane is independent of the low. Both can match
- // any element in inside its own lane, but can't cross.
int LaneSize = NumElts/NumLanes;
- for (int l = 0; l < NumLanes; ++l)
- for (int i = l*LaneSize; i < LaneSize*(l+1); ++i) {
- int LaneStart = l*LaneSize;
- if (!isUndefOrInRange(Mask[i], LaneStart, LaneStart+LaneSize))
+ for (int l = 0; l != NumLanes; ++l) {
+ int LaneStart = l*LaneSize;
+ for (int i = 0; i != LaneSize; ++i) {
+ if (!isUndefOrInRange(Mask[i+LaneStart], LaneStart, LaneStart+LaneSize))
+ return false;
+ if (NumElts == 4 || l == 0)
+ continue;
+ // VPERMILPS handling
+ if (Mask[i] < 0)
+ continue;
+ if (!isUndefOrEqual(Mask[i+LaneStart], Mask[i]+LaneSize))
return false;
}
-
- return true;
-}
-
-/// isVPERMILPSMask - Return true if the specified VECTOR_SHUFFLE operand
-/// specifies a shuffle of elements that is suitable for input to VPERMILPS*.
-/// Note that VPERMIL mask matching is different depending whether theunderlying
-/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
-/// to the same elements of the low, but to the higher half of the source.
-/// In VPERMILPD the two lanes could be shuffled independently of each other
-/// with the same restriction that lanes can't be crossed.
-static bool isVPERMILPSMask(const SmallVectorImpl<int> &Mask, EVT VT,
- const X86Subtarget *Subtarget) {
- unsigned NumElts = VT.getVectorNumElements();
- unsigned NumLanes = VT.getSizeInBits()/128;
-
- if (!Subtarget->hasAVX())
- return false;
-
- // Only match 256-bit with 32-bit types
- if (VT.getSizeInBits() != 256 || NumElts != 8)
- return false;
-
- // The mask on the high lane should be the same as the low. Actually,
- // they can differ if any of the corresponding index in a lane is undef
- // and the other stays in range.
- int LaneSize = NumElts/NumLanes;
- for (int i = 0; i < LaneSize; ++i) {
- int HighElt = i+LaneSize;
- bool HighValid = isUndefOrInRange(Mask[HighElt], LaneSize, NumElts);
- bool LowValid = isUndefOrInRange(Mask[i], 0, LaneSize);
-
- if (!HighValid || !LowValid)
- return false;
- if (Mask[i] < 0 || Mask[HighElt] < 0)
- continue;
- if (Mask[HighElt]-Mask[i] != LaneSize)
- return false;
}
return true;
}
-/// getShuffleVPERMILPSImmediate - Return the appropriate immediate to shuffle
-/// the specified VECTOR_MASK mask with VPERMILPS* instructions.
-static unsigned getShuffleVPERMILPSImmediate(SDNode *N) {
- ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
+/// getShuffleVPERMILPImmediate - Return the appropriate immediate to shuffle
+/// the specified VECTOR_MASK mask with VPERMILPS/D* instructions.
+static unsigned getShuffleVPERMILPImmediate(ShuffleVectorSDNode *SVOp) {
EVT VT = SVOp->getValueType(0);
int NumElts = VT.getVectorNumElements();
@@ -3911,43 +3770,22 @@ static unsigned getShuffleVPERMILPSImmediate(SDNode *N) {
// where a mask will match because the same mask element is undef on the
// first half but valid on the second. This would get pathological cases
// such as: shuffle <u, 0, 1, 2, 4, 4, 5, 6>, which is completely valid.
+ unsigned Shift = (LaneSize == 4) ? 2 : 1;
unsigned Mask = 0;
- for (int l = 0; l < NumLanes; ++l) {
- for (int i = 0; i < LaneSize; ++i) {
- int MaskElt = SVOp->getMaskElt(i+(l*LaneSize));
- if (MaskElt < 0)
- continue;
- if (MaskElt >= LaneSize)
- MaskElt -= LaneSize;
- Mask |= MaskElt << (i*2);
- }
+ for (int i = 0; i != NumElts; ++i) {
+ int MaskElt = SVOp->getMaskElt(i);
+ if (MaskElt < 0)
+ continue;
+ MaskElt %= LaneSize;
+ unsigned Shamt = i;
+ // VPERMILPSY, the mask of the first half must be equal to the second one
+ if (NumElts == 8) Shamt %= LaneSize;
+ Mask |= MaskElt << (Shamt*Shift);
}
return Mask;
}
-/// getShuffleVPERMILPDImmediate - Return the appropriate immediate to shuffle
-/// the specified VECTOR_MASK mask with VPERMILPD* instructions.
-static unsigned getShuffleVPERMILPDImmediate(SDNode *N) {
- ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
- EVT VT = SVOp->getValueType(0);
-
- int NumElts = VT.getVectorNumElements();
- int NumLanes = VT.getSizeInBits()/128;
-
- unsigned Mask = 0;
- int LaneSize = NumElts/NumLanes;
- for (int l = 0; l < NumLanes; ++l)
- for (int i = l*LaneSize; i < LaneSize*(l+1); ++i) {
- int MaskElt = SVOp->getMaskElt(i);
- if (MaskElt < 0)
- continue;
- Mask |= (MaskElt-l*LaneSize) << i;
- }
-
- return Mask;
-}
-
/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
/// of what x86 movss want. X86 movs requires the lowest element to be lowest
/// element of vector 2 and the other elements to come from vector 1 in order.
@@ -4035,21 +3873,18 @@ bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N,
/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to 256-bit
/// version of MOVDDUP.
-static bool isMOVDDUPYMask(ShuffleVectorSDNode *N,
- const X86Subtarget *Subtarget) {
- EVT VT = N->getValueType(0);
+static bool isMOVDDUPYMask(const SmallVectorImpl<int> &Mask, EVT VT,
+ bool HasAVX) {
int NumElts = VT.getVectorNumElements();
- bool V2IsUndef = N->getOperand(1).getOpcode() == ISD::UNDEF;
- if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256 ||
- !V2IsUndef || NumElts != 4)
+ if (!HasAVX || VT.getSizeInBits() != 256 || NumElts != 4)
return false;
for (int i = 0; i != NumElts/2; ++i)
- if (!isUndefOrEqual(N->getMaskElt(i), 0))
+ if (!isUndefOrEqual(Mask[i], 0))
return false;
for (int i = NumElts/2; i != NumElts; ++i)
- if (!isUndefOrEqual(N->getMaskElt(i), NumElts/2))
+ if (!isUndefOrEqual(Mask[i], NumElts/2))
return false;
return true;
}
@@ -4164,14 +3999,13 @@ unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
-unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
- ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
- EVT VVT = N->getValueType(0);
- unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
+static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
+ EVT VT = SVOp->getValueType(0);
+ unsigned EltSize = VT.getVectorElementType().getSizeInBits() >> 3;
int Val = 0;
unsigned i, e;
- for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
+ for (i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
Val = SVOp->getMaskElt(i);
if (Val >= 0)
break;
@@ -4631,29 +4465,14 @@ static SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
case X86ISD::SHUFPS:
case X86ISD::SHUFPD:
ImmN = N->getOperand(N->getNumOperands()-1);
- DecodeSHUFPSMask(NumElems,
- cast<ConstantSDNode>(ImmN)->getZExtValue(),
- ShuffleMask);
- break;
- case X86ISD::PUNPCKHBW:
- case X86ISD::PUNPCKHWD:
- case X86ISD::PUNPCKHDQ:
- case X86ISD::PUNPCKHQDQ:
- DecodePUNPCKHMask(NumElems, ShuffleMask);
- break;
- case X86ISD::UNPCKHPS:
- case X86ISD::UNPCKHPD:
- DecodeUNPCKHPMask(VT, ShuffleMask);
+ DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
+ ShuffleMask);
break;
- case X86ISD::PUNPCKLBW:
- case X86ISD::PUNPCKLWD:
- case X86ISD::PUNPCKLDQ:
- case X86ISD::PUNPCKLQDQ:
- DecodePUNPCKLMask(VT, ShuffleMask);
+ case X86ISD::UNPCKH:
+ DecodeUNPCKHMask(VT, ShuffleMask);
break;
- case X86ISD::UNPCKLPS:
- case X86ISD::UNPCKLPD:
- DecodeUNPCKLPMask(VT, ShuffleMask);
+ case X86ISD::UNPCKL:
+ DecodeUNPCKLMask(VT, ShuffleMask);
break;
case X86ISD::MOVHLPS:
DecodeMOVHLPSMask(NumElems, ShuffleMask);
@@ -4686,27 +4505,12 @@ static SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG,
Depth+1);
}
- case X86ISD::VPERMILPS:
- ImmN = N->getOperand(N->getNumOperands()-1);
- DecodeVPERMILPSMask(4, cast<ConstantSDNode>(ImmN)->getZExtValue(),
- ShuffleMask);
- break;
- case X86ISD::VPERMILPSY:
+ case X86ISD::VPERMILP:
ImmN = N->getOperand(N->getNumOperands()-1);
- DecodeVPERMILPSMask(8, cast<ConstantSDNode>(ImmN)->getZExtValue(),
+ DecodeVPERMILPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
ShuffleMask);
break;
- case X86ISD::VPERMILPD:
- ImmN = N->getOperand(N->getNumOperands()-1);
- DecodeVPERMILPDMask(2, cast<ConstantSDNode>(ImmN)->getZExtValue(),
- ShuffleMask);
- break;
- case X86ISD::VPERMILPDY:
- ImmN = N->getOperand(N->getNumOperands()-1);
- DecodeVPERMILPDMask(4, cast<ConstantSDNode>(ImmN)->getZExtValue(),
- ShuffleMask);
- break;
- case X86ISD::VPERM2F128:
+ case X86ISD::VPERM2X128:
ImmN = N->getOperand(N->getNumOperands()-1);
DecodeVPERM2F128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
ShuffleMask);
@@ -5334,8 +5138,10 @@ X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
DAG);
} else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
- assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
- EVT MiddleVT = MVT::v4i32;
+ unsigned NumBits = VT.getSizeInBits();
+ assert((NumBits == 128 || NumBits == 256) &&
+ "Expected an SSE or AVX value type!");
+ EVT MiddleVT = NumBits == 128 ? MVT::v4i32 : MVT::v8i32;
Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
Item = getShuffleVectorZeroOrUndef(Item, 0, true,
Subtarget->hasXMMInt(), DAG);
@@ -6256,7 +6062,7 @@ LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
// from X.
if (NumHi == 3) {
// Normalize it so the 3 elements come from V1.
- CommuteVectorShuffleMask(PermMask, VT);
+ CommuteVectorShuffleMask(PermMask, 4);
std::swap(V1, V2);
}
@@ -6566,70 +6372,6 @@ SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasXMMInt) {
X86::getShuffleSHUFImmediate(SVOp), DAG);
}
-static inline unsigned getUNPCKLOpcode(EVT VT, bool HasAVX2) {
- switch(VT.getSimpleVT().SimpleTy) {
- case MVT::v4i32: return X86ISD::PUNPCKLDQ;
- case MVT::v2i64: return X86ISD::PUNPCKLQDQ;
- case MVT::v8i32:
- if (HasAVX2) return X86ISD::PUNPCKLDQ;
- // else use fp unit for int unpack.
- case MVT::v8f32:
- case MVT::v4f32: return X86ISD::UNPCKLPS;
- case MVT::v4i64:
- if (HasAVX2) return X86ISD::PUNPCKLQDQ;
- // else use fp unit for int unpack.
- case MVT::v4f64:
- case MVT::v2f64: return X86ISD::UNPCKLPD;
- case MVT::v32i8:
- case MVT::v16i8: return X86ISD::PUNPCKLBW;
- case MVT::v16i16:
- case MVT::v8i16: return X86ISD::PUNPCKLWD;
- default:
- llvm_unreachable("Unknown type for unpckl");
- }
- return 0;
-}
-
-static inline unsigned getUNPCKHOpcode(EVT VT, bool HasAVX2) {
- switch(VT.getSimpleVT().SimpleTy) {
- case MVT::v4i32: return X86ISD::PUNPCKHDQ;
- case MVT::v2i64: return X86ISD::PUNPCKHQDQ;
- case MVT::v8i32:
- if (HasAVX2) return X86ISD::PUNPCKHDQ;
- // else use fp unit for int unpack.
- case MVT::v8f32:
- case MVT::v4f32: return X86ISD::UNPCKHPS;
- case MVT::v4i64:
- if (HasAVX2) return X86ISD::PUNPCKHQDQ;
- // else use fp unit for int unpack.
- case MVT::v4f64:
- case MVT::v2f64: return X86ISD::UNPCKHPD;
- case MVT::v32i8:
- case MVT::v16i8: return X86ISD::PUNPCKHBW;
- case MVT::v16i16:
- case MVT::v8i16: return X86ISD::PUNPCKHWD;
- default:
- llvm_unreachable("Unknown type for unpckh");
- }
- return 0;
-}
-
-static inline unsigned getVPERMILOpcode(EVT VT) {
- switch(VT.getSimpleVT().SimpleTy) {
- case MVT::v4i32:
- case MVT::v4f32: return X86ISD::VPERMILPS;
- case MVT::v2i64:
- case MVT::v2f64: return X86ISD::VPERMILPD;
- case MVT::v8i32:
- case MVT::v8f32: return X86ISD::VPERMILPSY;
- case MVT::v4i64:
- case MVT::v4f64: return X86ISD::VPERMILPDY;
- default:
- llvm_unreachable("Unknown type for vpermil");
- }
- return 0;
-}
-
static
SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
const TargetLowering &TLI,
@@ -6703,17 +6445,19 @@ X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
DebugLoc dl = Op.getDebugLoc();
unsigned NumElems = VT.getVectorNumElements();
- bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
bool V1IsSplat = false;
bool V2IsSplat = false;
bool HasXMMInt = Subtarget->hasXMMInt();
+ bool HasAVX = Subtarget->hasAVX();
bool HasAVX2 = Subtarget->hasAVX2();
MachineFunction &MF = DAG.getMachineFunction();
bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
+ assert(V1.getOpcode() != ISD::UNDEF && "Op 1 of shuffle should not be undef");
+
// Vector shuffle lowering takes 3 steps:
//
// 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
@@ -6738,11 +6482,9 @@ X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
// NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
// unpckh_undef). Only use pshufd if speed is more important than size.
if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp))
- return getTargetShuffleNode(getUNPCKLOpcode(VT, HasAVX2), dl, VT, V1, V1,
- DAG);
+ return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp))
- return getTargetShuffleNode(getUNPCKHOpcode(VT, HasAVX2), dl, VT, V1, V1,
- DAG);
+ return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
if (X86::isMOVDDUPMask(SVOp) && Subtarget->hasSSE3orAVX() &&
V2IsUndef && RelaxedMayFoldVectorLoad(V1))
@@ -6754,8 +6496,7 @@ X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
// Use to match splats
if (HasXMMInt && X86::isUNPCKHMask(SVOp, HasAVX2) && V2IsUndef &&
(VT == MVT::v2f64 || VT == MVT::v2i64))
- return getTargetShuffleNode(getUNPCKHOpcode(VT, HasAVX2), dl, VT, V1, V1,
- DAG);
+ return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
if (X86::isPSHUFDMask(SVOp)) {
// The actual implementation will match the mask in the if above and then
@@ -6787,8 +6528,6 @@ X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
}
if (X86::isMOVLMask(SVOp)) {
- if (V1IsUndef)
- return V2;
if (ISD::isBuildVectorAllZeros(V1.getNode()))
return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
if (!X86::isMOVLPMask(SVOp)) {
@@ -6834,17 +6573,19 @@ X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
V2IsSplat = isSplatVector(V2.getNode());
// Canonicalize the splat or undef, if present, to be on the RHS.
- if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
+ if (V1IsSplat && !V2IsSplat) {
Op = CommuteVectorShuffle(SVOp, DAG);
SVOp = cast<ShuffleVectorSDNode>(Op);
V1 = SVOp->getOperand(0);
V2 = SVOp->getOperand(1);
std::swap(V1IsSplat, V2IsSplat);
- std::swap(V1IsUndef, V2IsUndef);
Commuted = true;
}
- if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
+ SmallVector<int, 32> M;
+ SVOp->getMask(M);
+
+ if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
// Shuffling low element of v1 into undef, just return v1.
if (V2IsUndef)
return V1;
@@ -6854,13 +6595,11 @@ X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
return getMOVL(DAG, dl, VT, V2, V1);
}
- if (X86::isUNPCKLMask(SVOp, HasAVX2))
- return getTargetShuffleNode(getUNPCKLOpcode(VT, HasAVX2), dl, VT, V1, V2,
- DAG);
+ if (isUNPCKLMask(M, VT, HasAVX2))
+ return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
- if (X86::isUNPCKHMask(SVOp, HasAVX2))
- return getTargetShuffleNode(getUNPCKHOpcode(VT, HasAVX2), dl, VT, V1, V2,
- DAG);
+ if (isUNPCKHMask(M, VT, HasAVX2))
+ return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
if (V2IsSplat) {
// Normalize mask so all entries that point to V2 points to its first
@@ -6884,35 +6623,30 @@ X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
if (X86::isUNPCKLMask(NewSVOp, HasAVX2))
- return getTargetShuffleNode(getUNPCKLOpcode(VT, HasAVX2), dl, VT, V2, V1,
- DAG);
+ return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V2, V1, DAG);
if (X86::isUNPCKHMask(NewSVOp, HasAVX2))
- return getTargetShuffleNode(getUNPCKHOpcode(VT, HasAVX2), dl, VT, V2, V1,
- DAG);
+ return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V2, V1, DAG);
}
// Normalize the node to match x86 shuffle ops if needed
- if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
+ if (!V2IsUndef && (isSHUFPMask(M, VT, /* Commuted */ true) ||
+ isVSHUFPYMask(M, VT, HasAVX, /* Commuted */ true)))
return CommuteVectorShuffle(SVOp, DAG);
// The checks below are all present in isShuffleMaskLegal, but they are
// inlined here right now to enable us to directly emit target specific
// nodes, and remove one by one until they don't return Op anymore.
- SmallVector<int, 16> M;
- SVOp->getMask(M);
if (isPALIGNRMask(M, VT, Subtarget->hasSSSE3orAVX()))
return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
- X86::getShufflePALIGNRImmediate(SVOp),
+ getShufflePALIGNRImmediate(SVOp),
DAG);
if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
SVOp->getSplatIndex() == 0 && V2IsUndef) {
- if (VT == MVT::v2f64)
- return getTargetShuffleNode(X86ISD::UNPCKLPD, dl, VT, V1, V1, DAG);
- if (VT == MVT::v2i64)
- return getTargetShuffleNode(X86ISD::PUNPCKLQDQ, dl, VT, V1, V1, DAG);
+ if (VT == MVT::v2f64 || VT == MVT::v2i64)
+ return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
}
if (isPSHUFHWMask(M, VT))
@@ -6929,12 +6663,10 @@ X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V2,
X86::getShuffleSHUFImmediate(SVOp), DAG);
- if (X86::isUNPCKL_v_undef_Mask(SVOp))
- return getTargetShuffleNode(getUNPCKLOpcode(VT, HasAVX2), dl, VT, V1, V1,
- DAG);
- if (X86::isUNPCKH_v_undef_Mask(SVOp))
- return getTargetShuffleNode(getUNPCKHOpcode(VT, HasAVX2), dl, VT, V1, V1,
- DAG);
+ if (isUNPCKL_v_undef_Mask(M, VT))
+ return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
+ if (isUNPCKH_v_undef_Mask(M, VT))
+ return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
//===--------------------------------------------------------------------===//
// Generate target specific nodes for 128 or 256-bit shuffles only
@@ -6942,44 +6674,23 @@ X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
//
// Handle VMOVDDUPY permutations
- if (isMOVDDUPYMask(SVOp, Subtarget))
+ if (V2IsUndef && isMOVDDUPYMask(M, VT, HasAVX))
return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
- // Handle VPERMILPS* permutations
- if (isVPERMILPSMask(M, VT, Subtarget))
- return getTargetShuffleNode(getVPERMILOpcode(VT), dl, VT, V1,
- getShuffleVPERMILPSImmediate(SVOp), DAG);
-
- // Handle VPERMILPD* permutations
- if (isVPERMILPDMask(M, VT, Subtarget))
- return getTargetShuffleNode(getVPERMILOpcode(VT), dl, VT, V1,
- getShuffleVPERMILPDImmediate(SVOp), DAG);
+ // Handle VPERMILPS/D* permutations
+ if (isVPERMILPMask(M, VT, HasAVX))
+ return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
+ getShuffleVPERMILPImmediate(SVOp), DAG);
- // Handle VPERM2F128 permutations
- if (isVPERM2F128Mask(M, VT, Subtarget))
- return getTargetShuffleNode(X86ISD::VPERM2F128, dl, VT, V1, V2,
- getShuffleVPERM2F128Immediate(SVOp), DAG);
+ // Handle VPERM2F128/VPERM2I128 permutations
+ if (isVPERM2X128Mask(M, VT, HasAVX))
+ return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
+ V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
- // Handle VSHUFPSY permutations
- if (isVSHUFPSYMask(M, VT, Subtarget))
+ // Handle VSHUFPS/DY permutations
+ if (isVSHUFPYMask(M, VT, HasAVX))
return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V2,
- getShuffleVSHUFPSYImmediate(SVOp), DAG);
-
- // Handle VSHUFPDY permutations
- if (isVSHUFPDYMask(M, VT, Subtarget))
- return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V2,
- getShuffleVSHUFPDYImmediate(SVOp), DAG);
-
- // Try to swap operands in the node to match x86 shuffle ops
- if (isCommutedVSHUFPMask(M, VT, Subtarget)) {
- // Now we need to commute operands.
- SVOp = cast<ShuffleVectorSDNode>(CommuteVectorShuffle(SVOp, DAG));
- V1 = SVOp->getOperand(0);
- V2 = SVOp->getOperand(1);
- unsigned Immediate = (NumElems == 4) ? getShuffleVSHUFPDYImmediate(SVOp):
- getShuffleVSHUFPSYImmediate(SVOp);
- return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V2, Immediate, DAG);
- }
+ getShuffleVSHUFPYImmediate(SVOp), DAG);
//===--------------------------------------------------------------------===//
// Since no target specific shuffle was selected for this generic one,
@@ -7888,7 +7599,7 @@ SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
LLVMContext *Context = DAG.getContext();
// Build some magic constants.
- std::vector<Constant*> CV0;
+ SmallVector<Constant*,4> CV0;
CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
@@ -7896,7 +7607,7 @@ SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
Constant *C0 = ConstantVector::get(CV0);
SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
- std::vector<Constant*> CV1;
+ SmallVector<Constant*,2> CV1;
CV1.push_back(
ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
CV1.push_back(
@@ -8176,17 +7887,13 @@ SDValue X86TargetLowering::LowerFABS(SDValue Op,
EVT EltVT = VT;
if (VT.isVector())
EltVT = VT.getVectorElementType();
- std::vector<Constant*> CV;
+ SmallVector<Constant*,4> CV;
if (EltVT == MVT::f64) {
Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
- CV.push_back(C);
- CV.push_back(C);
+ CV.assign(2, C);
} else {
Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
- CV.push_back(C);
- CV.push_back(C);
- CV.push_back(C);
- CV.push_back(C);
+ CV.assign(4, C);
}
Constant *C = ConstantVector::get(CV);
SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
@@ -8201,19 +7908,18 @@ SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
DebugLoc dl = Op.getDebugLoc();
EVT VT = Op.getValueType();
EVT EltVT = VT;
- if (VT.isVector())
+ unsigned NumElts = VT == MVT::f64 ? 2 : 4;
+ if (VT.isVector()) {
EltVT = VT.getVectorElementType();
- std::vector<Constant*> CV;
+ NumElts = VT.getVectorNumElements();
+ }
+ SmallVector<Constant*,8> CV;
if (EltVT == MVT::f64) {
Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
- CV.push_back(C);
- CV.push_back(C);
+ CV.assign(NumElts, C);
} else {
Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
- CV.push_back(C);
- CV.push_back(C);
- CV.push_back(C);
- CV.push_back(C);
+ CV.assign(NumElts, C);
}
Constant *C = ConstantVector::get(CV);
SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
@@ -8221,11 +7927,12 @@ SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
MachinePointerInfo::getConstantPool(),
false, false, false, 16);
if (VT.isVector()) {
+ MVT XORVT = VT.getSizeInBits() == 128 ? MVT::v2i64 : MVT::v4i64;
return DAG.getNode(ISD::BITCAST, dl, VT,
- DAG.getNode(ISD::XOR, dl, MVT::v2i64,
- DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
+ DAG.getNode(ISD::XOR, dl, XORVT,
+ DAG.getNode(ISD::BITCAST, dl, XORVT,
Op.getOperand(0)),
- DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Mask)));
+ DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
} else {
return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
}
@@ -8254,7 +7961,7 @@ SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
// type, and that won't be f80 since that is not custom lowered.
// First get the sign bit of second operand.
- std::vector<Constant*> CV;
+ SmallVector<Constant*,4> CV;
if (SrcVT == MVT::f64) {
CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
@@ -9253,7 +8960,7 @@ SDValue
X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
SelectionDAG &DAG) const {
assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
- EnableSegmentedStacks) &&
+ getTargetMachine().Options.EnableSegmentedStacks) &&
"This should be used only on Windows targets or when segmented stacks "
"are being used");
assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
@@ -9267,7 +8974,7 @@ X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
bool Is64Bit = Subtarget->is64Bit();
EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
- if (EnableSegmentedStacks) {
+ if (getTargetMachine().Options.EnableSegmentedStacks) {
MachineFunction &MF = DAG.getMachineFunction();
MachineRegisterInfo &MRI = MF.getRegInfo();
@@ -9403,7 +9110,7 @@ SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
if (ArgMode == 2) {
// Sanity Check: Make sure using fp_offset makes sense.
- assert(!UseSoftFloat &&
+ assert(!getTargetMachine().Options.UseSoftFloat &&
!(DAG.getMachineFunction()
.getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
Subtarget->hasXMM());
@@ -10472,7 +10179,7 @@ SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
DAG.getConstant(4, MVT::i32));
- R = DAG.getNode(ISD::VSELECT, dl, VT, Op, R, M);
+ R = DAG.getNode(ISD::VSELECT, dl, VT, Op, M, R);
// a += a
Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
@@ -10487,13 +10194,13 @@ SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
DAG.getConstant(2, MVT::i32));
- R = DAG.getNode(ISD::VSELECT, dl, VT, Op, R, M);
+ R = DAG.getNode(ISD::VSELECT, dl, VT, Op, M, R);
// a += a
Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
// return pblendv(r, r+r, a);
R = DAG.getNode(ISD::VSELECT, dl, VT, Op,
- R, DAG.getNode(ISD::ADD, dl, VT, R, R));
+ DAG.getNode(ISD::ADD, dl, VT, R, R), R);
return R;
}
@@ -11194,6 +10901,8 @@ const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
case X86ISD::ANDNP: return "X86ISD::ANDNP";
case X86ISD::PSIGN: return "X86ISD::PSIGN";
case X86ISD::BLENDV: return "X86ISD::BLENDV";
+ case X86ISD::HADD: return "X86ISD::HADD";
+ case X86ISD::HSUB: return "X86ISD::HSUB";
case X86ISD::FHADD: return "X86ISD::FHADD";
case X86ISD::FHSUB: return "X86ISD::FHSUB";
case X86ISD::FMAX: return "X86ISD::FMAX";
@@ -11266,24 +10975,11 @@ const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
case X86ISD::MOVSLDUP_LD: return "X86ISD::MOVSLDUP_LD";
case X86ISD::MOVSD: return "X86ISD::MOVSD";
case X86ISD::MOVSS: return "X86ISD::MOVSS";
- case X86ISD::UNPCKLPS: return "X86ISD::UNPCKLPS";
- case X86ISD::UNPCKLPD: return "X86ISD::UNPCKLPD";
- case X86ISD::UNPCKHPS: return "X86ISD::UNPCKHPS";
- case X86ISD::UNPCKHPD: return "X86ISD::UNPCKHPD";
- case X86ISD::PUNPCKLBW: return "X86ISD::PUNPCKLBW";
- case X86ISD::PUNPCKLWD: return "X86ISD::PUNPCKLWD";
- case X86ISD::PUNPCKLDQ: return "X86ISD::PUNPCKLDQ";
- case X86ISD::PUNPCKLQDQ: return "X86ISD::PUNPCKLQDQ";
- case X86ISD::PUNPCKHBW: return "X86ISD::PUNPCKHBW";
- case X86ISD::PUNPCKHWD: return "X86ISD::PUNPCKHWD";
- case X86ISD::PUNPCKHDQ: return "X86ISD::PUNPCKHDQ";
- case X86ISD::PUNPCKHQDQ: return "X86ISD::PUNPCKHQDQ";
+ case X86ISD::UNPCKL: return "X86ISD::UNPCKL";
+ case X86ISD::UNPCKH: return "X86ISD::UNPCKH";
case X86ISD::VBROADCAST: return "X86ISD::VBROADCAST";
- case X86ISD::VPERMILPS: return "X86ISD::VPERMILPS";
- case X86ISD::VPERMILPSY: return "X86ISD::VPERMILPSY";
- case X86ISD::VPERMILPD: return "X86ISD::VPERMILPD";
- case X86ISD::VPERMILPDY: return "X86ISD::VPERMILPDY";
- case X86ISD::VPERM2F128: return "X86ISD::VPERM2F128";
+ case X86ISD::VPERMILP: return "X86ISD::VPERMILP";
+ case X86ISD::VPERM2X128: return "X86ISD::VPERM2X128";
case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
case X86ISD::VAARG_64: return "X86ISD::VAARG_64";
case X86ISD::WIN_ALLOCA: return "X86ISD::WIN_ALLOCA";
@@ -11391,7 +11087,7 @@ X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
EVT VT) const {
// Very little shuffling can be done for 64-bit vectors right now.
if (VT.getSizeInBits() == 64)
- return isPALIGNRMask(M, VT, Subtarget->hasSSSE3orAVX());
+ return false;
// FIXME: pshufb, blends, shifts.
return (VT.getVectorNumElements() == 2 ||
@@ -11419,7 +11115,7 @@ X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
return (isMOVLMask(Mask, VT) ||
isCommutedMOVLMask(Mask, VT, true) ||
isSHUFPMask(Mask, VT) ||
- isCommutedSHUFPMask(Mask, VT));
+ isSHUFPMask(Mask, VT, /* Commuted */ true));
}
return false;
}
@@ -12289,7 +11985,7 @@ X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
MachineFunction *MF = BB->getParent();
const BasicBlock *LLVM_BB = BB->getBasicBlock();
- assert(EnableSegmentedStacks);
+ assert(getTargetMachine().Options.EnableSegmentedStacks);
unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
@@ -13169,7 +12865,7 @@ static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
// the operands would cause it to handle comparisons between positive
// and negative zero incorrectly.
if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
- if (!UnsafeFPMath &&
+ if (!DAG.getTarget().Options.UnsafeFPMath &&
!(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
break;
std::swap(LHS, RHS);
@@ -13179,7 +12875,7 @@ static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
case ISD::SETOLE:
// Converting this to a min would handle comparisons between positive
// and negative zero incorrectly.
- if (!UnsafeFPMath &&
+ if (!DAG.getTarget().Options.UnsafeFPMath &&
!DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
break;
Opcode = X86ISD::FMIN;
@@ -13197,7 +12893,7 @@ static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
case ISD::SETOGE:
// Converting this to a max would handle comparisons between positive
// and negative zero incorrectly.
- if (!UnsafeFPMath &&
+ if (!DAG.getTarget().Options.UnsafeFPMath &&
!DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
break;
Opcode = X86ISD::FMAX;
@@ -13207,7 +12903,7 @@ static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
// the operands would cause it to handle comparisons between positive
// and negative zero incorrectly.
if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
- if (!UnsafeFPMath &&
+ if (!DAG.getTarget().Options.UnsafeFPMath &&
!(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
break;
std::swap(LHS, RHS);
@@ -13233,7 +12929,7 @@ static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
// Converting this to a min would handle comparisons between positive
// and negative zero incorrectly, and swapping the operands would
// cause it to handle NaNs incorrectly.
- if (!UnsafeFPMath &&
+ if (!DAG.getTarget().Options.UnsafeFPMath &&
!(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
break;
@@ -13243,7 +12939,7 @@ static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
break;
case ISD::SETUGT:
// Converting this to a min would handle NaNs incorrectly.
- if (!UnsafeFPMath &&
+ if (!DAG.getTarget().Options.UnsafeFPMath &&
(!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
break;
Opcode = X86ISD::FMIN;
@@ -13268,7 +12964,7 @@ static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
// Converting this to a max would handle comparisons between positive
// and negative zero incorrectly, and swapping the operands would
// cause it to handle NaNs incorrectly.
- if (!UnsafeFPMath &&
+ if (!DAG.getTarget().Options.UnsafeFPMath &&
!DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
break;
@@ -14048,7 +13744,7 @@ static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
- Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, X, Y);
+ Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
}
}
@@ -14232,7 +13928,7 @@ static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
SDValue StoredVal = St->getOperand(1);
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- // If we are saving a concatination of two XMM registers, perform two stores.
+ // If we are saving a concatenation of two XMM registers, perform two stores.
// This is better in Sandy Bridge cause one 256-bit mem op is done via two
// 128-bit ones. If in the future the cost becomes only one memory access the
// first version would be better.
@@ -14342,7 +14038,7 @@ static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
const Function *F = DAG.getMachineFunction().getFunction();
bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
- bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
+ bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
&& Subtarget->hasXMMInt();
if ((VT.isVector() ||
(VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
@@ -14458,7 +14154,7 @@ static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
/// set to A, RHS to B, and the routine returns 'true'.
/// Note that the binary operation should have the property that if one of the
/// operands is UNDEF then the result is UNDEF.
-static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool isCommutative) {
+static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
// Look for the following pattern: if
// A = < float a0, float a1, float a2, float a3 >
// B = < float b0, float b1, float b2, float b3 >
@@ -14474,7 +14170,18 @@ static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool isCommutative) {
return false;
EVT VT = LHS.getValueType();
- unsigned N = VT.getVectorNumElements();
+
+ assert((VT.is128BitVector() || VT.is256BitVector()) &&
+ "Unsupported vector type for horizontal add/sub");
+
+ // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
+ // operate independently on 128-bit lanes.
+ unsigned NumElts = VT.getVectorNumElements();
+ unsigned NumLanes = VT.getSizeInBits()/128;
+ unsigned NumLaneElts = NumElts / NumLanes;
+ assert((NumLaneElts % 2 == 0) &&
+ "Vector type should have an even number of elements in each lane");
+ unsigned HalfLaneElts = NumLaneElts/2;
// View LHS in the form
// LHS = VECTOR_SHUFFLE A, B, LMask
@@ -14483,7 +14190,7 @@ static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool isCommutative) {
// NOTE: in what follows a default initialized SDValue represents an UNDEF of
// type VT.
SDValue A, B;
- SmallVector<int, 8> LMask(N);
+ SmallVector<int, 16> LMask(NumElts);
if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
A = LHS.getOperand(0);
@@ -14493,14 +14200,14 @@ static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool isCommutative) {
} else {
if (LHS.getOpcode() != ISD::UNDEF)
A = LHS;
- for (unsigned i = 0; i != N; ++i)
+ for (unsigned i = 0; i != NumElts; ++i)
LMask[i] = i;
}
// Likewise, view RHS in the form
// RHS = VECTOR_SHUFFLE C, D, RMask
SDValue C, D;
- SmallVector<int, 8> RMask(N);
+ SmallVector<int, 16> RMask(NumElts);
if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
C = RHS.getOperand(0);
@@ -14510,7 +14217,7 @@ static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool isCommutative) {
} else {
if (RHS.getOpcode() != ISD::UNDEF)
C = RHS;
- for (unsigned i = 0; i != N; ++i)
+ for (unsigned i = 0; i != NumElts; ++i)
RMask[i] = i;
}
@@ -14525,30 +14232,28 @@ static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool isCommutative) {
// If A and B occur in reverse order in RHS, then "swap" them (which means
// rewriting the mask).
if (A != C)
- for (unsigned i = 0; i != N; ++i) {
- unsigned Idx = RMask[i];
- if (Idx < N)
- RMask[i] += N;
- else if (Idx < 2*N)
- RMask[i] -= N;
- }
+ CommuteVectorShuffleMask(RMask, NumElts);
// At this point LHS and RHS are equivalent to
// LHS = VECTOR_SHUFFLE A, B, LMask
// RHS = VECTOR_SHUFFLE A, B, RMask
// Check that the masks correspond to performing a horizontal operation.
- for (unsigned i = 0; i != N; ++i) {
- unsigned LIdx = LMask[i], RIdx = RMask[i];
+ for (unsigned i = 0; i != NumElts; ++i) {
+ int LIdx = LMask[i], RIdx = RMask[i];
// Ignore any UNDEF components.
- if (LIdx >= 2*N || RIdx >= 2*N || (!A.getNode() && (LIdx < N || RIdx < N))
- || (!B.getNode() && (LIdx >= N || RIdx >= N)))
+ if (LIdx < 0 || RIdx < 0 ||
+ (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
+ (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
continue;
// Check that successive elements are being operated on. If not, this is
// not a horizontal operation.
- if (!(LIdx == 2*i && RIdx == 2*i + 1) &&
- !(isCommutative && LIdx == 2*i + 1 && RIdx == 2*i))
+ unsigned Src = (i/HalfLaneElts) % 2; // each lane is split between srcs
+ unsigned LaneStart = (i/NumLaneElts) * NumLaneElts;
+ int Index = 2*(i%HalfLaneElts) + NumElts*Src + LaneStart;
+ if (!(LIdx == Index && RIdx == Index + 1) &&
+ !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
return false;
}
@@ -14565,7 +14270,8 @@ static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
SDValue RHS = N->getOperand(1);
// Try to synthesize horizontal adds from adds of shuffles.
- if (Subtarget->hasSSE3orAVX() && (VT == MVT::v4f32 || VT == MVT::v2f64) &&
+ if (((Subtarget->hasSSE3orAVX() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
+ (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
isHorizontalBinOp(LHS, RHS, true))
return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
return SDValue();
@@ -14579,7 +14285,8 @@ static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
SDValue RHS = N->getOperand(1);
// Try to synthesize horizontal subs from subs of shuffles.
- if (Subtarget->hasSSE3orAVX() && (VT == MVT::v4f32 || VT == MVT::v2f64) &&
+ if (((Subtarget->hasSSE3orAVX() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
+ (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
isHorizontalBinOp(LHS, RHS, false))
return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
return SDValue();
@@ -14783,7 +14490,8 @@ static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
SDValue Op1 = N->getOperand(1);
// Try to synthesize horizontal adds from adds of shuffles.
- if ((Subtarget->hasSSSE3orAVX()) && (VT == MVT::v8i16 || VT == MVT::v4i32) &&
+ if (((Subtarget->hasSSSE3orAVX() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
+ (Subtarget->hasAVX2() && (VT == MVT::v16i16 || MVT::v8i32))) &&
isHorizontalBinOp(Op0, Op1, true))
return DAG.getNode(X86ISD::HADD, N->getDebugLoc(), VT, Op0, Op1);
@@ -14815,8 +14523,9 @@ static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
// Try to synthesize horizontal adds from adds of shuffles.
EVT VT = N->getValueType(0);
- if ((Subtarget->hasSSSE3orAVX()) && (VT == MVT::v8i16 || VT == MVT::v4i32) &&
- isHorizontalBinOp(Op0, Op1, false))
+ if (((Subtarget->hasSSSE3orAVX() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
+ (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
+ isHorizontalBinOp(Op0, Op1, true))
return DAG.getNode(X86ISD::HSUB, N->getDebugLoc(), VT, Op0, Op1);
return OptimizeConditionalInDecrement(N, DAG);
@@ -14857,18 +14566,8 @@ SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
case X86ISD::SHUFPS: // Handle all target specific shuffles
case X86ISD::SHUFPD:
case X86ISD::PALIGN:
- case X86ISD::PUNPCKHBW:
- case X86ISD::PUNPCKHWD:
- case X86ISD::PUNPCKHDQ:
- case X86ISD::PUNPCKHQDQ:
- case X86ISD::UNPCKHPS:
- case X86ISD::UNPCKHPD:
- case X86ISD::PUNPCKLBW:
- case X86ISD::PUNPCKLWD:
- case X86ISD::PUNPCKLDQ:
- case X86ISD::PUNPCKLQDQ:
- case X86ISD::UNPCKLPS:
- case X86ISD::UNPCKLPD:
+ case X86ISD::UNPCKH:
+ case X86ISD::UNPCKL:
case X86ISD::MOVHLPS:
case X86ISD::MOVLHPS:
case X86ISD::PSHUFD:
@@ -14876,11 +14575,8 @@ SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
case X86ISD::PSHUFLW:
case X86ISD::MOVSS:
case X86ISD::MOVSD:
- case X86ISD::VPERMILPS:
- case X86ISD::VPERMILPSY:
- case X86ISD::VPERMILPD:
- case X86ISD::VPERMILPDY:
- case X86ISD::VPERM2F128:
+ case X86ISD::VPERMILP:
+ case X86ISD::VPERM2X128:
case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
}
diff --git a/lib/Target/X86/X86ISelLowering.h b/lib/Target/X86/X86ISelLowering.h
index ccff3a5..cfc1f88 100644
--- a/lib/Target/X86/X86ISelLowering.h
+++ b/lib/Target/X86/X86ISelLowering.h
@@ -273,23 +273,10 @@ namespace llvm {
MOVLPD,
MOVSD,
MOVSS,
- UNPCKLPS,
- UNPCKLPD,
- UNPCKHPS,
- UNPCKHPD,
- PUNPCKLBW,
- PUNPCKLWD,
- PUNPCKLDQ,
- PUNPCKLQDQ,
- PUNPCKHBW,
- PUNPCKHWD,
- PUNPCKHDQ,
- PUNPCKHQDQ,
- VPERMILPS,
- VPERMILPSY,
- VPERMILPD,
- VPERMILPDY,
- VPERM2F128,
+ UNPCKL,
+ UNPCKH,
+ VPERMILP,
+ VPERM2X128,
VBROADCAST,
// VASTART_SAVE_XMM_REGS - Save xmm argument registers to the stack,
@@ -468,10 +455,6 @@ namespace llvm {
/// the specified VECTOR_SHUFFLE mask with PSHUFLW instruction.
unsigned getShufflePSHUFLWImmediate(SDNode *N);
- /// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
- /// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
- unsigned getShufflePALIGNRImmediate(SDNode *N);
-
/// getExtractVEXTRACTF128Immediate - Return the appropriate
/// immediate to extract the specified EXTRACT_SUBVECTOR index
/// with VEXTRACTF128 instructions.
diff --git a/lib/Target/X86/X86InstrFMA.td b/lib/Target/X86/X86InstrFMA.td
index d868773..f443088 100644
--- a/lib/Target/X86/X86InstrFMA.td
+++ b/lib/Target/X86/X86InstrFMA.td
@@ -58,3 +58,391 @@ let isAsmParserOnly = 1 in {
defm VFNMSUBPS : fma_forms<0x9E, 0xAE, 0xBE, "vfnmsub", "ps">;
defm VFNMSUBPD : fma_forms<0x9E, 0xAE, 0xBE, "vfnmsub", "pd">, VEX_W;
}
+
+//===----------------------------------------------------------------------===//
+// FMA4 - AMD 4 operand Fused Multiply-Add instructions
+//===----------------------------------------------------------------------===//
+
+
+multiclass fma4s<bits<8> opc, string OpcodeStr> {
+ def rr : FMA4<opc, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src2, VR128:$src3),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ []>, XOP_W;
+ def rm : FMA4<opc, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src2, f128mem:$src3),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ []>, XOP_W;
+ def mr : FMA4<opc, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, f128mem:$src2, VR128:$src3),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ []>;
+
+}
+
+multiclass fma4p<bits<8> opc, string OpcodeStr> {
+ def rr : FMA4<opc, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src2, VR128:$src3),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ []>, XOP_W;
+ def rm : FMA4<opc, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src2, f128mem:$src3),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ []>, XOP_W;
+ def mr : FMA4<opc, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, f128mem:$src2, VR128:$src3),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ []>;
+ def rrY : FMA4<opc, MRMSrcReg, (outs VR256:$dst),
+ (ins VR256:$src1, VR256:$src2, VR256:$src3),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ []>, XOP_W;
+ def rmY : FMA4<opc, MRMSrcMem, (outs VR256:$dst),
+ (ins VR256:$src1, VR256:$src2, f256mem:$src3),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ []>, XOP_W;
+ def mrY : FMA4<opc, MRMSrcMem, (outs VR256:$dst),
+ (ins VR256:$src1, f256mem:$src2, VR256:$src3),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ []>;
+}
+
+let isAsmParserOnly = 1 in {
+ defm VFMADDSS4 : fma4s<0x6A, "vfmaddss">;
+ defm VFMADDSD4 : fma4s<0x6B, "vfmaddsd">;
+ defm VFMADDPS4 : fma4p<0x68, "vfmaddps">;
+ defm VFMADDPD4 : fma4p<0x69, "vfmaddpd">;
+ defm VFMSUBSS4 : fma4s<0x6E, "vfmsubss">;
+ defm VFMSUBSD4 : fma4s<0x6F, "vfmsubsd">;
+ defm VFMSUBPS4 : fma4p<0x6C, "vfmsubps">;
+ defm VFMSUBPD4 : fma4p<0x6D, "vfmsubpd">;
+ defm VFNMADDSS4 : fma4s<0x7A, "vfnmaddss">;
+ defm VFNMADDSD4 : fma4s<0x7B, "vfnmaddsd">;
+ defm VFNMADDPS4 : fma4p<0x78, "vfnmaddps">;
+ defm VFNMADDPD4 : fma4p<0x79, "vfnmaddpd">;
+ defm VFNMSUBSS4 : fma4s<0x7E, "vfnmsubss">;
+ defm VFNMSUBSD4 : fma4s<0x7F, "vfnmsubsd">;
+ defm VFNMSUBPS4 : fma4p<0x7C, "vfnmsubps">;
+ defm VFNMSUBPD4 : fma4p<0x7D, "vfnmsubpd">;
+ defm VFMADDSUBPS4 : fma4p<0x5C, "vfmaddsubps">;
+ defm VFMADDSUBPD4 : fma4p<0x5D, "vfmaddsubpd">;
+ defm VFMSUBADDPS4 : fma4p<0x5E, "vfmsubaddps">;
+ defm VFMSUBADDPD4 : fma4p<0x5F, "vfmsubaddpd">;
+}
+
+// FMA4 Intrinsics patterns
+
+// VFMADD
+def : Pat<(int_x86_fma4_vfmadd_ss VR128:$src1, VR128:$src2, VR128:$src3),
+ (VFMADDSS4rr VR128:$src1, VR128:$src2, VR128:$src3)>;
+def : Pat<(int_x86_fma4_vfmadd_ss VR128:$src1, VR128:$src2,
+ (alignedloadv4f32 addr:$src3)),
+ (VFMADDSS4rm VR128:$src1, VR128:$src2, addr:$src3)>;
+def : Pat<(int_x86_fma4_vfmadd_ss VR128:$src1, (alignedloadv4f32 addr:$src2),
+ VR128:$src3),
+ (VFMADDSS4mr VR128:$src1, addr:$src2, VR128:$src3)>;
+
+def : Pat<(int_x86_fma4_vfmadd_sd VR128:$src1, VR128:$src2, VR128:$src3),
+ (VFMADDSD4rr VR128:$src1, VR128:$src2, VR128:$src3)>;
+def : Pat<(int_x86_fma4_vfmadd_sd VR128:$src1, VR128:$src2,
+ (alignedloadv2f64 addr:$src3)),
+ (VFMADDSD4rm VR128:$src1, VR128:$src2, addr:$src3)>;
+def : Pat<(int_x86_fma4_vfmadd_sd VR128:$src1, (alignedloadv2f64 addr:$src2),
+ VR128:$src3),
+ (VFMADDSD4mr VR128:$src1, addr:$src2, VR128:$src3)>;
+
+def : Pat<(int_x86_fma4_vfmadd_ps VR128:$src1, VR128:$src2, VR128:$src3),
+ (VFMADDPS4rr VR128:$src1, VR128:$src2, VR128:$src3)>;
+def : Pat<(int_x86_fma4_vfmadd_ps VR128:$src1, VR128:$src2,
+ (alignedloadv4f32 addr:$src3)),
+ (VFMADDPS4rm VR128:$src1, VR128:$src2, addr:$src3)>;
+def : Pat<(int_x86_fma4_vfmadd_ps VR128:$src1, (alignedloadv4f32 addr:$src2),
+ VR128:$src3),
+ (VFMADDPS4mr VR128:$src1, addr:$src2, VR128:$src3)>;
+
+def : Pat<(int_x86_fma4_vfmadd_pd VR128:$src1, VR128:$src2, VR128:$src3),
+ (VFMADDPD4rr VR128:$src1, VR128:$src2, VR128:$src3)>;
+def : Pat<(int_x86_fma4_vfmadd_pd VR128:$src1, VR128:$src2,
+ (alignedloadv2f64 addr:$src3)),
+ (VFMADDPD4rm VR128:$src1, VR128:$src2, addr:$src3)>;
+def : Pat<(int_x86_fma4_vfmadd_pd VR128:$src1, (alignedloadv2f64 addr:$src2),
+ VR128:$src3),
+ (VFMADDPD4mr VR128:$src1, addr:$src2, VR128:$src3)>;
+
+def : Pat<(int_x86_fma4_vfmadd_ps_256 VR256:$src1, VR256:$src2, VR256:$src3),
+ (VFMADDPS4rrY VR256:$src1, VR256:$src2, VR256:$src3)>;
+def : Pat<(int_x86_fma4_vfmadd_ps_256 VR256:$src1, VR256:$src2,
+ (alignedloadv8f32 addr:$src3)),
+ (VFMADDPS4rmY VR256:$src1, VR256:$src2, addr:$src3)>;
+def : Pat<(int_x86_fma4_vfmadd_ps_256 VR256:$src1,
+ (alignedloadv8f32 addr:$src2),
+ VR256:$src3),
+ (VFMADDPS4mrY VR256:$src1, addr:$src2, VR256:$src3)>;
+
+def : Pat<(int_x86_fma4_vfmadd_pd_256 VR256:$src1, VR256:$src2, VR256:$src3),
+ (VFMADDPD4rrY VR256:$src1, VR256:$src2, VR256:$src3)>;
+def : Pat<(int_x86_fma4_vfmadd_pd_256 VR256:$src1, VR256:$src2,
+ (alignedloadv4f64 addr:$src3)),
+ (VFMADDPD4rmY VR256:$src1, VR256:$src2, addr:$src3)>;
+def : Pat<(int_x86_fma4_vfmadd_pd_256 VR256:$src1,
+ (alignedloadv4f64 addr:$src2),
+ VR256:$src3),
+ (VFMADDPD4mrY VR256:$src1, addr:$src2, VR256:$src3)>;
+
+// VFMSUB
+def : Pat<(int_x86_fma4_vfmsub_ss VR128:$src1, VR128:$src2, VR128:$src3),
+ (VFMSUBSS4rr VR128:$src1, VR128:$src2, VR128:$src3)>;
+def : Pat<(int_x86_fma4_vfmsub_ss VR128:$src1, VR128:$src2,
+ (alignedloadv4f32 addr:$src3)),
+ (VFMSUBSS4rm VR128:$src1, VR128:$src2, addr:$src3)>;
+def : Pat<(int_x86_fma4_vfmsub_ss VR128:$src1, (alignedloadv4f32 addr:$src2),
+ VR128:$src3),
+ (VFMSUBSS4mr VR128:$src1, addr:$src2, VR128:$src3)>;
+
+def : Pat<(int_x86_fma4_vfmsub_sd VR128:$src1, VR128:$src2, VR128:$src3),
+ (VFMSUBSD4rr VR128:$src1, VR128:$src2, VR128:$src3)>;
+def : Pat<(int_x86_fma4_vfmsub_sd VR128:$src1, VR128:$src2,
+ (alignedloadv2f64 addr:$src3)),
+ (VFMSUBSD4rm VR128:$src1, VR128:$src2, addr:$src3)>;
+def : Pat<(int_x86_fma4_vfmsub_sd VR128:$src1, (alignedloadv2f64 addr:$src2),
+ VR128:$src3),
+ (VFMSUBSD4mr VR128:$src1, addr:$src2, VR128:$src3)>;
+
+def : Pat<(int_x86_fma4_vfmsub_ps VR128:$src1, VR128:$src2, VR128:$src3),
+ (VFMSUBPS4rr VR128:$src1, VR128:$src2, VR128:$src3)>;
+def : Pat<(int_x86_fma4_vfmsub_ps VR128:$src1, VR128:$src2,
+ (alignedloadv4f32 addr:$src3)),
+ (VFMSUBPS4rm VR128:$src1, VR128:$src2, addr:$src3)>;
+def : Pat<(int_x86_fma4_vfmsub_ps VR128:$src1, (alignedloadv4f32 addr:$src2),
+ VR128:$src3),
+ (VFMSUBPS4mr VR128:$src1, addr:$src2, VR128:$src3)>;
+
+def : Pat<(int_x86_fma4_vfmsub_pd VR128:$src1, VR128:$src2, VR128:$src3),
+ (VFMSUBPD4rr VR128:$src1, VR128:$src2, VR128:$src3)>;
+def : Pat<(int_x86_fma4_vfmsub_pd VR128:$src1, VR128:$src2,
+ (alignedloadv2f64 addr:$src3)),
+ (VFMSUBPD4rm VR128:$src1, VR128:$src2, addr:$src3)>;
+def : Pat<(int_x86_fma4_vfmsub_pd VR128:$src1, (alignedloadv2f64 addr:$src2),
+ VR128:$src3),
+ (VFMSUBPD4mr VR128:$src1, addr:$src2, VR128:$src3)>;
+
+def : Pat<(int_x86_fma4_vfmsub_ps_256 VR256:$src1, VR256:$src2, VR256:$src3),
+ (VFMSUBPS4rrY VR256:$src1, VR256:$src2, VR256:$src3)>;
+def : Pat<(int_x86_fma4_vfmsub_ps_256 VR256:$src1, VR256:$src2,
+ (alignedloadv8f32 addr:$src3)),
+ (VFMSUBPS4rmY VR256:$src1, VR256:$src2, addr:$src3)>;
+def : Pat<(int_x86_fma4_vfmsub_ps_256 VR256:$src1,
+ (alignedloadv8f32 addr:$src2),
+ VR256:$src3),
+ (VFMSUBPS4mrY VR256:$src1, addr:$src2, VR256:$src3)>;
+
+def : Pat<(int_x86_fma4_vfmsub_pd_256 VR256:$src1, VR256:$src2, VR256:$src3),
+ (VFMSUBPD4rrY VR256:$src1, VR256:$src2, VR256:$src3)>;
+def : Pat<(int_x86_fma4_vfmsub_pd_256 VR256:$src1, VR256:$src2,
+ (alignedloadv4f64 addr:$src3)),
+ (VFMSUBPD4rmY VR256:$src1, VR256:$src2, addr:$src3)>;
+def : Pat<(int_x86_fma4_vfmsub_pd_256 VR256:$src1,
+ (alignedloadv4f64 addr:$src2),
+ VR256:$src3),
+ (VFMSUBPD4mrY VR256:$src1, addr:$src2, VR256:$src3)>;
+
+// VFNMADD
+def : Pat<(int_x86_fma4_vfnmadd_ss VR128:$src1, VR128:$src2, VR128:$src3),
+ (VFNMADDSS4rr VR128:$src1, VR128:$src2, VR128:$src3)>;
+def : Pat<(int_x86_fma4_vfnmadd_ss VR128:$src1, VR128:$src2,
+ (alignedloadv4f32 addr:$src3)),
+ (VFNMADDSS4rm VR128:$src1, VR128:$src2, addr:$src3)>;
+def : Pat<(int_x86_fma4_vfnmadd_ss VR128:$src1, (alignedloadv4f32 addr:$src2),
+ VR128:$src3),
+ (VFNMADDSS4mr VR128:$src1, addr:$src2, VR128:$src3)>;
+
+def : Pat<(int_x86_fma4_vfnmadd_sd VR128:$src1, VR128:$src2, VR128:$src3),
+ (VFNMADDSD4rr VR128:$src1, VR128:$src2, VR128:$src3)>;
+def : Pat<(int_x86_fma4_vfnmadd_sd VR128:$src1, VR128:$src2,
+ (alignedloadv2f64 addr:$src3)),
+ (VFNMADDSD4rm VR128:$src1, VR128:$src2, addr:$src3)>;
+def : Pat<(int_x86_fma4_vfnmadd_sd VR128:$src1, (alignedloadv2f64 addr:$src2),
+ VR128:$src3),
+ (VFNMADDSD4mr VR128:$src1, addr:$src2, VR128:$src3)>;
+
+def : Pat<(int_x86_fma4_vfnmadd_ps VR128:$src1, VR128:$src2, VR128:$src3),
+ (VFNMADDPS4rr VR128:$src1, VR128:$src2, VR128:$src3)>;
+def : Pat<(int_x86_fma4_vfnmadd_ps VR128:$src1, VR128:$src2,
+ (alignedloadv4f32 addr:$src3)),
+ (VFNMADDPS4rm VR128:$src1, VR128:$src2, addr:$src3)>;
+def : Pat<(int_x86_fma4_vfnmadd_ps VR128:$src1, (alignedloadv4f32 addr:$src2),
+ VR128:$src3),
+ (VFNMADDPS4mr VR128:$src1, addr:$src2, VR128:$src3)>;
+
+def : Pat<(int_x86_fma4_vfnmadd_pd VR128:$src1, VR128:$src2, VR128:$src3),
+ (VFNMADDPD4rr VR128:$src1, VR128:$src2, VR128:$src3)>;
+def : Pat<(int_x86_fma4_vfnmadd_pd VR128:$src1, VR128:$src2,
+ (alignedloadv2f64 addr:$src3)),
+ (VFNMADDPD4rm VR128:$src1, VR128:$src2, addr:$src3)>;
+def : Pat<(int_x86_fma4_vfnmadd_pd VR128:$src1, (alignedloadv2f64 addr:$src2),
+ VR128:$src3),
+ (VFNMADDPD4mr VR128:$src1, addr:$src2, VR128:$src3)>;
+
+def : Pat<(int_x86_fma4_vfnmadd_ps_256 VR256:$src1, VR256:$src2, VR256:$src3),
+ (VFNMADDPS4rrY VR256:$src1, VR256:$src2, VR256:$src3)>;
+def : Pat<(int_x86_fma4_vfnmadd_ps_256 VR256:$src1, VR256:$src2,
+ (alignedloadv8f32 addr:$src3)),
+ (VFNMADDPS4rmY VR256:$src1, VR256:$src2, addr:$src3)>;
+def : Pat<(int_x86_fma4_vfnmadd_ps_256 VR256:$src1,
+ (alignedloadv8f32 addr:$src2),
+ VR256:$src3),
+ (VFNMADDPS4mrY VR256:$src1, addr:$src2, VR256:$src3)>;
+
+def : Pat<(int_x86_fma4_vfnmadd_pd_256 VR256:$src1, VR256:$src2, VR256:$src3),
+ (VFNMADDPD4rrY VR256:$src1, VR256:$src2, VR256:$src3)>;
+def : Pat<(int_x86_fma4_vfnmadd_pd_256 VR256:$src1, VR256:$src2,
+ (alignedloadv4f64 addr:$src3)),
+ (VFNMADDPD4rmY VR256:$src1, VR256:$src2, addr:$src3)>;
+def : Pat<(int_x86_fma4_vfnmadd_pd_256 VR256:$src1,
+ (alignedloadv4f64 addr:$src2),
+ VR256:$src3),
+ (VFNMADDPD4mrY VR256:$src1, addr:$src2, VR256:$src3)>;
+
+// VFNMSUB
+def : Pat<(int_x86_fma4_vfnmsub_ss VR128:$src1, VR128:$src2, VR128:$src3),
+ (VFNMSUBSS4rr VR128:$src1, VR128:$src2, VR128:$src3)>;
+def : Pat<(int_x86_fma4_vfnmsub_ss VR128:$src1, VR128:$src2,
+ (alignedloadv4f32 addr:$src3)),
+ (VFNMSUBSS4rm VR128:$src1, VR128:$src2, addr:$src3)>;
+def : Pat<(int_x86_fma4_vfnmsub_ss VR128:$src1, (alignedloadv4f32 addr:$src2),
+ VR128:$src3),
+ (VFNMSUBSS4mr VR128:$src1, addr:$src2, VR128:$src3)>;
+
+def : Pat<(int_x86_fma4_vfnmsub_sd VR128:$src1, VR128:$src2, VR128:$src3),
+ (VFNMSUBSD4rr VR128:$src1, VR128:$src2, VR128:$src3)>;
+def : Pat<(int_x86_fma4_vfnmsub_sd VR128:$src1, VR128:$src2,
+ (alignedloadv2f64 addr:$src3)),
+ (VFNMSUBSD4rm VR128:$src1, VR128:$src2, addr:$src3)>;
+def : Pat<(int_x86_fma4_vfnmsub_sd VR128:$src1, (alignedloadv2f64 addr:$src2),
+ VR128:$src3),
+ (VFNMSUBSD4mr VR128:$src1, addr:$src2, VR128:$src3)>;
+
+def : Pat<(int_x86_fma4_vfnmsub_ps VR128:$src1, VR128:$src2, VR128:$src3),
+ (VFNMSUBPS4rr VR128:$src1, VR128:$src2, VR128:$src3)>;
+def : Pat<(int_x86_fma4_vfnmsub_ps VR128:$src1, VR128:$src2,
+ (alignedloadv4f32 addr:$src3)),
+ (VFNMSUBPS4rm VR128:$src1, VR128:$src2, addr:$src3)>;
+def : Pat<(int_x86_fma4_vfnmsub_ps VR128:$src1, (alignedloadv4f32 addr:$src2),
+ VR128:$src3),
+ (VFNMSUBPS4mr VR128:$src1, addr:$src2, VR128:$src3)>;
+
+def : Pat<(int_x86_fma4_vfnmsub_pd VR128:$src1, VR128:$src2, VR128:$src3),
+ (VFNMSUBPD4rr VR128:$src1, VR128:$src2, VR128:$src3)>;
+def : Pat<(int_x86_fma4_vfnmsub_pd VR128:$src1, VR128:$src2,
+ (alignedloadv2f64 addr:$src3)),
+ (VFNMSUBPD4rm VR128:$src1, VR128:$src2, addr:$src3)>;
+def : Pat<(int_x86_fma4_vfnmsub_pd VR128:$src1, (alignedloadv2f64 addr:$src2),
+ VR128:$src3),
+ (VFNMSUBPD4mr VR128:$src1, addr:$src2, VR128:$src3)>;
+
+def : Pat<(int_x86_fma4_vfnmsub_ps_256 VR256:$src1, VR256:$src2, VR256:$src3),
+ (VFNMSUBPS4rrY VR256:$src1, VR256:$src2, VR256:$src3)>;
+def : Pat<(int_x86_fma4_vfnmsub_ps_256 VR256:$src1, VR256:$src2,
+ (alignedloadv8f32 addr:$src3)),
+ (VFNMSUBPS4rmY VR256:$src1, VR256:$src2, addr:$src3)>;
+def : Pat<(int_x86_fma4_vfnmsub_ps_256 VR256:$src1,
+ (alignedloadv8f32 addr:$src2),
+ VR256:$src3),
+ (VFNMSUBPS4mrY VR256:$src1, addr:$src2, VR256:$src3)>;
+
+def : Pat<(int_x86_fma4_vfnmsub_pd_256 VR256:$src1, VR256:$src2, VR256:$src3),
+ (VFNMSUBPD4rrY VR256:$src1, VR256:$src2, VR256:$src3)>;
+def : Pat<(int_x86_fma4_vfnmsub_pd_256 VR256:$src1, VR256:$src2,
+ (alignedloadv4f64 addr:$src3)),
+ (VFNMSUBPD4rmY VR256:$src1, VR256:$src2, addr:$src3)>;
+def : Pat<(int_x86_fma4_vfnmsub_pd_256 VR256:$src1,
+ (alignedloadv4f64 addr:$src2),
+ VR256:$src3),
+ (VFNMSUBPD4mrY VR256:$src1, addr:$src2, VR256:$src3)>;
+
+// VFMADDSUB
+def : Pat<(int_x86_fma4_vfmaddsub_ps VR128:$src1, VR128:$src2, VR128:$src3),
+ (VFMADDSUBPS4rr VR128:$src1, VR128:$src2, VR128:$src3)>;
+def : Pat<(int_x86_fma4_vfmaddsub_ps VR128:$src1, VR128:$src2,
+ (alignedloadv4f32 addr:$src3)),
+ (VFMADDSUBPS4rm VR128:$src1, VR128:$src2, addr:$src3)>;
+def : Pat<(int_x86_fma4_vfmaddsub_ps VR128:$src1, (alignedloadv4f32 addr:$src2),
+ VR128:$src3),
+ (VFMADDSUBPS4mr VR128:$src1, addr:$src2, VR128:$src3)>;
+
+def : Pat<(int_x86_fma4_vfmaddsub_pd VR128:$src1, VR128:$src2, VR128:$src3),
+ (VFMADDSUBPD4rr VR128:$src1, VR128:$src2, VR128:$src3)>;
+def : Pat<(int_x86_fma4_vfmaddsub_pd VR128:$src1, VR128:$src2,
+ (alignedloadv2f64 addr:$src3)),
+ (VFMADDSUBPD4rm VR128:$src1, VR128:$src2, addr:$src3)>;
+def : Pat<(int_x86_fma4_vfmaddsub_pd VR128:$src1, (alignedloadv2f64 addr:$src2),
+ VR128:$src3),
+ (VFMADDSUBPD4mr VR128:$src1, addr:$src2, VR128:$src3)>;
+
+def : Pat<(int_x86_fma4_vfmaddsub_ps_256 VR256:$src1, VR256:$src2, VR256:$src3),
+ (VFMADDSUBPS4rrY VR256:$src1, VR256:$src2, VR256:$src3)>;
+def : Pat<(int_x86_fma4_vfmaddsub_ps_256 VR256:$src1, VR256:$src2,
+ (alignedloadv8f32 addr:$src3)),
+ (VFMADDSUBPS4rmY VR256:$src1, VR256:$src2, addr:$src3)>;
+def : Pat<(int_x86_fma4_vfmaddsub_ps_256 VR256:$src1,
+ (alignedloadv8f32 addr:$src2),
+ VR256:$src3),
+ (VFMADDSUBPS4mrY VR256:$src1, addr:$src2, VR256:$src3)>;
+
+def : Pat<(int_x86_fma4_vfmaddsub_pd_256 VR256:$src1, VR256:$src2, VR256:$src3),
+ (VFMADDSUBPD4rrY VR256:$src1, VR256:$src2, VR256:$src3)>;
+def : Pat<(int_x86_fma4_vfmaddsub_pd_256 VR256:$src1, VR256:$src2,
+ (alignedloadv4f64 addr:$src3)),
+ (VFMADDSUBPD4rmY VR256:$src1, VR256:$src2, addr:$src3)>;
+def : Pat<(int_x86_fma4_vfmaddsub_pd_256 VR256:$src1,
+ (alignedloadv4f64 addr:$src2),
+ VR256:$src3),
+ (VFMADDSUBPD4mrY VR256:$src1, addr:$src2, VR256:$src3)>;
+
+// VFMSUBADD
+def : Pat<(int_x86_fma4_vfmsubadd_ps VR128:$src1, VR128:$src2, VR128:$src3),
+ (VFMSUBADDPS4rr VR128:$src1, VR128:$src2, VR128:$src3)>;
+def : Pat<(int_x86_fma4_vfmsubadd_ps VR128:$src1, VR128:$src2,
+ (alignedloadv4f32 addr:$src3)),
+ (VFMSUBADDPS4rm VR128:$src1, VR128:$src2, addr:$src3)>;
+def : Pat<(int_x86_fma4_vfmsubadd_ps VR128:$src1, (alignedloadv4f32 addr:$src2),
+ VR128:$src3),
+ (VFMSUBADDPS4mr VR128:$src1, addr:$src2, VR128:$src3)>;
+
+def : Pat<(int_x86_fma4_vfmsubadd_pd VR128:$src1, VR128:$src2, VR128:$src3),
+ (VFMSUBADDPD4rr VR128:$src1, VR128:$src2, VR128:$src3)>;
+def : Pat<(int_x86_fma4_vfmsubadd_pd VR128:$src1, VR128:$src2,
+ (alignedloadv2f64 addr:$src3)),
+ (VFMSUBADDPD4rm VR128:$src1, VR128:$src2, addr:$src3)>;
+def : Pat<(int_x86_fma4_vfmsubadd_pd VR128:$src1, (alignedloadv2f64 addr:$src2),
+ VR128:$src3),
+ (VFMSUBADDPD4mr VR128:$src1, addr:$src2, VR128:$src3)>;
+
+def : Pat<(int_x86_fma4_vfmsubadd_ps_256 VR256:$src1, VR256:$src2, VR256:$src3),
+ (VFMSUBADDPS4rrY VR256:$src1, VR256:$src2, VR256:$src3)>;
+def : Pat<(int_x86_fma4_vfmsubadd_ps_256 VR256:$src1, VR256:$src2,
+ (alignedloadv8f32 addr:$src3)),
+ (VFMSUBADDPS4rmY VR256:$src1, VR256:$src2, addr:$src3)>;
+def : Pat<(int_x86_fma4_vfmsubadd_ps_256 VR256:$src1,
+ (alignedloadv8f32 addr:$src2),
+ VR256:$src3),
+ (VFMSUBADDPS4mrY VR256:$src1, addr:$src2, VR256:$src3)>;
+
+def : Pat<(int_x86_fma4_vfmsubadd_pd_256 VR256:$src1, VR256:$src2, VR256:$src3),
+ (VFMSUBADDPD4rrY VR256:$src1, VR256:$src2, VR256:$src3)>;
+def : Pat<(int_x86_fma4_vfmsubadd_pd_256 VR256:$src1, VR256:$src2,
+ (alignedloadv4f64 addr:$src3)),
+ (VFMSUBADDPD4rmY VR256:$src1, VR256:$src2, addr:$src3)>;
+def : Pat<(int_x86_fma4_vfmsubadd_pd_256 VR256:$src1,
+ (alignedloadv4f64 addr:$src2),
+ VR256:$src3),
+ (VFMSUBADDPD4mrY VR256:$src1, addr:$src2, VR256:$src3)>;
diff --git a/lib/Target/X86/X86InstrFormats.td b/lib/Target/X86/X86InstrFormats.td
index ecd6a93..7ba3639 100644
--- a/lib/Target/X86/X86InstrFormats.td
+++ b/lib/Target/X86/X86InstrFormats.td
@@ -110,6 +110,8 @@ class A7 { bits<5> Prefix = 16; }
class T8XD { bits<5> Prefix = 17; }
class T8XS { bits<5> Prefix = 18; }
class TAXD { bits<5> Prefix = 19; }
+class XOP8 { bits<5> Prefix = 20; }
+class XOP9 { bits<5> Prefix = 21; }
class VEX { bit hasVEXPrefix = 1; }
class VEX_W { bit hasVEX_WPrefix = 1; }
class VEX_4V : VEX { bit hasVEX_4VPrefix = 1; }
@@ -118,7 +120,8 @@ class VEX_I8IMM { bit hasVEX_i8ImmReg = 1; }
class VEX_L { bit hasVEX_L = 1; }
class VEX_LIG { bit ignoresVEX_L = 1; }
class Has3DNow0F0FOpcode { bit has3DNow0F0FOpcode = 1; }
-
+class XOP_W { bit hasXOP_WPrefix = 1; }
+class XOP { bit hasXOP_Prefix = 1; }
class X86Inst<bits<8> opcod, Format f, ImmType i, dag outs, dag ins,
string AsmStr, Domain d = GenericDomain>
: Instruction {
@@ -158,6 +161,8 @@ class X86Inst<bits<8> opcod, Format f, ImmType i, dag outs, dag ins,
bit hasVEX_L = 0; // Does this inst use large (256-bit) registers?
bit ignoresVEX_L = 0; // Does this instruction ignore the L-bit
bit has3DNow0F0FOpcode =0;// Wacky 3dNow! encoding?
+ bit hasXOP_WPrefix = 0; // Same bit as VEX_W, but used for swapping operands
+ bit hasXOP_Prefix = 0; // Does this inst require an XOP prefix?
// TSFlags layout should be kept in sync with X86InstrInfo.h.
let TSFlags{5-0} = FormBits;
@@ -179,6 +184,8 @@ class X86Inst<bits<8> opcod, Format f, ImmType i, dag outs, dag ins,
let TSFlags{38} = hasVEX_L;
let TSFlags{39} = ignoresVEX_L;
let TSFlags{40} = has3DNow0F0FOpcode;
+ let TSFlags{41} = hasXOP_WPrefix;
+ let TSFlags{42} = hasXOP_Prefix;
}
class PseudoI<dag oops, dag iops, list<dag> pattern>
@@ -332,6 +339,10 @@ class VPSI<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, !strconcat("v", asm), pattern, SSEPackedSingle>, TB,
Requires<[HasAVX]>;
+class VoPSI<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern>
+ : I<o, F, outs, ins, asm, pattern, SSEPackedSingle>, TB,
+ Requires<[HasXMM]>;
// SSE2 Instruction Templates:
//
@@ -496,6 +507,30 @@ class FMA3<bits<8> o, Format F, dag outs, dag ins, string asm,
: I<o, F, outs, ins, asm, pattern, SSEPackedInt>, T8,
OpSize, VEX_4V, Requires<[HasFMA3]>;
+// FMA4 Instruction Templates
+class FMA4<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag>pattern>
+ : Ii8<o, F, outs, ins, asm, pattern, SSEPackedInt>, TA,
+ OpSize, VEX_4V, VEX_I8IMM, Requires<[HasFMA4]>;
+
+// XOP 2, 3 and 4 Operand Instruction Template
+class IXOP<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern>
+ : I<o, F, outs, ins, asm, pattern, SSEPackedDouble>,
+ XOP, XOP9, Requires<[HasXOP]>;
+
+// XOP 2, 3 and 4 Operand Instruction Templates with imm byte
+class IXOPi8<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern>
+ : Ii8<o, F, outs, ins, asm, pattern, SSEPackedDouble>,
+ XOP, XOP8, Requires<[HasXOP]>;
+
+// XOP 5 operand instruction (VEX encoding!)
+class IXOP5<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag>pattern>
+ : Ii8<o, F, outs, ins, asm, pattern, SSEPackedInt>, TA,
+ OpSize, VEX_4V, VEX_I8IMM, Requires<[HasXOP]>;
+
// X86-64 Instruction templates...
//
diff --git a/lib/Target/X86/X86InstrFragmentsSIMD.td b/lib/Target/X86/X86InstrFragmentsSIMD.td
index 791bbe6..cd13bc4 100644
--- a/lib/Target/X86/X86InstrFragmentsSIMD.td
+++ b/lib/Target/X86/X86InstrFragmentsSIMD.td
@@ -130,28 +130,12 @@ def X86Movhlpd : SDNode<"X86ISD::MOVHLPD", SDTShuff2Op>;
def X86Movlps : SDNode<"X86ISD::MOVLPS", SDTShuff2Op>;
def X86Movlpd : SDNode<"X86ISD::MOVLPD", SDTShuff2Op>;
-def X86Unpcklps : SDNode<"X86ISD::UNPCKLPS", SDTShuff2Op>;
-def X86Unpcklpd : SDNode<"X86ISD::UNPCKLPD", SDTShuff2Op>;
+def X86Unpckl : SDNode<"X86ISD::UNPCKL", SDTShuff2Op>;
+def X86Unpckh : SDNode<"X86ISD::UNPCKH", SDTShuff2Op>;
-def X86Unpckhps : SDNode<"X86ISD::UNPCKHPS", SDTShuff2Op>;
-def X86Unpckhpd : SDNode<"X86ISD::UNPCKHPD", SDTShuff2Op>;
+def X86VPermilp : SDNode<"X86ISD::VPERMILP", SDTShuff2OpI>;
-def X86Punpcklbw : SDNode<"X86ISD::PUNPCKLBW", SDTShuff2Op>;
-def X86Punpcklwd : SDNode<"X86ISD::PUNPCKLWD", SDTShuff2Op>;
-def X86Punpckldq : SDNode<"X86ISD::PUNPCKLDQ", SDTShuff2Op>;
-def X86Punpcklqdq : SDNode<"X86ISD::PUNPCKLQDQ", SDTShuff2Op>;
-
-def X86Punpckhbw : SDNode<"X86ISD::PUNPCKHBW", SDTShuff2Op>;
-def X86Punpckhwd : SDNode<"X86ISD::PUNPCKHWD", SDTShuff2Op>;
-def X86Punpckhdq : SDNode<"X86ISD::PUNPCKHDQ", SDTShuff2Op>;
-def X86Punpckhqdq : SDNode<"X86ISD::PUNPCKHQDQ", SDTShuff2Op>;
-
-def X86VPermilps : SDNode<"X86ISD::VPERMILPS", SDTShuff2OpI>;
-def X86VPermilpsy : SDNode<"X86ISD::VPERMILPSY", SDTShuff2OpI>;
-def X86VPermilpd : SDNode<"X86ISD::VPERMILPD", SDTShuff2OpI>;
-def X86VPermilpdy : SDNode<"X86ISD::VPERMILPDY", SDTShuff2OpI>;
-
-def X86VPerm2f128 : SDNode<"X86ISD::VPERM2F128", SDTShuff3OpI>;
+def X86VPerm2x128 : SDNode<"X86ISD::VPERM2X128", SDTShuff3OpI>;
def X86VBroadcast : SDNode<"X86ISD::VBROADCAST", SDTVBroadcast>;
@@ -363,12 +347,6 @@ def SHUFFLE_get_pshuflw_imm : SDNodeXForm<vector_shuffle, [{
return getI8Imm(X86::getShufflePSHUFLWImmediate(N));
}]>;
-// SHUFFLE_get_palign_imm xform function: convert vector_shuffle mask to
-// a PALIGNR imm.
-def SHUFFLE_get_palign_imm : SDNodeXForm<vector_shuffle, [{
- return getI8Imm(X86::getShufflePALIGNRImmediate(N));
-}]>;
-
// EXTRACT_get_vextractf128_imm xform function: convert extract_subvector index
// to VEXTRACTF128 imm.
def EXTRACT_get_vextractf128_imm : SDNodeXForm<extract_subvector, [{
diff --git a/lib/Target/X86/X86InstrInfo.cpp b/lib/Target/X86/X86InstrInfo.cpp
index 24c4a53..7d1b9a1 100644
--- a/lib/Target/X86/X86InstrInfo.cpp
+++ b/lib/Target/X86/X86InstrInfo.cpp
@@ -1528,9 +1528,9 @@ X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
// Build and insert into an implicit UNDEF value. This is OK because
// well be shifting and then extracting the lower 16-bits.
- BuildMI(*MFI, MIB, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg2);
+ BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(X86::IMPLICIT_DEF),leaInReg2);
InsMI2 =
- BuildMI(*MFI, MIB, MI->getDebugLoc(), get(TargetOpcode::COPY))
+ BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(TargetOpcode::COPY))
.addReg(leaInReg2, RegState::Define, X86::sub_16bit)
.addReg(Src2, getKillRegState(isKill2));
addRegReg(MIB, leaInReg, true, leaInReg2, true);
@@ -2040,13 +2040,12 @@ X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
}
bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
- const MCInstrDesc &MCID = MI->getDesc();
- if (!MCID.isTerminator()) return false;
+ if (!MI->isTerminator()) return false;
// Conditional branch is a special case.
- if (MCID.isBranch() && !MCID.isBarrier())
+ if (MI->isBranch() && !MI->isBarrier())
return true;
- if (!MCID.isPredicable())
+ if (!MI->isPredicable())
return true;
return !isPredicated(MI);
}
@@ -2072,7 +2071,7 @@ bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
// A terminator that isn't a branch can't easily be handled by this
// analysis.
- if (!I->getDesc().isBranch())
+ if (!I->isBranch())
return true;
// Handle unconditional branches.
@@ -2556,6 +2555,8 @@ bool X86InstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
switch (MI->getOpcode()) {
case X86::V_SET0:
+ case X86::FsFLD0SS:
+ case X86::FsFLD0SD:
return Expand2AddrUndef(MI, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr));
case X86::TEST8ri_NOREX:
MI->setDesc(get(X86::TEST8ri));
@@ -2771,7 +2772,9 @@ static bool hasPartialRegUpdate(unsigned Opcode) {
case X86::RCPSSr:
case X86::RCPSSr_Int:
case X86::ROUNDSDr:
+ case X86::ROUNDSDr_Int:
case X86::ROUNDSSr:
+ case X86::ROUNDSSr_Int:
case X86::RSQRTSSr:
case X86::RSQRTSSr_Int:
case X86::SQRTSSr:
@@ -2783,7 +2786,9 @@ static bool hasPartialRegUpdate(unsigned Opcode) {
case X86::Int_VCVTSS2SDrr:
case X86::VRCPSSr:
case X86::VROUNDSDr:
+ case X86::VROUNDSDr_Int:
case X86::VROUNDSSr:
+ case X86::VROUNDSSr_Int:
case X86::VRSQRTSSr:
case X86::VSQRTSSr:
return true;
@@ -2911,11 +2916,9 @@ MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
Alignment = 16;
break;
case X86::FsFLD0SD:
- case X86::VFsFLD0SD:
Alignment = 8;
break;
case X86::FsFLD0SS:
- case X86::VFsFLD0SS:
Alignment = 4;
break;
default:
@@ -2950,9 +2953,7 @@ MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
case X86::AVX_SETALLONES:
case X86::AVX2_SETALLONES:
case X86::FsFLD0SD:
- case X86::FsFLD0SS:
- case X86::VFsFLD0SD:
- case X86::VFsFLD0SS: {
+ case X86::FsFLD0SS: {
// Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
// Create a constant-pool entry and operands to load from it.
@@ -2978,9 +2979,9 @@ MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
MachineConstantPool &MCP = *MF.getConstantPool();
Type *Ty;
unsigned Opc = LoadMI->getOpcode();
- if (Opc == X86::FsFLD0SS || Opc == X86::VFsFLD0SS)
+ if (Opc == X86::FsFLD0SS)
Ty = Type::getFloatTy(MF.getFunction()->getContext());
- else if (Opc == X86::FsFLD0SD || Opc == X86::VFsFLD0SD)
+ else if (Opc == X86::FsFLD0SD)
Ty = Type::getDoubleTy(MF.getFunction()->getContext());
else if (Opc == X86::AVX_SET0PSY || Opc == X86::AVX_SET0PDY)
Ty = VectorType::get(Type::getFloatTy(MF.getFunction()->getContext()), 8);
@@ -3569,7 +3570,13 @@ static const unsigned ReplaceableInstrsAVX2[][3] = {
{ X86::VORPSYrm, X86::VORPDYrm, X86::VPORYrm },
{ X86::VORPSYrr, X86::VORPDYrr, X86::VPORYrr },
{ X86::VXORPSYrm, X86::VXORPDYrm, X86::VPXORYrm },
- { X86::VXORPSYrr, X86::VXORPDYrr, X86::VPXORYrr }
+ { X86::VXORPSYrr, X86::VXORPDYrr, X86::VPXORYrr },
+ { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr },
+ { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr },
+ { X86::VINSERTF128rm, X86::VINSERTF128rm, X86::VINSERTI128rm },
+ { X86::VINSERTF128rr, X86::VINSERTF128rr, X86::VINSERTI128rr },
+ { X86::VPERM2F128rm, X86::VPERM2F128rm, X86::VPERM2I128rm },
+ { X86::VPERM2F128rr, X86::VPERM2F128rr, X86::VPERM2I128rr }
};
// FIXME: Some shuffle and unpack instructions have equivalents in different
diff --git a/lib/Target/X86/X86InstrInfo.td b/lib/Target/X86/X86InstrInfo.td
index 35631d5..0bc3afa 100644
--- a/lib/Target/X86/X86InstrInfo.td
+++ b/lib/Target/X86/X86InstrInfo.td
@@ -473,6 +473,7 @@ def HasSSE4A : Predicate<"Subtarget->hasSSE4A()">;
def HasAVX : Predicate<"Subtarget->hasAVX()">;
def HasAVX2 : Predicate<"Subtarget->hasAVX2()">;
+def HasXMM : Predicate<"Subtarget->hasXMM()">;
def HasXMMInt : Predicate<"Subtarget->hasXMMInt()">;
def HasPOPCNT : Predicate<"Subtarget->hasPOPCNT()">;
@@ -480,6 +481,7 @@ def HasAES : Predicate<"Subtarget->hasAES()">;
def HasCLMUL : Predicate<"Subtarget->hasCLMUL()">;
def HasFMA3 : Predicate<"Subtarget->hasFMA3()">;
def HasFMA4 : Predicate<"Subtarget->hasFMA4()">;
+def HasXOP : Predicate<"Subtarget->hasXOP()">;
def HasMOVBE : Predicate<"Subtarget->hasMOVBE()">;
def HasRDRAND : Predicate<"Subtarget->hasRDRAND()">;
def HasF16C : Predicate<"Subtarget->hasF16C()">;
@@ -1502,6 +1504,9 @@ include "X86InstrFragmentsSIMD.td"
// FMA - Fused Multiply-Add support (requires FMA)
include "X86InstrFMA.td"
+// XOP
+include "X86InstrXOP.td"
+
// SSE, MMX and 3DNow! vector support.
include "X86InstrSSE.td"
include "X86InstrMMX.td"
diff --git a/lib/Target/X86/X86InstrSSE.td b/lib/Target/X86/X86InstrSSE.td
index 7cadac1..345f606 100644
--- a/lib/Target/X86/X86InstrSSE.td
+++ b/lib/Target/X86/X86InstrSSE.td
@@ -240,21 +240,13 @@ let Predicates = [HasAVX] in {
}
// Alias instructions that map fld0 to pxor for sse.
-// FIXME: Set encoding to pseudo!
-let isReMaterializable = 1, isAsCheapAsAMove = 1, isCodeGenOnly = 1,
- canFoldAsLoad = 1 in {
- def FsFLD0SS : I<0xEF, MRMInitReg, (outs FR32:$dst), (ins), "",
- [(set FR32:$dst, fp32imm0)]>,
- Requires<[HasSSE1]>, TB, OpSize;
- def FsFLD0SD : I<0xEF, MRMInitReg, (outs FR64:$dst), (ins), "",
- [(set FR64:$dst, fpimm0)]>,
- Requires<[HasSSE2]>, TB, OpSize;
- def VFsFLD0SS : I<0xEF, MRMInitReg, (outs FR32:$dst), (ins), "",
- [(set FR32:$dst, fp32imm0)]>,
- Requires<[HasAVX]>, TB, OpSize, VEX_4V;
- def VFsFLD0SD : I<0xEF, MRMInitReg, (outs FR64:$dst), (ins), "",
- [(set FR64:$dst, fpimm0)]>,
- Requires<[HasAVX]>, TB, OpSize, VEX_4V;
+// This is expanded by ExpandPostRAPseudos.
+let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1,
+ isPseudo = 1 in {
+ def FsFLD0SS : I<0, Pseudo, (outs FR32:$dst), (ins), "",
+ [(set FR32:$dst, fp32imm0)]>, Requires<[HasXMM]>;
+ def FsFLD0SD : I<0, Pseudo, (outs FR64:$dst), (ins), "",
+ [(set FR64:$dst, fpimm0)]>, Requires<[HasXMMInt]>;
}
//===----------------------------------------------------------------------===//
@@ -569,6 +561,16 @@ let Predicates = [HasAVX] in {
(EXTRACT_SUBREG (v4i32 VR128:$src), sub_ss))>;
def : Pat<(v2f64 (X86vzmovl (v2f64 (scalar_to_vector FR64:$src)))),
(VMOVSDrr (v2f64 (V_SET0)), FR64:$src)>;
+
+ // Move low f32 and clear high bits.
+ def : Pat<(v8f32 (X86vzmovl (v8f32 VR256:$src))),
+ (SUBREG_TO_REG (i32 0),
+ (VMOVSSrr (v4f32 (V_SET0)),
+ (EXTRACT_SUBREG (v8f32 VR256:$src), sub_ss)), sub_xmm)>;
+ def : Pat<(v8i32 (X86vzmovl (v8i32 VR256:$src))),
+ (SUBREG_TO_REG (i32 0),
+ (VMOVSSrr (v4i32 (V_SET0)),
+ (EXTRACT_SUBREG (v8i32 VR256:$src), sub_ss)), sub_xmm)>;
}
let AddedComplexity = 20 in {
@@ -596,6 +598,9 @@ let Predicates = [HasAVX] in {
// Represent the same patterns above but in the form they appear for
// 256-bit types
+ def : Pat<(v8i32 (X86vzmovl (insert_subvector undef,
+ (v4i32 (scalar_to_vector (loadi32 addr:$src))), (i32 0)))),
+ (SUBREG_TO_REG (i32 0), (VMOVSSrm addr:$src), sub_ss)>;
def : Pat<(v8f32 (X86vzmovl (insert_subvector undef,
(v4f32 (scalar_to_vector (loadf32 addr:$src))), (i32 0)))),
(SUBREG_TO_REG (i32 0), (VMOVSSrm addr:$src), sub_ss)>;
@@ -613,6 +618,15 @@ let Predicates = [HasAVX] in {
(SUBREG_TO_REG (i64 0),
(v2f64 (VMOVSDrr (v2f64 (V_SET0)), FR64:$src)),
sub_xmm)>;
+ def : Pat<(v4i64 (X86vzmovl (insert_subvector undef,
+ (v2i64 (scalar_to_vector (loadi64 addr:$src))), (i32 0)))),
+ (SUBREG_TO_REG (i64 0), (VMOVSDrm addr:$src), sub_sd)>;
+
+ // Move low f64 and clear high bits.
+ def : Pat<(v4f64 (X86vzmovl (v4f64 VR256:$src))),
+ (SUBREG_TO_REG (i32 0),
+ (VMOVSDrr (v2f64 (V_SET0)),
+ (EXTRACT_SUBREG (v4f64 VR256:$src), sub_sd)), sub_xmm)>;
// Extract and store.
def : Pat<(store (f32 (vector_extract (v4f32 VR128:$src), (iPTR 0))),
@@ -634,6 +648,16 @@ let Predicates = [HasAVX] in {
(VMOVSSrr (v4f32 VR128:$src1),
(EXTRACT_SUBREG (v4f32 VR128:$src2), sub_ss))>;
+ // 256-bit variants
+ def : Pat<(v8i32 (X86Movsd VR256:$src1, VR256:$src2)),
+ (SUBREG_TO_REG (i32 0),
+ (VMOVSSrr (EXTRACT_SUBREG (v8i32 VR256:$src1), sub_ss),
+ (EXTRACT_SUBREG (v8i32 VR256:$src2), sub_ss)), sub_xmm)>;
+ def : Pat<(v8f32 (X86Movsd VR256:$src1, VR256:$src2)),
+ (SUBREG_TO_REG (i32 0),
+ (VMOVSSrr (EXTRACT_SUBREG (v8f32 VR256:$src1), sub_ss),
+ (EXTRACT_SUBREG (v8f32 VR256:$src2), sub_ss)), sub_xmm)>;
+
// Shuffle with VMOVSD
def : Pat<(v2f64 (X86Movsd VR128:$src1, (scalar_to_vector FR64:$src2))),
(VMOVSDrr VR128:$src1, FR64:$src2)>;
@@ -650,6 +674,17 @@ let Predicates = [HasAVX] in {
(VMOVSDrr VR128:$src1, (EXTRACT_SUBREG (v4i32 VR128:$src2),
sub_sd))>;
+ // 256-bit variants
+ def : Pat<(v4i64 (X86Movsd VR256:$src1, VR256:$src2)),
+ (SUBREG_TO_REG (i32 0),
+ (VMOVSDrr (EXTRACT_SUBREG (v4i64 VR256:$src1), sub_sd),
+ (EXTRACT_SUBREG (v4i64 VR256:$src2), sub_sd)), sub_xmm)>;
+ def : Pat<(v4f64 (X86Movsd VR256:$src1, VR256:$src2)),
+ (SUBREG_TO_REG (i32 0),
+ (VMOVSDrr (EXTRACT_SUBREG (v4f64 VR256:$src1), sub_sd),
+ (EXTRACT_SUBREG (v4f64 VR256:$src2), sub_sd)), sub_xmm)>;
+
+
// FIXME: Instead of a X86Movlps there should be a X86Movsd here, the problem
// is during lowering, where it's not possible to recognize the fold cause
// it has two uses through a bitcast. One use disappears at isel time and the
@@ -657,6 +692,9 @@ let Predicates = [HasAVX] in {
def : Pat<(v2f64 (X86Movlpd VR128:$src1, VR128:$src2)),
(VMOVSDrr VR128:$src1, (EXTRACT_SUBREG (v2f64 VR128:$src2),
sub_sd))>;
+ def : Pat<(v2i64 (X86Movlpd VR128:$src1, VR128:$src2)),
+ (VMOVSDrr VR128:$src1, (EXTRACT_SUBREG (v2i64 VR128:$src2),
+ sub_sd))>;
def : Pat<(v4f32 (X86Movlps VR128:$src1, VR128:$src2)),
(VMOVSDrr VR128:$src1, (EXTRACT_SUBREG (v4f32 VR128:$src2),
sub_sd))>;
@@ -761,6 +799,22 @@ let isCodeGenOnly = 1 in {
"movupd\t{$src, $dst|$dst, $src}", []>, VEX;
}
+let Predicates = [HasAVX] in {
+def : Pat<(v8i32 (X86vzmovl
+ (insert_subvector undef, (v4i32 VR128:$src), (i32 0)))),
+ (SUBREG_TO_REG (i32 0), (VMOVAPSrr VR128:$src), sub_xmm)>;
+def : Pat<(v4i64 (X86vzmovl
+ (insert_subvector undef, (v2i64 VR128:$src), (i32 0)))),
+ (SUBREG_TO_REG (i32 0), (VMOVAPSrr VR128:$src), sub_xmm)>;
+def : Pat<(v8f32 (X86vzmovl
+ (insert_subvector undef, (v4f32 VR128:$src), (i32 0)))),
+ (SUBREG_TO_REG (i32 0), (VMOVAPSrr VR128:$src), sub_xmm)>;
+def : Pat<(v4f64 (X86vzmovl
+ (insert_subvector undef, (v2f64 VR128:$src), (i32 0)))),
+ (SUBREG_TO_REG (i32 0), (VMOVAPSrr VR128:$src), sub_xmm)>;
+}
+
+
def : Pat<(int_x86_avx_loadu_ps_256 addr:$src), (VMOVUPSYrm addr:$src)>;
def : Pat<(int_x86_avx_storeu_ps_256 addr:$dst, VR256:$src),
(VMOVUPSYmr addr:$dst, VR256:$src)>;
@@ -1156,14 +1210,17 @@ let Predicates = [HasAVX] in {
(bc_v4f32 (v2f64 (scalar_to_vector (loadf64 addr:$src2))))),
(VMOVHPSrm VR128:$src1, addr:$src2)>;
def : Pat<(X86Movlhps VR128:$src1,
+ (bc_v4f32 (v2i64 (scalar_to_vector (loadi64 addr:$src2))))),
+ (VMOVHPSrm VR128:$src1, addr:$src2)>;
+ def : Pat<(X86Movlhps VR128:$src1,
(bc_v4i32 (v2i64 (X86vzload addr:$src2)))),
(VMOVHPSrm VR128:$src1, addr:$src2)>;
- // FIXME: Instead of X86Unpcklpd, there should be a X86Movlhpd here, the problem
+ // FIXME: Instead of X86Unpckl, there should be a X86Movlhpd here, the problem
// is during lowering, where it's not possible to recognize the load fold cause
// it has two uses through a bitcast. One use disappears at isel time and the
// fold opportunity reappears.
- def : Pat<(v2f64 (X86Unpcklpd VR128:$src1,
+ def : Pat<(v2f64 (X86Unpckl VR128:$src1,
(scalar_to_vector (loadf64 addr:$src2)))),
(VMOVHPDrm VR128:$src1, addr:$src2)>;
@@ -1174,10 +1231,10 @@ let Predicates = [HasAVX] in {
// Store patterns
def : Pat<(store (f64 (vector_extract
- (v2f64 (X86Unpckhps VR128:$src, (undef))), (iPTR 0))), addr:$dst),
+ (v2f64 (X86Unpckh VR128:$src, (undef))), (iPTR 0))), addr:$dst),
(VMOVHPSmr addr:$dst, VR128:$src)>;
def : Pat<(store (f64 (vector_extract
- (v2f64 (X86Unpckhpd VR128:$src, (undef))), (iPTR 0))), addr:$dst),
+ (v2f64 (X86Unpckh VR128:$src, (undef))), (iPTR 0))), addr:$dst),
(VMOVHPDmr addr:$dst, VR128:$src)>;
}
@@ -1189,21 +1246,24 @@ let Predicates = [HasSSE1] in {
(bc_v4f32 (v2f64 (scalar_to_vector (loadf64 addr:$src2))))),
(MOVHPSrm VR128:$src1, addr:$src2)>;
def : Pat<(X86Movlhps VR128:$src1,
+ (bc_v4f32 (v2i64 (scalar_to_vector (loadi64 addr:$src2))))),
+ (MOVHPSrm VR128:$src1, addr:$src2)>;
+ def : Pat<(X86Movlhps VR128:$src1,
(bc_v4f32 (v2i64 (X86vzload addr:$src2)))),
(MOVHPSrm VR128:$src1, addr:$src2)>;
// Store patterns
def : Pat<(store (f64 (vector_extract
- (v2f64 (X86Unpckhps VR128:$src, (undef))), (iPTR 0))), addr:$dst),
+ (v2f64 (X86Unpckh VR128:$src, (undef))), (iPTR 0))), addr:$dst),
(MOVHPSmr addr:$dst, VR128:$src)>;
}
let Predicates = [HasSSE2] in {
- // FIXME: Instead of X86Unpcklpd, there should be a X86Movlhpd here, the problem
+ // FIXME: Instead of X86Unpckl, there should be a X86Movlhpd here, the problem
// is during lowering, where it's not possible to recognize the load fold cause
// it has two uses through a bitcast. One use disappears at isel time and the
// fold opportunity reappears.
- def : Pat<(v2f64 (X86Unpcklpd VR128:$src1,
+ def : Pat<(v2f64 (X86Unpckl VR128:$src1,
(scalar_to_vector (loadf64 addr:$src2)))),
(MOVHPDrm VR128:$src1, addr:$src2)>;
@@ -1214,7 +1274,7 @@ let Predicates = [HasSSE2] in {
// Store patterns
def : Pat<(store (f64 (vector_extract
- (v2f64 (X86Unpckhpd VR128:$src, (undef))), (iPTR 0))),addr:$dst),
+ (v2f64 (X86Unpckh VR128:$src, (undef))), (iPTR 0))),addr:$dst),
(MOVHPDmr addr:$dst, VR128:$src)>;
}
@@ -1943,7 +2003,7 @@ def Int_CVTPD2PSrm : PDI<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
// whenever possible to avoid declaring two versions of each one.
def : Pat<(int_x86_avx_cvtdq2_ps_256 VR256:$src),
(VCVTDQ2PSYrr VR256:$src)>;
-def : Pat<(int_x86_avx_cvtdq2_ps_256 (memopv8i32 addr:$src)),
+def : Pat<(int_x86_avx_cvtdq2_ps_256 (bitconvert (memopv4i64 addr:$src))),
(VCVTDQ2PSYrm addr:$src)>;
def : Pat<(int_x86_avx_cvt_pd2_ps_256 VR256:$src),
@@ -2430,27 +2490,27 @@ let AddedComplexity = 10 in {
} // AddedComplexity
let Predicates = [HasSSE1] in {
- def : Pat<(v4f32 (X86Unpcklps VR128:$src1, (memopv4f32 addr:$src2))),
+ def : Pat<(v4f32 (X86Unpckl VR128:$src1, (memopv4f32 addr:$src2))),
(UNPCKLPSrm VR128:$src1, addr:$src2)>;
- def : Pat<(v4f32 (X86Unpcklps VR128:$src1, VR128:$src2)),
+ def : Pat<(v4f32 (X86Unpckl VR128:$src1, VR128:$src2)),
(UNPCKLPSrr VR128:$src1, VR128:$src2)>;
- def : Pat<(v4f32 (X86Unpckhps VR128:$src1, (memopv4f32 addr:$src2))),
+ def : Pat<(v4f32 (X86Unpckh VR128:$src1, (memopv4f32 addr:$src2))),
(UNPCKHPSrm VR128:$src1, addr:$src2)>;
- def : Pat<(v4f32 (X86Unpckhps VR128:$src1, VR128:$src2)),
+ def : Pat<(v4f32 (X86Unpckh VR128:$src1, VR128:$src2)),
(UNPCKHPSrr VR128:$src1, VR128:$src2)>;
}
let Predicates = [HasSSE2] in {
- def : Pat<(v2f64 (X86Unpcklpd VR128:$src1, (memopv2f64 addr:$src2))),
+ def : Pat<(v2f64 (X86Unpckl VR128:$src1, (memopv2f64 addr:$src2))),
(UNPCKLPDrm VR128:$src1, addr:$src2)>;
- def : Pat<(v2f64 (X86Unpcklpd VR128:$src1, VR128:$src2)),
+ def : Pat<(v2f64 (X86Unpckl VR128:$src1, VR128:$src2)),
(UNPCKLPDrr VR128:$src1, VR128:$src2)>;
- def : Pat<(v2f64 (X86Unpckhpd VR128:$src1, (memopv2f64 addr:$src2))),
+ def : Pat<(v2f64 (X86Unpckh VR128:$src1, (memopv2f64 addr:$src2))),
(UNPCKHPDrm VR128:$src1, addr:$src2)>;
- def : Pat<(v2f64 (X86Unpckhpd VR128:$src1, VR128:$src2)),
+ def : Pat<(v2f64 (X86Unpckh VR128:$src1, VR128:$src2)),
(UNPCKHPDrr VR128:$src1, VR128:$src2)>;
- // FIXME: Instead of X86Movddup, there should be a X86Unpcklpd here, the
+ // FIXME: Instead of X86Movddup, there should be a X86Unpckl here, the
// problem is during lowering, where it's not possible to recognize the load
// fold cause it has two uses through a bitcast. One use disappears at isel
// time and the fold opportunity reappears.
@@ -2463,59 +2523,43 @@ let Predicates = [HasSSE2] in {
}
let Predicates = [HasAVX] in {
- def : Pat<(v4f32 (X86Unpcklps VR128:$src1, (memopv4f32 addr:$src2))),
+ def : Pat<(v4f32 (X86Unpckl VR128:$src1, (memopv4f32 addr:$src2))),
(VUNPCKLPSrm VR128:$src1, addr:$src2)>;
- def : Pat<(v4f32 (X86Unpcklps VR128:$src1, VR128:$src2)),
+ def : Pat<(v4f32 (X86Unpckl VR128:$src1, VR128:$src2)),
(VUNPCKLPSrr VR128:$src1, VR128:$src2)>;
- def : Pat<(v4f32 (X86Unpckhps VR128:$src1, (memopv4f32 addr:$src2))),
+ def : Pat<(v4f32 (X86Unpckh VR128:$src1, (memopv4f32 addr:$src2))),
(VUNPCKHPSrm VR128:$src1, addr:$src2)>;
- def : Pat<(v4f32 (X86Unpckhps VR128:$src1, VR128:$src2)),
+ def : Pat<(v4f32 (X86Unpckh VR128:$src1, VR128:$src2)),
(VUNPCKHPSrr VR128:$src1, VR128:$src2)>;
- def : Pat<(v8f32 (X86Unpcklps VR256:$src1, (memopv8f32 addr:$src2))),
+ def : Pat<(v8f32 (X86Unpckl VR256:$src1, (memopv8f32 addr:$src2))),
(VUNPCKLPSYrm VR256:$src1, addr:$src2)>;
- def : Pat<(v8f32 (X86Unpcklps VR256:$src1, VR256:$src2)),
- (VUNPCKLPSYrr VR256:$src1, VR256:$src2)>;
- def : Pat<(v8i32 (X86Unpcklps VR256:$src1, VR256:$src2)),
+ def : Pat<(v8f32 (X86Unpckl VR256:$src1, VR256:$src2)),
(VUNPCKLPSYrr VR256:$src1, VR256:$src2)>;
- def : Pat<(v8i32 (X86Unpcklps VR256:$src1, (bc_v8i32 (memopv4i64 addr:$src2)))),
- (VUNPCKLPSYrm VR256:$src1, addr:$src2)>;
- def : Pat<(v8f32 (X86Unpckhps VR256:$src1, (memopv8f32 addr:$src2))),
- (VUNPCKHPSYrm VR256:$src1, addr:$src2)>;
- def : Pat<(v8f32 (X86Unpckhps VR256:$src1, VR256:$src2)),
- (VUNPCKHPSYrr VR256:$src1, VR256:$src2)>;
- def : Pat<(v8i32 (X86Unpckhps VR256:$src1, (bc_v8i32 (memopv4i64 addr:$src2)))),
+ def : Pat<(v8f32 (X86Unpckh VR256:$src1, (memopv8f32 addr:$src2))),
(VUNPCKHPSYrm VR256:$src1, addr:$src2)>;
- def : Pat<(v8i32 (X86Unpckhps VR256:$src1, VR256:$src2)),
+ def : Pat<(v8f32 (X86Unpckh VR256:$src1, VR256:$src2)),
(VUNPCKHPSYrr VR256:$src1, VR256:$src2)>;
- def : Pat<(v2f64 (X86Unpcklpd VR128:$src1, (memopv2f64 addr:$src2))),
+ def : Pat<(v2f64 (X86Unpckl VR128:$src1, (memopv2f64 addr:$src2))),
(VUNPCKLPDrm VR128:$src1, addr:$src2)>;
- def : Pat<(v2f64 (X86Unpcklpd VR128:$src1, VR128:$src2)),
+ def : Pat<(v2f64 (X86Unpckl VR128:$src1, VR128:$src2)),
(VUNPCKLPDrr VR128:$src1, VR128:$src2)>;
- def : Pat<(v2f64 (X86Unpckhpd VR128:$src1, (memopv2f64 addr:$src2))),
+ def : Pat<(v2f64 (X86Unpckh VR128:$src1, (memopv2f64 addr:$src2))),
(VUNPCKHPDrm VR128:$src1, addr:$src2)>;
- def : Pat<(v2f64 (X86Unpckhpd VR128:$src1, VR128:$src2)),
+ def : Pat<(v2f64 (X86Unpckh VR128:$src1, VR128:$src2)),
(VUNPCKHPDrr VR128:$src1, VR128:$src2)>;
- def : Pat<(v4f64 (X86Unpcklpd VR256:$src1, (memopv4f64 addr:$src2))),
+ def : Pat<(v4f64 (X86Unpckl VR256:$src1, (memopv4f64 addr:$src2))),
(VUNPCKLPDYrm VR256:$src1, addr:$src2)>;
- def : Pat<(v4f64 (X86Unpcklpd VR256:$src1, VR256:$src2)),
+ def : Pat<(v4f64 (X86Unpckl VR256:$src1, VR256:$src2)),
(VUNPCKLPDYrr VR256:$src1, VR256:$src2)>;
- def : Pat<(v4i64 (X86Unpcklpd VR256:$src1, (memopv4i64 addr:$src2))),
- (VUNPCKLPDYrm VR256:$src1, addr:$src2)>;
- def : Pat<(v4i64 (X86Unpcklpd VR256:$src1, VR256:$src2)),
- (VUNPCKLPDYrr VR256:$src1, VR256:$src2)>;
- def : Pat<(v4f64 (X86Unpckhpd VR256:$src1, (memopv4f64 addr:$src2))),
- (VUNPCKHPDYrm VR256:$src1, addr:$src2)>;
- def : Pat<(v4f64 (X86Unpckhpd VR256:$src1, VR256:$src2)),
- (VUNPCKHPDYrr VR256:$src1, VR256:$src2)>;
- def : Pat<(v4i64 (X86Unpckhpd VR256:$src1, (memopv4i64 addr:$src2))),
+ def : Pat<(v4f64 (X86Unpckh VR256:$src1, (memopv4f64 addr:$src2))),
(VUNPCKHPDYrm VR256:$src1, addr:$src2)>;
- def : Pat<(v4i64 (X86Unpckhpd VR256:$src1, VR256:$src2)),
+ def : Pat<(v4f64 (X86Unpckh VR256:$src1, VR256:$src2)),
(VUNPCKHPDYrr VR256:$src1, VR256:$src2)>;
- // FIXME: Instead of X86Movddup, there should be a X86Unpcklpd here, the
+ // FIXME: Instead of X86Movddup, there should be a X86Unpckl here, the
// problem is during lowering, where it's not possible to recognize the load
// fold cause it has two uses through a bitcast. One use disappears at isel
// time and the fold opportunity reappears.
@@ -2869,7 +2913,7 @@ multiclass sse1_fp_unop_s_avx<bits<8> opc, string OpcodeStr> {
!strconcat(OpcodeStr,
"ss\t{$src2, $src1, $dst|$dst, $src1, $src2}"), []>;
def SSm_Int : SSI<opc, MRMSrcMem, (outs VR128:$dst),
- (ins ssmem:$src1, VR128:$src2),
+ (ins VR128:$src1, ssmem:$src2),
!strconcat(OpcodeStr,
"ss\t{$src2, $src1, $dst|$dst, $src1, $src2}"), []>;
}
@@ -3198,13 +3242,13 @@ def MOVNTI_64mr : RI<0xC3, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src),
//===----------------------------------------------------------------------===//
// Prefetch intrinsic.
-def PREFETCHT0 : PSI<0x18, MRM1m, (outs), (ins i8mem:$src),
+def PREFETCHT0 : VoPSI<0x18, MRM1m, (outs), (ins i8mem:$src),
"prefetcht0\t$src", [(prefetch addr:$src, imm, (i32 3), (i32 1))]>;
-def PREFETCHT1 : PSI<0x18, MRM2m, (outs), (ins i8mem:$src),
+def PREFETCHT1 : VoPSI<0x18, MRM2m, (outs), (ins i8mem:$src),
"prefetcht1\t$src", [(prefetch addr:$src, imm, (i32 2), (i32 1))]>;
-def PREFETCHT2 : PSI<0x18, MRM3m, (outs), (ins i8mem:$src),
+def PREFETCHT2 : VoPSI<0x18, MRM3m, (outs), (ins i8mem:$src),
"prefetcht2\t$src", [(prefetch addr:$src, imm, (i32 1), (i32 1))]>;
-def PREFETCHNTA : PSI<0x18, MRM0m, (outs), (ins i8mem:$src),
+def PREFETCHNTA : VoPSI<0x18, MRM0m, (outs), (ins i8mem:$src),
"prefetchnta\t$src", [(prefetch addr:$src, imm, (i32 0), (i32 1))]>;
// Flush cache
@@ -3652,6 +3696,8 @@ defm VPOR : PDI_binop_rm<0xEB, "vpor" , or, v2i64, VR128, memopv2i64,
i128mem, 1, 0>, VEX_4V;
defm VPXOR : PDI_binop_rm<0xEF, "vpxor", xor, v2i64, VR128, memopv2i64,
i128mem, 1, 0>, VEX_4V;
+defm VPANDN : PDI_binop_rm<0xDF, "vpandn", X86andnp, v2i64, VR128, memopv2i64,
+ i128mem, 0, 0>, VEX_4V;
let ExeDomain = SSEPackedInt in {
let neverHasSideEffects = 1 in {
@@ -3666,17 +3712,6 @@ let ExeDomain = SSEPackedInt in {
VEX_4V;
// PSRADQri doesn't exist in SSE[1-3].
}
- def VPANDNrr : PDI<0xDF, MRMSrcReg,
- (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
- "vpandn\t{$src2, $src1, $dst|$dst, $src1, $src2}",
- [(set VR128:$dst,
- (v2i64 (X86andnp VR128:$src1, VR128:$src2)))]>,VEX_4V;
-
- def VPANDNrm : PDI<0xDF, MRMSrcMem,
- (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2),
- "vpandn\t{$src2, $src1, $dst|$dst, $src1, $src2}",
- [(set VR128:$dst, (X86andnp VR128:$src1,
- (memopv2i64 addr:$src2)))]>, VEX_4V;
}
}
@@ -3714,6 +3749,8 @@ defm VPORY : PDI_binop_rm<0xEB, "vpor", or, v4i64, VR256, memopv4i64,
i256mem, 1, 0>, VEX_4V;
defm VPXORY : PDI_binop_rm<0xEF, "vpxor", xor, v4i64, VR256, memopv4i64,
i256mem, 1, 0>, VEX_4V;
+defm VPANDNY : PDI_binop_rm<0xDF, "vpandn", X86andnp, v4i64, VR256, memopv4i64,
+ i256mem, 0, 0>, VEX_4V;
let ExeDomain = SSEPackedInt in {
let neverHasSideEffects = 1 in {
@@ -3728,17 +3765,6 @@ let ExeDomain = SSEPackedInt in {
VEX_4V;
// PSRADQYri doesn't exist in SSE[1-3].
}
- def VPANDNYrr : PDI<0xDF, MRMSrcReg,
- (outs VR256:$dst), (ins VR256:$src1, VR256:$src2),
- "vpandn\t{$src2, $src1, $dst|$dst, $src1, $src2}",
- [(set VR256:$dst,
- (v4i64 (X86andnp VR256:$src1, VR256:$src2)))]>,VEX_4V;
-
- def VPANDNYrm : PDI<0xDF, MRMSrcMem,
- (outs VR256:$dst), (ins VR256:$src1, i256mem:$src2),
- "vpandn\t{$src2, $src1, $dst|$dst, $src1, $src2}",
- [(set VR256:$dst, (X86andnp VR256:$src1,
- (memopv4i64 addr:$src2)))]>, VEX_4V;
}
}
@@ -3776,6 +3802,8 @@ defm POR : PDI_binop_rm<0xEB, "por" , or, v2i64, VR128, memopv2i64,
i128mem, 1>;
defm PXOR : PDI_binop_rm<0xEF, "pxor", xor, v2i64, VR128, memopv2i64,
i128mem, 1>;
+defm PANDN : PDI_binop_rm<0xDF, "pandn", X86andnp, v2i64, VR128, memopv2i64,
+ i128mem, 0>;
let ExeDomain = SSEPackedInt in {
let neverHasSideEffects = 1 in {
@@ -3787,14 +3815,6 @@ let ExeDomain = SSEPackedInt in {
(outs VR128:$dst), (ins VR128:$src1, i32i8imm:$src2),
"psrldq\t{$src2, $dst|$dst, $src2}", []>;
// PSRADQri doesn't exist in SSE[1-3].
- def PANDNrr : PDI<0xDF, MRMSrcReg,
- (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
- "pandn\t{$src2, $dst|$dst, $src2}", []>;
-
- let mayLoad = 1 in
- def PANDNrm : PDI<0xDF, MRMSrcMem,
- (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2),
- "pandn\t{$src2, $dst|$dst, $src2}", []>;
}
}
} // Constraints = "$src1 = $dst"
@@ -4198,66 +4218,88 @@ multiclass sse2_unpack_y<bits<8> opc, string OpcodeStr, ValueType vt,
}
let Predicates = [HasAVX] in {
- defm VPUNPCKLBW : sse2_unpack<0x60, "vpunpcklbw", v16i8, X86Punpcklbw,
+ defm VPUNPCKLBW : sse2_unpack<0x60, "vpunpcklbw", v16i8, X86Unpckl,
bc_v16i8, 0>, VEX_4V;
- defm VPUNPCKLWD : sse2_unpack<0x61, "vpunpcklwd", v8i16, X86Punpcklwd,
+ defm VPUNPCKLWD : sse2_unpack<0x61, "vpunpcklwd", v8i16, X86Unpckl,
bc_v8i16, 0>, VEX_4V;
- defm VPUNPCKLDQ : sse2_unpack<0x62, "vpunpckldq", v4i32, X86Punpckldq,
+ defm VPUNPCKLDQ : sse2_unpack<0x62, "vpunpckldq", v4i32, X86Unpckl,
bc_v4i32, 0>, VEX_4V;
- defm VPUNPCKLQDQ : sse2_unpack<0x6C, "vpunpcklqdq", v2i64, X86Punpcklqdq,
+ defm VPUNPCKLQDQ : sse2_unpack<0x6C, "vpunpcklqdq", v2i64, X86Unpckl,
bc_v2i64, 0>, VEX_4V;
- defm VPUNPCKHBW : sse2_unpack<0x68, "vpunpckhbw", v16i8, X86Punpckhbw,
+ defm VPUNPCKHBW : sse2_unpack<0x68, "vpunpckhbw", v16i8, X86Unpckh,
bc_v16i8, 0>, VEX_4V;
- defm VPUNPCKHWD : sse2_unpack<0x69, "vpunpckhwd", v8i16, X86Punpckhwd,
+ defm VPUNPCKHWD : sse2_unpack<0x69, "vpunpckhwd", v8i16, X86Unpckh,
bc_v8i16, 0>, VEX_4V;
- defm VPUNPCKHDQ : sse2_unpack<0x6A, "vpunpckhdq", v4i32, X86Punpckhdq,
+ defm VPUNPCKHDQ : sse2_unpack<0x6A, "vpunpckhdq", v4i32, X86Unpckh,
bc_v4i32, 0>, VEX_4V;
- defm VPUNPCKHQDQ : sse2_unpack<0x6D, "vpunpckhqdq", v2i64, X86Punpckhqdq,
+ defm VPUNPCKHQDQ : sse2_unpack<0x6D, "vpunpckhqdq", v2i64, X86Unpckh,
bc_v2i64, 0>, VEX_4V;
}
let Predicates = [HasAVX2] in {
- defm VPUNPCKLBW : sse2_unpack_y<0x60, "vpunpcklbw", v32i8, X86Punpcklbw,
+ defm VPUNPCKLBW : sse2_unpack_y<0x60, "vpunpcklbw", v32i8, X86Unpckl,
bc_v32i8>, VEX_4V;
- defm VPUNPCKLWD : sse2_unpack_y<0x61, "vpunpcklwd", v16i16, X86Punpcklwd,
+ defm VPUNPCKLWD : sse2_unpack_y<0x61, "vpunpcklwd", v16i16, X86Unpckl,
bc_v16i16>, VEX_4V;
- defm VPUNPCKLDQ : sse2_unpack_y<0x62, "vpunpckldq", v8i32, X86Punpckldq,
+ defm VPUNPCKLDQ : sse2_unpack_y<0x62, "vpunpckldq", v8i32, X86Unpckl,
bc_v8i32>, VEX_4V;
- defm VPUNPCKLQDQ : sse2_unpack_y<0x6C, "vpunpcklqdq", v4i64, X86Punpcklqdq,
+ defm VPUNPCKLQDQ : sse2_unpack_y<0x6C, "vpunpcklqdq", v4i64, X86Unpckl,
bc_v4i64>, VEX_4V;
- defm VPUNPCKHBW : sse2_unpack_y<0x68, "vpunpckhbw", v32i8, X86Punpckhbw,
+ defm VPUNPCKHBW : sse2_unpack_y<0x68, "vpunpckhbw", v32i8, X86Unpckh,
bc_v32i8>, VEX_4V;
- defm VPUNPCKHWD : sse2_unpack_y<0x69, "vpunpckhwd", v16i16, X86Punpckhwd,
+ defm VPUNPCKHWD : sse2_unpack_y<0x69, "vpunpckhwd", v16i16, X86Unpckh,
bc_v16i16>, VEX_4V;
- defm VPUNPCKHDQ : sse2_unpack_y<0x6A, "vpunpckhdq", v8i32, X86Punpckhdq,
+ defm VPUNPCKHDQ : sse2_unpack_y<0x6A, "vpunpckhdq", v8i32, X86Unpckh,
bc_v8i32>, VEX_4V;
- defm VPUNPCKHQDQ : sse2_unpack_y<0x6D, "vpunpckhqdq", v4i64, X86Punpckhqdq,
+ defm VPUNPCKHQDQ : sse2_unpack_y<0x6D, "vpunpckhqdq", v4i64, X86Unpckh,
bc_v4i64>, VEX_4V;
}
let Constraints = "$src1 = $dst" in {
- defm PUNPCKLBW : sse2_unpack<0x60, "punpcklbw", v16i8, X86Punpcklbw,
+ defm PUNPCKLBW : sse2_unpack<0x60, "punpcklbw", v16i8, X86Unpckl,
bc_v16i8>;
- defm PUNPCKLWD : sse2_unpack<0x61, "punpcklwd", v8i16, X86Punpcklwd,
+ defm PUNPCKLWD : sse2_unpack<0x61, "punpcklwd", v8i16, X86Unpckl,
bc_v8i16>;
- defm PUNPCKLDQ : sse2_unpack<0x62, "punpckldq", v4i32, X86Punpckldq,
+ defm PUNPCKLDQ : sse2_unpack<0x62, "punpckldq", v4i32, X86Unpckl,
bc_v4i32>;
- defm PUNPCKLQDQ : sse2_unpack<0x6C, "punpcklqdq", v2i64, X86Punpcklqdq,
+ defm PUNPCKLQDQ : sse2_unpack<0x6C, "punpcklqdq", v2i64, X86Unpckl,
bc_v2i64>;
- defm PUNPCKHBW : sse2_unpack<0x68, "punpckhbw", v16i8, X86Punpckhbw,
+ defm PUNPCKHBW : sse2_unpack<0x68, "punpckhbw", v16i8, X86Unpckh,
bc_v16i8>;
- defm PUNPCKHWD : sse2_unpack<0x69, "punpckhwd", v8i16, X86Punpckhwd,
+ defm PUNPCKHWD : sse2_unpack<0x69, "punpckhwd", v8i16, X86Unpckh,
bc_v8i16>;
- defm PUNPCKHDQ : sse2_unpack<0x6A, "punpckhdq", v4i32, X86Punpckhdq,
+ defm PUNPCKHDQ : sse2_unpack<0x6A, "punpckhdq", v4i32, X86Unpckh,
bc_v4i32>;
- defm PUNPCKHQDQ : sse2_unpack<0x6D, "punpckhqdq", v2i64, X86Punpckhqdq,
+ defm PUNPCKHQDQ : sse2_unpack<0x6D, "punpckhqdq", v2i64, X86Unpckh,
bc_v2i64>;
}
} // ExeDomain = SSEPackedInt
+// Patterns for using AVX1 instructions with integer vectors
+// Here to give AVX2 priority
+let Predicates = [HasAVX] in {
+ def : Pat<(v8i32 (X86Unpckl VR256:$src1, (bc_v8i32 (memopv4i64 addr:$src2)))),
+ (VUNPCKLPSYrm VR256:$src1, addr:$src2)>;
+ def : Pat<(v8i32 (X86Unpckl VR256:$src1, VR256:$src2)),
+ (VUNPCKLPSYrr VR256:$src1, VR256:$src2)>;
+ def : Pat<(v8i32 (X86Unpckh VR256:$src1, (bc_v8i32 (memopv4i64 addr:$src2)))),
+ (VUNPCKHPSYrm VR256:$src1, addr:$src2)>;
+ def : Pat<(v8i32 (X86Unpckh VR256:$src1, VR256:$src2)),
+ (VUNPCKHPSYrr VR256:$src1, VR256:$src2)>;
+
+ def : Pat<(v4i64 (X86Unpckl VR256:$src1, (memopv4i64 addr:$src2))),
+ (VUNPCKLPDYrm VR256:$src1, addr:$src2)>;
+ def : Pat<(v4i64 (X86Unpckl VR256:$src1, VR256:$src2)),
+ (VUNPCKLPDYrr VR256:$src1, VR256:$src2)>;
+ def : Pat<(v4i64 (X86Unpckh VR256:$src1, (memopv4i64 addr:$src2))),
+ (VUNPCKHPDYrm VR256:$src1, addr:$src2)>;
+ def : Pat<(v4i64 (X86Unpckh VR256:$src1, VR256:$src2)),
+ (VUNPCKHPDYrr VR256:$src1, VR256:$src2)>;
+}
+
// Splat v2f64 / v2i64
let AddedComplexity = 10 in {
def : Pat<(splat_lo (v2i64 VR128:$src), (undef)),
@@ -4784,7 +4826,7 @@ def CVTDQ2PDrr : S3SI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
// AVX 256-bit register conversion intrinsics
def : Pat<(int_x86_avx_cvtdq2_pd_256 VR128:$src),
(VCVTDQ2PDYrr VR128:$src)>;
-def : Pat<(int_x86_avx_cvtdq2_pd_256 (memopv4i32 addr:$src)),
+def : Pat<(int_x86_avx_cvtdq2_pd_256 (bitconvert (memopv2i64 addr:$src))),
(VCVTDQ2PDYrm addr:$src)>;
def : Pat<(int_x86_avx_cvt_pd2dq_256 VR256:$src),
@@ -4794,7 +4836,7 @@ def : Pat<(int_x86_avx_cvt_pd2dq_256 (memopv4f64 addr:$src)),
def : Pat<(v4f64 (sint_to_fp (v4i32 VR128:$src))),
(VCVTDQ2PDYrr VR128:$src)>;
-def : Pat<(v4f64 (sint_to_fp (memopv4i32 addr:$src))),
+def : Pat<(v4f64 (sint_to_fp (bc_v4i32 (memopv2i64 addr:$src)))),
(VCVTDQ2PDYrm addr:$src)>;
//===---------------------------------------------------------------------===//
@@ -5085,7 +5127,7 @@ let Constraints = "$src1 = $dst" in {
/// SS3I_unop_rm_int - Simple SSSE3 unary op whose type can be v*{i8,i16,i32}.
multiclass SS3I_unop_rm_int<bits<8> opc, string OpcodeStr,
- PatFrag mem_frag128, Intrinsic IntId128> {
+ Intrinsic IntId128> {
def rr128 : SS38I<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
@@ -5097,12 +5139,12 @@ multiclass SS3I_unop_rm_int<bits<8> opc, string OpcodeStr,
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst,
(IntId128
- (bitconvert (mem_frag128 addr:$src))))]>, OpSize;
+ (bitconvert (memopv2i64 addr:$src))))]>, OpSize;
}
/// SS3I_unop_rm_int_y - Simple SSSE3 unary op whose type can be v*{i8,i16,i32}.
multiclass SS3I_unop_rm_int_y<bits<8> opc, string OpcodeStr,
- PatFrag mem_frag256, Intrinsic IntId256> {
+ Intrinsic IntId256> {
def rr256 : SS38I<opc, MRMSrcReg, (outs VR256:$dst),
(ins VR256:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
@@ -5114,32 +5156,32 @@ multiclass SS3I_unop_rm_int_y<bits<8> opc, string OpcodeStr,
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR256:$dst,
(IntId256
- (bitconvert (mem_frag256 addr:$src))))]>, OpSize;
+ (bitconvert (memopv4i64 addr:$src))))]>, OpSize;
}
let Predicates = [HasAVX] in {
- defm VPABSB : SS3I_unop_rm_int<0x1C, "vpabsb", memopv16i8,
+ defm VPABSB : SS3I_unop_rm_int<0x1C, "vpabsb",
int_x86_ssse3_pabs_b_128>, VEX;
- defm VPABSW : SS3I_unop_rm_int<0x1D, "vpabsw", memopv8i16,
+ defm VPABSW : SS3I_unop_rm_int<0x1D, "vpabsw",
int_x86_ssse3_pabs_w_128>, VEX;
- defm VPABSD : SS3I_unop_rm_int<0x1E, "vpabsd", memopv4i32,
+ defm VPABSD : SS3I_unop_rm_int<0x1E, "vpabsd",
int_x86_ssse3_pabs_d_128>, VEX;
}
let Predicates = [HasAVX2] in {
- defm VPABSB : SS3I_unop_rm_int_y<0x1C, "vpabsb", memopv32i8,
+ defm VPABSB : SS3I_unop_rm_int_y<0x1C, "vpabsb",
int_x86_avx2_pabs_b>, VEX;
- defm VPABSW : SS3I_unop_rm_int_y<0x1D, "vpabsw", memopv16i16,
+ defm VPABSW : SS3I_unop_rm_int_y<0x1D, "vpabsw",
int_x86_avx2_pabs_w>, VEX;
- defm VPABSD : SS3I_unop_rm_int_y<0x1E, "vpabsd", memopv8i32,
+ defm VPABSD : SS3I_unop_rm_int_y<0x1E, "vpabsd",
int_x86_avx2_pabs_d>, VEX;
}
-defm PABSB : SS3I_unop_rm_int<0x1C, "pabsb", memopv16i8,
+defm PABSB : SS3I_unop_rm_int<0x1C, "pabsb",
int_x86_ssse3_pabs_b_128>;
-defm PABSW : SS3I_unop_rm_int<0x1D, "pabsw", memopv8i16,
+defm PABSW : SS3I_unop_rm_int<0x1D, "pabsw",
int_x86_ssse3_pabs_w_128>;
-defm PABSD : SS3I_unop_rm_int<0x1E, "pabsd", memopv4i32,
+defm PABSD : SS3I_unop_rm_int<0x1E, "pabsd",
int_x86_ssse3_pabs_d_128>;
//===---------------------------------------------------------------------===//
@@ -5148,8 +5190,7 @@ defm PABSD : SS3I_unop_rm_int<0x1E, "pabsd", memopv4i32,
/// SS3I_binop_rm_int - Simple SSSE3 bin op whose type can be v*{i8,i16,i32}.
multiclass SS3I_binop_rm_int<bits<8> opc, string OpcodeStr,
- PatFrag mem_frag128, Intrinsic IntId128,
- bit Is2Addr = 1> {
+ Intrinsic IntId128, bit Is2Addr = 1> {
let isCommutable = 1 in
def rr128 : SS38I<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
@@ -5165,11 +5206,11 @@ multiclass SS3I_binop_rm_int<bits<8> opc, string OpcodeStr,
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set VR128:$dst,
(IntId128 VR128:$src1,
- (bitconvert (mem_frag128 addr:$src2))))]>, OpSize;
+ (bitconvert (memopv2i64 addr:$src2))))]>, OpSize;
}
multiclass SS3I_binop_rm_int_y<bits<8> opc, string OpcodeStr,
- PatFrag mem_frag256, Intrinsic IntId256> {
+ Intrinsic IntId256> {
let isCommutable = 1 in
def rr256 : SS38I<opc, MRMSrcReg, (outs VR256:$dst),
(ins VR256:$src1, VR256:$src2),
@@ -5181,94 +5222,94 @@ multiclass SS3I_binop_rm_int_y<bits<8> opc, string OpcodeStr,
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR256:$dst,
(IntId256 VR256:$src1,
- (bitconvert (mem_frag256 addr:$src2))))]>, OpSize;
+ (bitconvert (memopv4i64 addr:$src2))))]>, OpSize;
}
let ImmT = NoImm, Predicates = [HasAVX] in {
let isCommutable = 0 in {
- defm VPHADDW : SS3I_binop_rm_int<0x01, "vphaddw", memopv8i16,
+ defm VPHADDW : SS3I_binop_rm_int<0x01, "vphaddw",
int_x86_ssse3_phadd_w_128, 0>, VEX_4V;
- defm VPHADDD : SS3I_binop_rm_int<0x02, "vphaddd", memopv4i32,
+ defm VPHADDD : SS3I_binop_rm_int<0x02, "vphaddd",
int_x86_ssse3_phadd_d_128, 0>, VEX_4V;
- defm VPHADDSW : SS3I_binop_rm_int<0x03, "vphaddsw", memopv8i16,
+ defm VPHADDSW : SS3I_binop_rm_int<0x03, "vphaddsw",
int_x86_ssse3_phadd_sw_128, 0>, VEX_4V;
- defm VPHSUBW : SS3I_binop_rm_int<0x05, "vphsubw", memopv8i16,
+ defm VPHSUBW : SS3I_binop_rm_int<0x05, "vphsubw",
int_x86_ssse3_phsub_w_128, 0>, VEX_4V;
- defm VPHSUBD : SS3I_binop_rm_int<0x06, "vphsubd", memopv4i32,
+ defm VPHSUBD : SS3I_binop_rm_int<0x06, "vphsubd",
int_x86_ssse3_phsub_d_128, 0>, VEX_4V;
- defm VPHSUBSW : SS3I_binop_rm_int<0x07, "vphsubsw", memopv8i16,
+ defm VPHSUBSW : SS3I_binop_rm_int<0x07, "vphsubsw",
int_x86_ssse3_phsub_sw_128, 0>, VEX_4V;
- defm VPMADDUBSW : SS3I_binop_rm_int<0x04, "vpmaddubsw", memopv16i8,
+ defm VPMADDUBSW : SS3I_binop_rm_int<0x04, "vpmaddubsw",
int_x86_ssse3_pmadd_ub_sw_128, 0>, VEX_4V;
- defm VPSHUFB : SS3I_binop_rm_int<0x00, "vpshufb", memopv16i8,
+ defm VPSHUFB : SS3I_binop_rm_int<0x00, "vpshufb",
int_x86_ssse3_pshuf_b_128, 0>, VEX_4V;
- defm VPSIGNB : SS3I_binop_rm_int<0x08, "vpsignb", memopv16i8,
+ defm VPSIGNB : SS3I_binop_rm_int<0x08, "vpsignb",
int_x86_ssse3_psign_b_128, 0>, VEX_4V;
- defm VPSIGNW : SS3I_binop_rm_int<0x09, "vpsignw", memopv8i16,
+ defm VPSIGNW : SS3I_binop_rm_int<0x09, "vpsignw",
int_x86_ssse3_psign_w_128, 0>, VEX_4V;
- defm VPSIGND : SS3I_binop_rm_int<0x0A, "vpsignd", memopv4i32,
+ defm VPSIGND : SS3I_binop_rm_int<0x0A, "vpsignd",
int_x86_ssse3_psign_d_128, 0>, VEX_4V;
}
-defm VPMULHRSW : SS3I_binop_rm_int<0x0B, "vpmulhrsw", memopv8i16,
+defm VPMULHRSW : SS3I_binop_rm_int<0x0B, "vpmulhrsw",
int_x86_ssse3_pmul_hr_sw_128, 0>, VEX_4V;
}
let ImmT = NoImm, Predicates = [HasAVX2] in {
let isCommutable = 0 in {
- defm VPHADDW : SS3I_binop_rm_int_y<0x01, "vphaddw", memopv16i16,
+ defm VPHADDW : SS3I_binop_rm_int_y<0x01, "vphaddw",
int_x86_avx2_phadd_w>, VEX_4V;
- defm VPHADDD : SS3I_binop_rm_int_y<0x02, "vphaddd", memopv8i32,
+ defm VPHADDD : SS3I_binop_rm_int_y<0x02, "vphaddd",
int_x86_avx2_phadd_d>, VEX_4V;
- defm VPHADDSW : SS3I_binop_rm_int_y<0x03, "vphaddsw", memopv16i16,
+ defm VPHADDSW : SS3I_binop_rm_int_y<0x03, "vphaddsw",
int_x86_avx2_phadd_sw>, VEX_4V;
- defm VPHSUBW : SS3I_binop_rm_int_y<0x05, "vphsubw", memopv16i16,
+ defm VPHSUBW : SS3I_binop_rm_int_y<0x05, "vphsubw",
int_x86_avx2_phsub_w>, VEX_4V;
- defm VPHSUBD : SS3I_binop_rm_int_y<0x06, "vphsubd", memopv8i32,
+ defm VPHSUBD : SS3I_binop_rm_int_y<0x06, "vphsubd",
int_x86_avx2_phsub_d>, VEX_4V;
- defm VPHSUBSW : SS3I_binop_rm_int_y<0x07, "vphsubsw", memopv16i16,
+ defm VPHSUBSW : SS3I_binop_rm_int_y<0x07, "vphsubsw",
int_x86_avx2_phsub_sw>, VEX_4V;
- defm VPMADDUBSW : SS3I_binop_rm_int_y<0x04, "vpmaddubsw", memopv32i8,
+ defm VPMADDUBSW : SS3I_binop_rm_int_y<0x04, "vpmaddubsw",
int_x86_avx2_pmadd_ub_sw>, VEX_4V;
- defm VPSHUFB : SS3I_binop_rm_int_y<0x00, "vpshufb", memopv32i8,
+ defm VPSHUFB : SS3I_binop_rm_int_y<0x00, "vpshufb",
int_x86_avx2_pshuf_b>, VEX_4V;
- defm VPSIGNB : SS3I_binop_rm_int_y<0x08, "vpsignb", memopv32i8,
+ defm VPSIGNB : SS3I_binop_rm_int_y<0x08, "vpsignb",
int_x86_avx2_psign_b>, VEX_4V;
- defm VPSIGNW : SS3I_binop_rm_int_y<0x09, "vpsignw", memopv16i16,
+ defm VPSIGNW : SS3I_binop_rm_int_y<0x09, "vpsignw",
int_x86_avx2_psign_w>, VEX_4V;
- defm VPSIGND : SS3I_binop_rm_int_y<0x0A, "vpsignd", memopv8i32,
+ defm VPSIGND : SS3I_binop_rm_int_y<0x0A, "vpsignd",
int_x86_avx2_psign_d>, VEX_4V;
}
-defm VPMULHRSW : SS3I_binop_rm_int_y<0x0B, "vpmulhrsw", memopv16i16,
+defm VPMULHRSW : SS3I_binop_rm_int_y<0x0B, "vpmulhrsw",
int_x86_avx2_pmul_hr_sw>, VEX_4V;
}
// None of these have i8 immediate fields.
let ImmT = NoImm, Constraints = "$src1 = $dst" in {
let isCommutable = 0 in {
- defm PHADDW : SS3I_binop_rm_int<0x01, "phaddw", memopv8i16,
+ defm PHADDW : SS3I_binop_rm_int<0x01, "phaddw",
int_x86_ssse3_phadd_w_128>;
- defm PHADDD : SS3I_binop_rm_int<0x02, "phaddd", memopv4i32,
+ defm PHADDD : SS3I_binop_rm_int<0x02, "phaddd",
int_x86_ssse3_phadd_d_128>;
- defm PHADDSW : SS3I_binop_rm_int<0x03, "phaddsw", memopv8i16,
+ defm PHADDSW : SS3I_binop_rm_int<0x03, "phaddsw",
int_x86_ssse3_phadd_sw_128>;
- defm PHSUBW : SS3I_binop_rm_int<0x05, "phsubw", memopv8i16,
+ defm PHSUBW : SS3I_binop_rm_int<0x05, "phsubw",
int_x86_ssse3_phsub_w_128>;
- defm PHSUBD : SS3I_binop_rm_int<0x06, "phsubd", memopv4i32,
+ defm PHSUBD : SS3I_binop_rm_int<0x06, "phsubd",
int_x86_ssse3_phsub_d_128>;
- defm PHSUBSW : SS3I_binop_rm_int<0x07, "phsubsw", memopv8i16,
+ defm PHSUBSW : SS3I_binop_rm_int<0x07, "phsubsw",
int_x86_ssse3_phsub_sw_128>;
- defm PMADDUBSW : SS3I_binop_rm_int<0x04, "pmaddubsw", memopv16i8,
+ defm PMADDUBSW : SS3I_binop_rm_int<0x04, "pmaddubsw",
int_x86_ssse3_pmadd_ub_sw_128>;
- defm PSHUFB : SS3I_binop_rm_int<0x00, "pshufb", memopv16i8,
+ defm PSHUFB : SS3I_binop_rm_int<0x00, "pshufb",
int_x86_ssse3_pshuf_b_128>;
- defm PSIGNB : SS3I_binop_rm_int<0x08, "psignb", memopv16i8,
+ defm PSIGNB : SS3I_binop_rm_int<0x08, "psignb",
int_x86_ssse3_psign_b_128>;
- defm PSIGNW : SS3I_binop_rm_int<0x09, "psignw", memopv8i16,
+ defm PSIGNW : SS3I_binop_rm_int<0x09, "psignw",
int_x86_ssse3_psign_w_128>;
- defm PSIGND : SS3I_binop_rm_int<0x0A, "psignd", memopv4i32,
+ defm PSIGND : SS3I_binop_rm_int<0x0A, "psignd",
int_x86_ssse3_psign_d_128>;
}
-defm PMULHRSW : SS3I_binop_rm_int<0x0B, "pmulhrsw", memopv8i16,
+defm PMULHRSW : SS3I_binop_rm_int<0x0B, "pmulhrsw",
int_x86_ssse3_pmul_hr_sw_128>;
}
@@ -6017,8 +6058,18 @@ multiclass sse41_fp_binop_rm<bits<8> opcss, bits<8> opcsd,
Intrinsic F32Int,
Intrinsic F64Int, bit Is2Addr = 1> {
let ExeDomain = GenericDomain in {
- // Intrinsic operation, reg.
+ // Operation, reg.
def SSr : SS4AIi8<opcss, MRMSrcReg,
+ (outs FR32:$dst), (ins FR32:$src1, FR32:$src2, i32i8imm:$src3),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr,
+ "ss\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
+ !strconcat(OpcodeStr,
+ "ss\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
+ []>, OpSize;
+
+ // Intrinsic operation, reg.
+ def SSr_Int : SS4AIi8<opcss, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2, i32i8imm:$src3),
!if(Is2Addr,
!strconcat(OpcodeStr,
@@ -6040,8 +6091,18 @@ let ExeDomain = GenericDomain in {
(F32Int VR128:$src1, sse_load_f32:$src2, imm:$src3))]>,
OpSize;
- // Intrinsic operation, reg.
+ // Operation, reg.
def SDr : SS4AIi8<opcsd, MRMSrcReg,
+ (outs FR64:$dst), (ins FR64:$src1, FR64:$src2, i32i8imm:$src3),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr,
+ "sd\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
+ !strconcat(OpcodeStr,
+ "sd\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
+ []>, OpSize;
+
+ // Intrinsic operation, reg.
+ def SDr_Int : SS4AIi8<opcsd, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2, i32i8imm:$src3),
!if(Is2Addr,
!strconcat(OpcodeStr,
@@ -6079,6 +6140,27 @@ let Predicates = [HasAVX] in {
defm VROUND : sse41_fp_binop_rm<0x0A, 0x0B, "vround",
int_x86_sse41_round_ss,
int_x86_sse41_round_sd, 0>, VEX_4V, VEX_LIG;
+
+ def : Pat<(ffloor FR32:$src),
+ (VROUNDSSr (f32 (IMPLICIT_DEF)), FR32:$src, (i32 0x1))>;
+ def : Pat<(f64 (ffloor FR64:$src)),
+ (VROUNDSDr (f64 (IMPLICIT_DEF)), FR64:$src, (i32 0x1))>;
+ def : Pat<(f32 (fnearbyint FR32:$src)),
+ (VROUNDSSr (f32 (IMPLICIT_DEF)), FR32:$src, (i32 0xC))>;
+ def : Pat<(f64 (fnearbyint FR64:$src)),
+ (VROUNDSDr (f64 (IMPLICIT_DEF)), FR64:$src, (i32 0xC))>;
+ def : Pat<(f32 (fceil FR32:$src)),
+ (VROUNDSSr (f32 (IMPLICIT_DEF)), FR32:$src, (i32 0x2))>;
+ def : Pat<(f64 (fceil FR64:$src)),
+ (VROUNDSDr (f64 (IMPLICIT_DEF)), FR64:$src, (i32 0x2))>;
+ def : Pat<(f32 (frint FR32:$src)),
+ (VROUNDSSr (f32 (IMPLICIT_DEF)), FR32:$src, (i32 0x4))>;
+ def : Pat<(f64 (frint FR64:$src)),
+ (VROUNDSDr (f64 (IMPLICIT_DEF)), FR64:$src, (i32 0x4))>;
+ def : Pat<(f32 (ftrunc FR32:$src)),
+ (VROUNDSSr (f32 (IMPLICIT_DEF)), FR32:$src, (i32 0x3))>;
+ def : Pat<(f64 (ftrunc FR64:$src)),
+ (VROUNDSDr (f64 (IMPLICIT_DEF)), FR64:$src, (i32 0x3))>;
}
defm ROUND : sse41_fp_unop_rm<0x08, 0x09, "round", f128mem, VR128,
@@ -6088,6 +6170,27 @@ let Constraints = "$src1 = $dst" in
defm ROUND : sse41_fp_binop_rm<0x0A, 0x0B, "round",
int_x86_sse41_round_ss, int_x86_sse41_round_sd>;
+def : Pat<(ffloor FR32:$src),
+ (ROUNDSSr (f32 (IMPLICIT_DEF)), FR32:$src, (i32 0x1))>;
+def : Pat<(f64 (ffloor FR64:$src)),
+ (ROUNDSDr (f64 (IMPLICIT_DEF)), FR64:$src, (i32 0x1))>;
+def : Pat<(f32 (fnearbyint FR32:$src)),
+ (ROUNDSSr (f32 (IMPLICIT_DEF)), FR32:$src, (i32 0xC))>;
+def : Pat<(f64 (fnearbyint FR64:$src)),
+ (ROUNDSDr (f64 (IMPLICIT_DEF)), FR64:$src, (i32 0xC))>;
+def : Pat<(f32 (fceil FR32:$src)),
+ (ROUNDSSr (f32 (IMPLICIT_DEF)), FR32:$src, (i32 0x2))>;
+def : Pat<(f64 (fceil FR64:$src)),
+ (ROUNDSDr (f64 (IMPLICIT_DEF)), FR64:$src, (i32 0x2))>;
+def : Pat<(f32 (frint FR32:$src)),
+ (ROUNDSSr (f32 (IMPLICIT_DEF)), FR32:$src, (i32 0x4))>;
+def : Pat<(f64 (frint FR64:$src)),
+ (ROUNDSDr (f64 (IMPLICIT_DEF)), FR64:$src, (i32 0x4))>;
+def : Pat<(f32 (ftrunc FR32:$src)),
+ (ROUNDSSr (f32 (IMPLICIT_DEF)), FR32:$src, (i32 0x3))>;
+def : Pat<(f64 (ftrunc FR64:$src)),
+ (ROUNDSDr (f64 (IMPLICIT_DEF)), FR64:$src, (i32 0x3))>;
+
//===----------------------------------------------------------------------===//
// SSE4.1 - Packed Bit Test
//===----------------------------------------------------------------------===//
@@ -6195,7 +6298,7 @@ multiclass SS41I_unop_rm_int_v16<bits<8> opc, string OpcodeStr,
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst,
(IntId128
- (bitconvert (memopv8i16 addr:$src))))]>, OpSize;
+ (bitconvert (memopv2i64 addr:$src))))]>, OpSize;
}
let Predicates = [HasAVX] in
@@ -6221,7 +6324,7 @@ multiclass SS41I_binop_rm_int<bits<8> opc, string OpcodeStr,
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set VR128:$dst,
(IntId128 VR128:$src1,
- (bitconvert (memopv16i8 addr:$src2))))]>, OpSize;
+ (bitconvert (memopv2i64 addr:$src2))))]>, OpSize;
}
/// SS41I_binop_rm_int - Simple SSE 4.1 binary operator
@@ -6237,7 +6340,7 @@ multiclass SS41I_binop_rm_int_y<bits<8> opc, string OpcodeStr,
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR256:$dst,
(IntId256 VR256:$src1,
- (bitconvert (memopv32i8 addr:$src2))))]>, OpSize;
+ (bitconvert (memopv4i64 addr:$src2))))]>, OpSize;
}
let Predicates = [HasAVX] in {
@@ -6400,38 +6503,38 @@ let Predicates = [HasAVX] in {
let isCommutable = 0 in {
let ExeDomain = SSEPackedSingle in {
defm VBLENDPS : SS41I_binop_rmi_int<0x0C, "vblendps", int_x86_sse41_blendps,
- VR128, memopv16i8, i128mem, 0>, VEX_4V;
+ VR128, memopv4f32, i128mem, 0>, VEX_4V;
defm VBLENDPSY : SS41I_binop_rmi_int<0x0C, "vblendps",
- int_x86_avx_blend_ps_256, VR256, memopv32i8, i256mem, 0>, VEX_4V;
+ int_x86_avx_blend_ps_256, VR256, memopv8f32, i256mem, 0>, VEX_4V;
}
let ExeDomain = SSEPackedDouble in {
defm VBLENDPD : SS41I_binop_rmi_int<0x0D, "vblendpd", int_x86_sse41_blendpd,
- VR128, memopv16i8, i128mem, 0>, VEX_4V;
+ VR128, memopv2f64, i128mem, 0>, VEX_4V;
defm VBLENDPDY : SS41I_binop_rmi_int<0x0D, "vblendpd",
- int_x86_avx_blend_pd_256, VR256, memopv32i8, i256mem, 0>, VEX_4V;
+ int_x86_avx_blend_pd_256, VR256, memopv4f64, i256mem, 0>, VEX_4V;
}
defm VPBLENDW : SS41I_binop_rmi_int<0x0E, "vpblendw", int_x86_sse41_pblendw,
- VR128, memopv16i8, i128mem, 0>, VEX_4V;
+ VR128, memopv2i64, i128mem, 0>, VEX_4V;
defm VMPSADBW : SS41I_binop_rmi_int<0x42, "vmpsadbw", int_x86_sse41_mpsadbw,
- VR128, memopv16i8, i128mem, 0>, VEX_4V;
+ VR128, memopv2i64, i128mem, 0>, VEX_4V;
}
let ExeDomain = SSEPackedSingle in
defm VDPPS : SS41I_binop_rmi_int<0x40, "vdpps", int_x86_sse41_dpps,
- VR128, memopv16i8, i128mem, 0>, VEX_4V;
+ VR128, memopv4f32, i128mem, 0>, VEX_4V;
let ExeDomain = SSEPackedDouble in
defm VDPPD : SS41I_binop_rmi_int<0x41, "vdppd", int_x86_sse41_dppd,
- VR128, memopv16i8, i128mem, 0>, VEX_4V;
+ VR128, memopv2f64, i128mem, 0>, VEX_4V;
let ExeDomain = SSEPackedSingle in
defm VDPPSY : SS41I_binop_rmi_int<0x40, "vdpps", int_x86_avx_dp_ps_256,
- VR256, memopv32i8, i256mem, 0>, VEX_4V;
+ VR256, memopv8f32, i256mem, 0>, VEX_4V;
}
let Predicates = [HasAVX2] in {
let isCommutable = 0 in {
defm VPBLENDWY : SS41I_binop_rmi_int<0x0E, "vpblendw", int_x86_avx2_pblendw,
- VR256, memopv32i8, i256mem, 0>, VEX_4V;
+ VR256, memopv4i64, i256mem, 0>, VEX_4V;
defm VMPSADBWY : SS41I_binop_rmi_int<0x42, "vmpsadbw", int_x86_avx2_mpsadbw,
- VR256, memopv32i8, i256mem, 0>, VEX_4V;
+ VR256, memopv4i64, i256mem, 0>, VEX_4V;
}
}
@@ -6439,35 +6542,35 @@ let Constraints = "$src1 = $dst" in {
let isCommutable = 0 in {
let ExeDomain = SSEPackedSingle in
defm BLENDPS : SS41I_binop_rmi_int<0x0C, "blendps", int_x86_sse41_blendps,
- VR128, memopv16i8, i128mem>;
+ VR128, memopv4f32, i128mem>;
let ExeDomain = SSEPackedDouble in
defm BLENDPD : SS41I_binop_rmi_int<0x0D, "blendpd", int_x86_sse41_blendpd,
- VR128, memopv16i8, i128mem>;
+ VR128, memopv2f64, i128mem>;
defm PBLENDW : SS41I_binop_rmi_int<0x0E, "pblendw", int_x86_sse41_pblendw,
- VR128, memopv16i8, i128mem>;
+ VR128, memopv2i64, i128mem>;
defm MPSADBW : SS41I_binop_rmi_int<0x42, "mpsadbw", int_x86_sse41_mpsadbw,
- VR128, memopv16i8, i128mem>;
+ VR128, memopv2i64, i128mem>;
}
let ExeDomain = SSEPackedSingle in
defm DPPS : SS41I_binop_rmi_int<0x40, "dpps", int_x86_sse41_dpps,
- VR128, memopv16i8, i128mem>;
+ VR128, memopv4f32, i128mem>;
let ExeDomain = SSEPackedDouble in
defm DPPD : SS41I_binop_rmi_int<0x41, "dppd", int_x86_sse41_dppd,
- VR128, memopv16i8, i128mem>;
+ VR128, memopv2f64, i128mem>;
}
/// SS41I_quaternary_int_avx - AVX SSE 4.1 with 4 operators
multiclass SS41I_quaternary_int_avx<bits<8> opc, string OpcodeStr,
RegisterClass RC, X86MemOperand x86memop,
PatFrag mem_frag, Intrinsic IntId> {
- def rr : I<opc, MRMSrcReg, (outs RC:$dst),
+ def rr : Ii8<opc, MRMSrcReg, (outs RC:$dst),
(ins RC:$src1, RC:$src2, RC:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
[(set RC:$dst, (IntId RC:$src1, RC:$src2, RC:$src3))],
SSEPackedInt>, OpSize, TA, VEX_4V, VEX_I8IMM;
- def rm : I<opc, MRMSrcMem, (outs RC:$dst),
+ def rm : Ii8<opc, MRMSrcMem, (outs RC:$dst),
(ins RC:$src1, x86memop:$src2, RC:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
@@ -6480,23 +6583,23 @@ multiclass SS41I_quaternary_int_avx<bits<8> opc, string OpcodeStr,
let Predicates = [HasAVX] in {
let ExeDomain = SSEPackedDouble in {
defm VBLENDVPD : SS41I_quaternary_int_avx<0x4B, "vblendvpd", VR128, i128mem,
- memopv16i8, int_x86_sse41_blendvpd>;
+ memopv2f64, int_x86_sse41_blendvpd>;
defm VBLENDVPDY : SS41I_quaternary_int_avx<0x4B, "vblendvpd", VR256, i256mem,
- memopv32i8, int_x86_avx_blendv_pd_256>;
+ memopv4f64, int_x86_avx_blendv_pd_256>;
} // ExeDomain = SSEPackedDouble
let ExeDomain = SSEPackedSingle in {
defm VBLENDVPS : SS41I_quaternary_int_avx<0x4A, "vblendvps", VR128, i128mem,
- memopv16i8, int_x86_sse41_blendvps>;
+ memopv4f32, int_x86_sse41_blendvps>;
defm VBLENDVPSY : SS41I_quaternary_int_avx<0x4A, "vblendvps", VR256, i256mem,
- memopv32i8, int_x86_avx_blendv_ps_256>;
+ memopv8f32, int_x86_avx_blendv_ps_256>;
} // ExeDomain = SSEPackedSingle
defm VPBLENDVB : SS41I_quaternary_int_avx<0x4C, "vpblendvb", VR128, i128mem,
- memopv16i8, int_x86_sse41_pblendvb>;
+ memopv2i64, int_x86_sse41_pblendvb>;
}
let Predicates = [HasAVX2] in {
defm VPBLENDVBY : SS41I_quaternary_int_avx<0x4C, "vpblendvb", VR256, i256mem,
- memopv32i8, int_x86_avx2_pblendvb>;
+ memopv4i64, int_x86_avx2_pblendvb>;
}
let Predicates = [HasAVX] in {
@@ -6537,7 +6640,8 @@ let Predicates = [HasAVX2] in {
/// SS41I_ternary_int - SSE 4.1 ternary operator
let Uses = [XMM0], Constraints = "$src1 = $dst" in {
- multiclass SS41I_ternary_int<bits<8> opc, string OpcodeStr, Intrinsic IntId> {
+ multiclass SS41I_ternary_int<bits<8> opc, string OpcodeStr, PatFrag mem_frag,
+ Intrinsic IntId> {
def rr0 : SS48I<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
!strconcat(OpcodeStr,
@@ -6551,15 +6655,18 @@ let Uses = [XMM0], Constraints = "$src1 = $dst" in {
"\t{$src2, $dst|$dst, $src2}"),
[(set VR128:$dst,
(IntId VR128:$src1,
- (bitconvert (memopv16i8 addr:$src2)), XMM0))]>, OpSize;
+ (bitconvert (mem_frag addr:$src2)), XMM0))]>, OpSize;
}
}
let ExeDomain = SSEPackedDouble in
-defm BLENDVPD : SS41I_ternary_int<0x15, "blendvpd", int_x86_sse41_blendvpd>;
+defm BLENDVPD : SS41I_ternary_int<0x15, "blendvpd", memopv2f64,
+ int_x86_sse41_blendvpd>;
let ExeDomain = SSEPackedSingle in
-defm BLENDVPS : SS41I_ternary_int<0x14, "blendvps", int_x86_sse41_blendvps>;
-defm PBLENDVB : SS41I_ternary_int<0x10, "pblendvb", int_x86_sse41_pblendvb>;
+defm BLENDVPS : SS41I_ternary_int<0x14, "blendvps", memopv4f32,
+ int_x86_sse41_blendvps>;
+defm PBLENDVB : SS41I_ternary_int<0x10, "pblendvb", memopv2i64,
+ int_x86_sse41_pblendvb>;
let Predicates = [HasSSE41] in {
def : Pat<(v16i8 (vselect (v16i8 XMM0), (v16i8 VR128:$src1),
@@ -6614,8 +6721,7 @@ multiclass SS42I_binop_rm_int<bits<8> opc, string OpcodeStr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set VR128:$dst,
- (IntId128 VR128:$src1,
- (bitconvert (memopv16i8 addr:$src2))))]>, OpSize;
+ (IntId128 VR128:$src1, (memopv2i64 addr:$src2)))]>, OpSize;
}
/// SS42I_binop_rm_int - Simple SSE 4.2 binary operator
@@ -6630,8 +6736,7 @@ multiclass SS42I_binop_rm_int_y<bits<8> opc, string OpcodeStr,
(ins VR256:$src1, i256mem:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR256:$dst,
- (IntId256 VR256:$src1,
- (bitconvert (memopv32i8 addr:$src2))))]>, OpSize;
+ (IntId256 VR256:$src1, (memopv4i64 addr:$src2)))]>, OpSize;
}
let Predicates = [HasAVX] in {
@@ -6913,7 +7018,7 @@ multiclass AESI_binop_rm_int<bits<8> opc, string OpcodeStr,
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set VR128:$dst,
(IntId128 VR128:$src1,
- (bitconvert (memopv16i8 addr:$src2))))]>, OpSize;
+ (bitconvert (memopv2i64 addr:$src2))))]>, OpSize;
}
// Perform One Round of an AES Encryption/Decryption Flow
@@ -7144,7 +7249,7 @@ def : Pat<(int_x86_avx_vbroadcastf128_ps_256 addr:$src),
//===----------------------------------------------------------------------===//
// VINSERTF128 - Insert packed floating-point values
//
-let neverHasSideEffects = 1 in {
+let neverHasSideEffects = 1, ExeDomain = SSEPackedSingle in {
def VINSERTF128rr : AVXAIi8<0x18, MRMSrcReg, (outs VR256:$dst),
(ins VR256:$src1, VR128:$src2, i8imm:$src3),
"vinsertf128\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
@@ -7163,35 +7268,10 @@ def : Pat<(int_x86_avx_vinsertf128_ps_256 VR256:$src1, VR128:$src2, imm:$src3),
def : Pat<(int_x86_avx_vinsertf128_si_256 VR256:$src1, VR128:$src2, imm:$src3),
(VINSERTF128rr VR256:$src1, VR128:$src2, imm:$src3)>;
-def : Pat<(vinsertf128_insert:$ins (v8f32 VR256:$src1), (v4f32 VR128:$src2),
- (i32 imm)),
- (VINSERTF128rr VR256:$src1, VR128:$src2,
- (INSERT_get_vinsertf128_imm VR256:$ins))>;
-def : Pat<(vinsertf128_insert:$ins (v4f64 VR256:$src1), (v2f64 VR128:$src2),
- (i32 imm)),
- (VINSERTF128rr VR256:$src1, VR128:$src2,
- (INSERT_get_vinsertf128_imm VR256:$ins))>;
-def : Pat<(vinsertf128_insert:$ins (v8i32 VR256:$src1), (v4i32 VR128:$src2),
- (i32 imm)),
- (VINSERTF128rr VR256:$src1, VR128:$src2,
- (INSERT_get_vinsertf128_imm VR256:$ins))>;
-def : Pat<(vinsertf128_insert:$ins (v4i64 VR256:$src1), (v2i64 VR128:$src2),
- (i32 imm)),
- (VINSERTF128rr VR256:$src1, VR128:$src2,
- (INSERT_get_vinsertf128_imm VR256:$ins))>;
-def : Pat<(vinsertf128_insert:$ins (v32i8 VR256:$src1), (v16i8 VR128:$src2),
- (i32 imm)),
- (VINSERTF128rr VR256:$src1, VR128:$src2,
- (INSERT_get_vinsertf128_imm VR256:$ins))>;
-def : Pat<(vinsertf128_insert:$ins (v16i16 VR256:$src1), (v8i16 VR128:$src2),
- (i32 imm)),
- (VINSERTF128rr VR256:$src1, VR128:$src2,
- (INSERT_get_vinsertf128_imm VR256:$ins))>;
-
//===----------------------------------------------------------------------===//
// VEXTRACTF128 - Extract packed floating-point values
//
-let neverHasSideEffects = 1 in {
+let neverHasSideEffects = 1, ExeDomain = SSEPackedSingle in {
def VEXTRACTF128rr : AVXAIi8<0x19, MRMDestReg, (outs VR128:$dst),
(ins VR256:$src1, i8imm:$src2),
"vextractf128\t{$src2, $src1, $dst|$dst, $src1, $src2}",
@@ -7210,31 +7290,6 @@ def : Pat<(int_x86_avx_vextractf128_ps_256 VR256:$src1, imm:$src2),
def : Pat<(int_x86_avx_vextractf128_si_256 VR256:$src1, imm:$src2),
(VEXTRACTF128rr VR256:$src1, imm:$src2)>;
-def : Pat<(vextractf128_extract:$ext VR256:$src1, (i32 imm)),
- (v4f32 (VEXTRACTF128rr
- (v8f32 VR256:$src1),
- (EXTRACT_get_vextractf128_imm VR128:$ext)))>;
-def : Pat<(vextractf128_extract:$ext VR256:$src1, (i32 imm)),
- (v2f64 (VEXTRACTF128rr
- (v4f64 VR256:$src1),
- (EXTRACT_get_vextractf128_imm VR128:$ext)))>;
-def : Pat<(vextractf128_extract:$ext VR256:$src1, (i32 imm)),
- (v4i32 (VEXTRACTF128rr
- (v8i32 VR256:$src1),
- (EXTRACT_get_vextractf128_imm VR128:$ext)))>;
-def : Pat<(vextractf128_extract:$ext VR256:$src1, (i32 imm)),
- (v2i64 (VEXTRACTF128rr
- (v4i64 VR256:$src1),
- (EXTRACT_get_vextractf128_imm VR128:$ext)))>;
-def : Pat<(vextractf128_extract:$ext VR256:$src1, (i32 imm)),
- (v8i16 (VEXTRACTF128rr
- (v16i16 VR256:$src1),
- (EXTRACT_get_vextractf128_imm VR128:$ext)))>;
-def : Pat<(vextractf128_extract:$ext VR256:$src1, (i32 imm)),
- (v16i8 (VEXTRACTF128rr
- (v32i8 VR256:$src1),
- (EXTRACT_get_vextractf128_imm VR128:$ext)))>;
-
//===----------------------------------------------------------------------===//
// VMASKMOV - Conditional SIMD Packed Loads and Stores
//
@@ -7288,7 +7343,8 @@ multiclass avx_permil<bits<8> opc_rm, bits<8> opc_rmi, string OpcodeStr,
def rm : AVX8I<opc_rm, MRMSrcMem, (outs RC:$dst),
(ins RC:$src1, x86memop_i:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
- [(set RC:$dst, (IntVar RC:$src1, (i_frag addr:$src2)))]>, VEX_4V;
+ [(set RC:$dst, (IntVar RC:$src1,
+ (bitconvert (i_frag addr:$src2))))]>, VEX_4V;
def ri : AVXAIi8<opc_rmi, MRMSrcReg, (outs RC:$dst),
(ins RC:$src1, i8imm:$src2),
@@ -7302,11 +7358,11 @@ multiclass avx_permil<bits<8> opc_rm, bits<8> opc_rmi, string OpcodeStr,
let ExeDomain = SSEPackedSingle in {
defm VPERMILPS : avx_permil<0x0C, 0x04, "vpermilps", VR128, f128mem, i128mem,
- memopv4f32, memopv4i32,
+ memopv4f32, memopv2i64,
int_x86_avx_vpermilvar_ps,
int_x86_avx_vpermil_ps>;
defm VPERMILPSY : avx_permil<0x0C, 0x04, "vpermilps", VR256, f256mem, i256mem,
- memopv8f32, memopv8i32,
+ memopv8f32, memopv4i64,
int_x86_avx_vpermilvar_ps_256,
int_x86_avx_vpermil_ps_256>;
}
@@ -7321,19 +7377,28 @@ let ExeDomain = SSEPackedDouble in {
int_x86_avx_vpermil_pd_256>;
}
-def : Pat<(v8f32 (X86VPermilpsy VR256:$src1, (i8 imm:$imm))),
+def : Pat<(v8f32 (X86VPermilp VR256:$src1, (i8 imm:$imm))),
(VPERMILPSYri VR256:$src1, imm:$imm)>;
-def : Pat<(v4f64 (X86VPermilpdy VR256:$src1, (i8 imm:$imm))),
+def : Pat<(v4f64 (X86VPermilp VR256:$src1, (i8 imm:$imm))),
(VPERMILPDYri VR256:$src1, imm:$imm)>;
-def : Pat<(v8i32 (X86VPermilpsy VR256:$src1, (i8 imm:$imm))),
+def : Pat<(v8i32 (X86VPermilp VR256:$src1, (i8 imm:$imm))),
(VPERMILPSYri VR256:$src1, imm:$imm)>;
-def : Pat<(v4i64 (X86VPermilpdy VR256:$src1, (i8 imm:$imm))),
+def : Pat<(v4i64 (X86VPermilp VR256:$src1, (i8 imm:$imm))),
(VPERMILPDYri VR256:$src1, imm:$imm)>;
+def : Pat<(v8f32 (X86VPermilp (memopv8f32 addr:$src1), (i8 imm:$imm))),
+ (VPERMILPSYmi addr:$src1, imm:$imm)>;
+def : Pat<(v4f64 (X86VPermilp (memopv4f64 addr:$src1), (i8 imm:$imm))),
+ (VPERMILPDYmi addr:$src1, imm:$imm)>;
+def : Pat<(v8i32 (X86VPermilp (bc_v8i32 (memopv4i64 addr:$src1)),
+ (i8 imm:$imm))),
+ (VPERMILPSYmi addr:$src1, imm:$imm)>;
+def : Pat<(v4i64 (X86VPermilp (memopv4i64 addr:$src1), (i8 imm:$imm))),
+ (VPERMILPDYmi addr:$src1, imm:$imm)>;
//===----------------------------------------------------------------------===//
// VPERM2F128 - Permute Floating-Point Values in 128-bit chunks
//
-let neverHasSideEffects = 1 in {
+let neverHasSideEffects = 1, ExeDomain = SSEPackedSingle in {
def VPERM2F128rr : AVXAIi8<0x06, MRMSrcReg, (outs VR256:$dst),
(ins VR256:$src1, VR256:$src2, i8imm:$src3),
"vperm2f128\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
@@ -7359,22 +7424,9 @@ def : Pat<(int_x86_avx_vperm2f128_pd_256
VR256:$src1, (memopv4f64 addr:$src2), imm:$src3),
(VPERM2F128rm VR256:$src1, addr:$src2, imm:$src3)>;
def : Pat<(int_x86_avx_vperm2f128_si_256
- VR256:$src1, (memopv8i32 addr:$src2), imm:$src3),
+ VR256:$src1, (bc_v8i32 (memopv4i64 addr:$src2)), imm:$src3),
(VPERM2F128rm VR256:$src1, addr:$src2, imm:$src3)>;
-def : Pat<(v8f32 (X86VPerm2f128 VR256:$src1, VR256:$src2, (i8 imm:$imm))),
- (VPERM2F128rr VR256:$src1, VR256:$src2, imm:$imm)>;
-def : Pat<(v8i32 (X86VPerm2f128 VR256:$src1, VR256:$src2, (i8 imm:$imm))),
- (VPERM2F128rr VR256:$src1, VR256:$src2, imm:$imm)>;
-def : Pat<(v4i64 (X86VPerm2f128 VR256:$src1, VR256:$src2, (i8 imm:$imm))),
- (VPERM2F128rr VR256:$src1, VR256:$src2, imm:$imm)>;
-def : Pat<(v4f64 (X86VPerm2f128 VR256:$src1, VR256:$src2, (i8 imm:$imm))),
- (VPERM2F128rr VR256:$src1, VR256:$src2, imm:$imm)>;
-def : Pat<(v32i8 (X86VPerm2f128 VR256:$src1, VR256:$src2, (i8 imm:$imm))),
- (VPERM2F128rr VR256:$src1, VR256:$src2, imm:$imm)>;
-def : Pat<(v16i16 (X86VPerm2f128 VR256:$src1, VR256:$src2, (i8 imm:$imm))),
- (VPERM2F128rr VR256:$src1, VR256:$src2, imm:$imm)>;
-
//===----------------------------------------------------------------------===//
// VZERO - Zero YMM registers
//
@@ -7451,9 +7503,9 @@ multiclass AVX2_binop_rmi_int<bits<8> opc, string OpcodeStr,
let isCommutable = 0 in {
defm VPBLENDD : AVX2_binop_rmi_int<0x02, "vpblendd", int_x86_avx2_pblendd_128,
- VR128, memopv16i8, i128mem>;
+ VR128, memopv2i64, i128mem>;
defm VPBLENDDY : AVX2_binop_rmi_int<0x02, "vpblendd", int_x86_avx2_pblendd_256,
- VR256, memopv32i8, i256mem>;
+ VR256, memopv4i64, i256mem>;
}
//===----------------------------------------------------------------------===//
@@ -7541,11 +7593,12 @@ multiclass avx2_perm<bits<8> opc, string OpcodeStr, PatFrag mem_frag,
(ins VR256:$src1, i256mem:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
- [(set VR256:$dst, (Int VR256:$src1, (mem_frag addr:$src2)))]>,
+ [(set VR256:$dst, (Int VR256:$src1,
+ (bitconvert (mem_frag addr:$src2))))]>,
VEX_4V;
}
-defm VPERMD : avx2_perm<0x36, "vpermd", memopv8i32, int_x86_avx2_permd>;
+defm VPERMD : avx2_perm<0x36, "vpermd", memopv4i64, int_x86_avx2_permd>;
let ExeDomain = SSEPackedSingle in
defm VPERMPS : avx2_perm<0x16, "vpermps", memopv8f32, int_x86_avx2_permps>;
@@ -7571,7 +7624,7 @@ defm VPERMPD : avx2_perm_imm<0x01, "vpermpd", memopv4f64, int_x86_avx2_permpd>,
VEX_W;
//===----------------------------------------------------------------------===//
-// VPERM2F128 - Permute Floating-Point Values in 128-bit chunks
+// VPERM2I128 - Permute Floating-Point Values in 128-bit chunks
//
def VPERM2I128rr : AVX2AIi8<0x46, MRMSrcReg, (outs VR256:$dst),
(ins VR256:$src1, VR256:$src2, i8imm:$src3),
@@ -7587,6 +7640,64 @@ def VPERM2I128rm : AVX2AIi8<0x46, MRMSrcMem, (outs VR256:$dst),
imm:$src3))]>,
VEX_4V;
+let Predicates = [HasAVX2] in {
+def : Pat<(v8i32 (X86VPerm2x128 VR256:$src1, VR256:$src2, (i8 imm:$imm))),
+ (VPERM2I128rr VR256:$src1, VR256:$src2, imm:$imm)>;
+def : Pat<(v4i64 (X86VPerm2x128 VR256:$src1, VR256:$src2, (i8 imm:$imm))),
+ (VPERM2I128rr VR256:$src1, VR256:$src2, imm:$imm)>;
+def : Pat<(v32i8 (X86VPerm2x128 VR256:$src1, VR256:$src2, (i8 imm:$imm))),
+ (VPERM2I128rr VR256:$src1, VR256:$src2, imm:$imm)>;
+def : Pat<(v16i16 (X86VPerm2x128 VR256:$src1, VR256:$src2, (i8 imm:$imm))),
+ (VPERM2I128rr VR256:$src1, VR256:$src2, imm:$imm)>;
+
+def : Pat<(v32i8 (X86VPerm2x128 VR256:$src1, (bc_v32i8 (memopv4i64 addr:$src2)),
+ (i8 imm:$imm))),
+ (VPERM2I128rm VR256:$src1, addr:$src2, imm:$imm)>;
+def : Pat<(v16i16 (X86VPerm2x128 VR256:$src1,
+ (bc_v16i16 (memopv4i64 addr:$src2)), (i8 imm:$imm))),
+ (VPERM2I128rm VR256:$src1, addr:$src2, imm:$imm)>;
+def : Pat<(v8i32 (X86VPerm2x128 VR256:$src1, (bc_v8i32 (memopv4i64 addr:$src2)),
+ (i8 imm:$imm))),
+ (VPERM2I128rm VR256:$src1, addr:$src2, imm:$imm)>;
+def : Pat<(v4i64 (X86VPerm2x128 VR256:$src1, (memopv4i64 addr:$src2),
+ (i8 imm:$imm))),
+ (VPERM2I128rm VR256:$src1, addr:$src2, imm:$imm)>;
+}
+
+// AVX1 patterns
+def : Pat<(v8f32 (X86VPerm2x128 VR256:$src1, VR256:$src2, (i8 imm:$imm))),
+ (VPERM2F128rr VR256:$src1, VR256:$src2, imm:$imm)>;
+def : Pat<(v8i32 (X86VPerm2x128 VR256:$src1, VR256:$src2, (i8 imm:$imm))),
+ (VPERM2F128rr VR256:$src1, VR256:$src2, imm:$imm)>;
+def : Pat<(v4i64 (X86VPerm2x128 VR256:$src1, VR256:$src2, (i8 imm:$imm))),
+ (VPERM2F128rr VR256:$src1, VR256:$src2, imm:$imm)>;
+def : Pat<(v4f64 (X86VPerm2x128 VR256:$src1, VR256:$src2, (i8 imm:$imm))),
+ (VPERM2F128rr VR256:$src1, VR256:$src2, imm:$imm)>;
+def : Pat<(v32i8 (X86VPerm2x128 VR256:$src1, VR256:$src2, (i8 imm:$imm))),
+ (VPERM2F128rr VR256:$src1, VR256:$src2, imm:$imm)>;
+def : Pat<(v16i16 (X86VPerm2x128 VR256:$src1, VR256:$src2, (i8 imm:$imm))),
+ (VPERM2F128rr VR256:$src1, VR256:$src2, imm:$imm)>;
+
+def : Pat<(v8f32 (X86VPerm2x128 VR256:$src1,
+ (memopv8f32 addr:$src2), (i8 imm:$imm))),
+ (VPERM2F128rm VR256:$src1, addr:$src2, imm:$imm)>;
+def : Pat<(v8i32 (X86VPerm2x128 VR256:$src1,
+ (bc_v8i32 (memopv4i64 addr:$src2)), (i8 imm:$imm))),
+ (VPERM2F128rm VR256:$src1, addr:$src2, imm:$imm)>;
+def : Pat<(v4i64 (X86VPerm2x128 VR256:$src1,
+ (memopv4i64 addr:$src2), (i8 imm:$imm))),
+ (VPERM2F128rm VR256:$src1, addr:$src2, imm:$imm)>;
+def : Pat<(v4f64 (X86VPerm2x128 VR256:$src1,
+ (memopv4f64 addr:$src2), (i8 imm:$imm))),
+ (VPERM2F128rm VR256:$src1, addr:$src2, imm:$imm)>;
+def : Pat<(v32i8 (X86VPerm2x128 VR256:$src1,
+ (bc_v32i8 (memopv4i64 addr:$src2)), (i8 imm:$imm))),
+ (VPERM2F128rm VR256:$src1, addr:$src2, imm:$imm)>;
+def : Pat<(v16i16 (X86VPerm2x128 VR256:$src1,
+ (bc_v16i16 (memopv4i64 addr:$src2)), (i8 imm:$imm))),
+ (VPERM2F128rm VR256:$src1, addr:$src2, imm:$imm)>;
+
+
//===----------------------------------------------------------------------===//
// VINSERTI128 - Insert packed integer values
//
@@ -7603,6 +7714,51 @@ def VINSERTI128rm : AVX2AIi8<0x38, MRMSrcMem, (outs VR256:$dst),
(int_x86_avx2_vinserti128 VR256:$src1, (memopv2i64 addr:$src2),
imm:$src3))]>, VEX_4V;
+let Predicates = [HasAVX2] in {
+def : Pat<(vinsertf128_insert:$ins (v4i64 VR256:$src1), (v2i64 VR128:$src2),
+ (i32 imm)),
+ (VINSERTI128rr VR256:$src1, VR128:$src2,
+ (INSERT_get_vinsertf128_imm VR256:$ins))>;
+def : Pat<(vinsertf128_insert:$ins (v8i32 VR256:$src1), (v4i32 VR128:$src2),
+ (i32 imm)),
+ (VINSERTI128rr VR256:$src1, VR128:$src2,
+ (INSERT_get_vinsertf128_imm VR256:$ins))>;
+def : Pat<(vinsertf128_insert:$ins (v32i8 VR256:$src1), (v16i8 VR128:$src2),
+ (i32 imm)),
+ (VINSERTI128rr VR256:$src1, VR128:$src2,
+ (INSERT_get_vinsertf128_imm VR256:$ins))>;
+def : Pat<(vinsertf128_insert:$ins (v16i16 VR256:$src1), (v8i16 VR128:$src2),
+ (i32 imm)),
+ (VINSERTI128rr VR256:$src1, VR128:$src2,
+ (INSERT_get_vinsertf128_imm VR256:$ins))>;
+}
+
+// AVX1 patterns
+def : Pat<(vinsertf128_insert:$ins (v8f32 VR256:$src1), (v4f32 VR128:$src2),
+ (i32 imm)),
+ (VINSERTF128rr VR256:$src1, VR128:$src2,
+ (INSERT_get_vinsertf128_imm VR256:$ins))>;
+def : Pat<(vinsertf128_insert:$ins (v4f64 VR256:$src1), (v2f64 VR128:$src2),
+ (i32 imm)),
+ (VINSERTF128rr VR256:$src1, VR128:$src2,
+ (INSERT_get_vinsertf128_imm VR256:$ins))>;
+def : Pat<(vinsertf128_insert:$ins (v4i64 VR256:$src1), (v2i64 VR128:$src2),
+ (i32 imm)),
+ (VINSERTF128rr VR256:$src1, VR128:$src2,
+ (INSERT_get_vinsertf128_imm VR256:$ins))>;
+def : Pat<(vinsertf128_insert:$ins (v8i32 VR256:$src1), (v4i32 VR128:$src2),
+ (i32 imm)),
+ (VINSERTF128rr VR256:$src1, VR128:$src2,
+ (INSERT_get_vinsertf128_imm VR256:$ins))>;
+def : Pat<(vinsertf128_insert:$ins (v32i8 VR256:$src1), (v16i8 VR128:$src2),
+ (i32 imm)),
+ (VINSERTF128rr VR256:$src1, VR128:$src2,
+ (INSERT_get_vinsertf128_imm VR256:$ins))>;
+def : Pat<(vinsertf128_insert:$ins (v16i16 VR256:$src1), (v8i16 VR128:$src2),
+ (i32 imm)),
+ (VINSERTF128rr VR256:$src1, VR128:$src2,
+ (INSERT_get_vinsertf128_imm VR256:$ins))>;
+
//===----------------------------------------------------------------------===//
// VEXTRACTI128 - Extract packed integer values
//
@@ -7617,6 +7773,51 @@ def VEXTRACTI128mr : AVX2AIi8<0x39, MRMDestMem, (outs),
(ins i128mem:$dst, VR256:$src1, i8imm:$src2),
"vextracti128\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>, VEX;
+let Predicates = [HasAVX2] in {
+def : Pat<(vextractf128_extract:$ext VR256:$src1, (i32 imm)),
+ (v2i64 (VEXTRACTI128rr
+ (v4i64 VR256:$src1),
+ (EXTRACT_get_vextractf128_imm VR128:$ext)))>;
+def : Pat<(vextractf128_extract:$ext VR256:$src1, (i32 imm)),
+ (v4i32 (VEXTRACTI128rr
+ (v8i32 VR256:$src1),
+ (EXTRACT_get_vextractf128_imm VR128:$ext)))>;
+def : Pat<(vextractf128_extract:$ext VR256:$src1, (i32 imm)),
+ (v8i16 (VEXTRACTI128rr
+ (v16i16 VR256:$src1),
+ (EXTRACT_get_vextractf128_imm VR128:$ext)))>;
+def : Pat<(vextractf128_extract:$ext VR256:$src1, (i32 imm)),
+ (v16i8 (VEXTRACTI128rr
+ (v32i8 VR256:$src1),
+ (EXTRACT_get_vextractf128_imm VR128:$ext)))>;
+}
+
+// AVX1 patterns
+def : Pat<(vextractf128_extract:$ext VR256:$src1, (i32 imm)),
+ (v4f32 (VEXTRACTF128rr
+ (v8f32 VR256:$src1),
+ (EXTRACT_get_vextractf128_imm VR128:$ext)))>;
+def : Pat<(vextractf128_extract:$ext VR256:$src1, (i32 imm)),
+ (v2f64 (VEXTRACTF128rr
+ (v4f64 VR256:$src1),
+ (EXTRACT_get_vextractf128_imm VR128:$ext)))>;
+def : Pat<(vextractf128_extract:$ext VR256:$src1, (i32 imm)),
+ (v2i64 (VEXTRACTF128rr
+ (v4i64 VR256:$src1),
+ (EXTRACT_get_vextractf128_imm VR128:$ext)))>;
+def : Pat<(vextractf128_extract:$ext VR256:$src1, (i32 imm)),
+ (v4i32 (VEXTRACTF128rr
+ (v8i32 VR256:$src1),
+ (EXTRACT_get_vextractf128_imm VR128:$ext)))>;
+def : Pat<(vextractf128_extract:$ext VR256:$src1, (i32 imm)),
+ (v8i16 (VEXTRACTF128rr
+ (v16i16 VR256:$src1),
+ (EXTRACT_get_vextractf128_imm VR128:$ext)))>;
+def : Pat<(vextractf128_extract:$ext VR256:$src1, (i32 imm)),
+ (v16i8 (VEXTRACTF128rr
+ (v32i8 VR256:$src1),
+ (EXTRACT_get_vextractf128_imm VR128:$ext)))>;
+
//===----------------------------------------------------------------------===//
// VPMASKMOV - Conditional SIMD Integer Packed Loads and Stores
//
diff --git a/lib/Target/X86/X86InstrXOP.td b/lib/Target/X86/X86InstrXOP.td
new file mode 100644
index 0000000..64cc44d
--- /dev/null
+++ b/lib/Target/X86/X86InstrXOP.td
@@ -0,0 +1,243 @@
+//====- X86InstrXOP.td - Describe the X86 Instruction Set --*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes XOP (eXtended OPerations)
+//
+//===----------------------------------------------------------------------===//
+
+multiclass xop2op<bits<8> opc, string OpcodeStr, X86MemOperand x86memop> {
+ def rr : IXOP<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ []>, VEX;
+ def rm : IXOP<opc, MRMSrcMem, (outs VR128:$dst), (ins x86memop:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ []>, VEX;
+}
+
+let isAsmParserOnly = 1 in {
+ defm VPHSUBWD : xop2op<0xE2, "vphsubwd", f128mem>;
+ defm VPHSUBDQ : xop2op<0xE3, "vphsubdq", f128mem>;
+ defm VPHSUBBW : xop2op<0xE1, "vphsubbw", f128mem>;
+ defm VPHADDWQ : xop2op<0xC7, "vphaddwq", f128mem>;
+ defm VPHADDWD : xop2op<0xC6, "vphaddwd", f128mem>;
+ defm VPHADDUWQ : xop2op<0xD7, "vphadduwq", f128mem>;
+ defm VPHADDUWD : xop2op<0xD6, "vphadduwd", f128mem>;
+ defm VPHADDUDQ : xop2op<0xDB, "vphaddudq", f128mem>;
+ defm VPHADDUBW : xop2op<0xD1, "vphaddubw", f128mem>;
+ defm VPHADDUBQ : xop2op<0xD3, "vphaddubq", f128mem>;
+ defm VPHADDUBD : xop2op<0xD2, "vphaddubd", f128mem>;
+ defm VPHADDDQ : xop2op<0xCB, "vphadddq", f128mem>;
+ defm VPHADDBW : xop2op<0xC1, "vphaddbw", f128mem>;
+ defm VPHADDBQ : xop2op<0xC3, "vphaddbq", f128mem>;
+ defm VPHADDBD : xop2op<0xC2, "vphaddbd", f128mem>;
+ defm VFRCZSS : xop2op<0x82, "vfrczss", f32mem>;
+ defm VFRCZSD : xop2op<0x83, "vfrczsd", f64mem>;
+ defm VFRCZPS : xop2op<0x80, "vfrczps", f128mem>;
+ defm VFRCZPD : xop2op<0x81, "vfrczpd", f128mem>;
+}
+
+multiclass xop2op256<bits<8> opc, string OpcodeStr> {
+ def rrY : IXOP<opc, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ []>, VEX, VEX_L;
+ def rmY : IXOP<opc, MRMSrcMem, (outs VR256:$dst), (ins f256mem:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ []>, VEX;
+}
+
+let isAsmParserOnly = 1 in {
+ defm VFRCZPS : xop2op256<0x80, "vfrczps">;
+ defm VFRCZPD : xop2op256<0x81, "vfrczpd">;
+}
+
+multiclass xop3op<bits<8> opc, string OpcodeStr> {
+ def rr : IXOP<opc, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ []>, VEX_4VOp3;
+ def rm : IXOP<opc, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, f128mem:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ []>, VEX_4V, VEX_W;
+ def mr : IXOP<opc, MRMSrcMem, (outs VR128:$dst),
+ (ins f128mem:$src1, VR128:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ []>, VEX_4VOp3;
+}
+
+let isAsmParserOnly = 1 in {
+ defm VPSHLW : xop3op<0x95, "vpshlw">;
+ defm VPSHLQ : xop3op<0x97, "vpshlq">;
+ defm VPSHLD : xop3op<0x96, "vpshld">;
+ defm VPSHLB : xop3op<0x94, "vpshlb">;
+ defm VPSHAW : xop3op<0x99, "vpshaw">;
+ defm VPSHAQ : xop3op<0x9B, "vpshaq">;
+ defm VPSHAD : xop3op<0x9A, "vpshad">;
+ defm VPSHAB : xop3op<0x98, "vpshab">;
+ defm VPROTW : xop3op<0x91, "vprotw">;
+ defm VPROTQ : xop3op<0x93, "vprotq">;
+ defm VPROTD : xop3op<0x92, "vprotd">;
+ defm VPROTB : xop3op<0x90, "vprotb">;
+}
+
+multiclass xop3opimm<bits<8> opc, string OpcodeStr> {
+ def ri : IXOPi8<opc, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, i8imm:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ []>, VEX;
+ def mi : IXOPi8<opc, MRMSrcMem, (outs VR128:$dst),
+ (ins f128mem:$src1, i8imm:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ []>, VEX;
+}
+
+let isAsmParserOnly = 1 in {
+ defm VPROTW : xop3opimm<0xC1, "vprotw">;
+ defm VPROTQ : xop3opimm<0xC3, "vprotq">;
+ defm VPROTD : xop3opimm<0xC2, "vprotd">;
+ defm VPROTB : xop3opimm<0xC0, "vprotb">;
+}
+
+// Instruction where second source can be memory, but third must be register
+multiclass xop4opm2<bits<8> opc, string OpcodeStr> {
+ def rr : IXOPi8<opc, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src2, VR128:$src3),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ []>, VEX_4V, VEX_I8IMM;
+ def rm : IXOPi8<opc, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, f128mem:$src2, VR128:$src3),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ []>, VEX_4V, VEX_I8IMM;
+}
+
+let isAsmParserOnly = 1 in {
+ defm VPMADCSWD : xop4opm2<0xB6, "vpmadcswd">;
+ defm VPMADCSSWD : xop4opm2<0xA6, "vpmadcsswd">;
+ defm VPMACSWW : xop4opm2<0x95, "vpmacsww">;
+ defm VPMACSWD : xop4opm2<0x96, "vpmacswd">;
+ defm VPMACSSWW : xop4opm2<0x85, "vpmacssww">;
+ defm VPMACSSWD : xop4opm2<0x86, "vpmacsswd">;
+ defm VPMACSSDQL : xop4opm2<0x87, "vpmacssdql">;
+ defm VPMACSSDQH : xop4opm2<0x8F, "vpmacssdqh">;
+ defm VPMACSSDD : xop4opm2<0x8E, "vpmacssdd">;
+ defm VPMACSDQL : xop4opm2<0x97, "vpmacsdql">;
+ defm VPMACSDQH : xop4opm2<0x9F, "vpmacsdqh">;
+ defm VPMACSDD : xop4opm2<0x9E, "vpmacsdd">;
+}
+
+// Instruction where second source can be memory, third must be imm8
+multiclass xop4opimm<bits<8> opc, string OpcodeStr> {
+ def ri : IXOPi8<opc, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src2, i8imm:$src3),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ []>, VEX_4V;
+ def mi : IXOPi8<opc, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, f128mem:$src2, i8imm:$src3),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ []>, VEX_4V;
+}
+
+let isAsmParserOnly = 1 in {
+ defm VPCOMW : xop4opimm<0xCD, "vpcomw">;
+ defm VPCOMUW : xop4opimm<0xED, "vpcomuw">;
+ defm VPCOMUQ : xop4opimm<0xEF, "vpcomuq">;
+ defm VPCOMUD : xop4opimm<0xEE, "vpcomud">;
+ defm VPCOMUB : xop4opimm<0xEC, "vpcomub">;
+ defm VPCOMQ : xop4opimm<0xCF, "vpcomq">;
+ defm VPCOMD : xop4opimm<0xCE, "vpcomd">;
+ defm VPCOMB : xop4opimm<0xCC, "vpcomb">;
+}
+
+// Instruction where either second or third source can be memory
+multiclass xop4op<bits<8> opc, string OpcodeStr> {
+ def rr : IXOPi8<opc, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src2, VR128:$src3),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ []>, VEX_4V, VEX_I8IMM;
+ def rm : IXOPi8<opc, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src2, f128mem:$src3),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ []>, VEX_4V, VEX_I8IMM, XOP_W;
+ def mr : IXOPi8<opc, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, f128mem:$src2, VR128:$src3),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ []>, VEX_4V, VEX_I8IMM;
+}
+
+let isAsmParserOnly = 1 in {
+ defm VPPERM : xop4op<0xA3, "vpperm">;
+ defm VPCMOV : xop4op<0xA2, "vpcmov">;
+}
+
+multiclass xop4op256<bits<8> opc, string OpcodeStr> {
+ def rrY : IXOPi8<opc, MRMSrcReg, (outs VR256:$dst),
+ (ins VR256:$src1, VR256:$src2, VR256:$src3),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ []>, VEX_4V, VEX_I8IMM;
+ def rmY : IXOPi8<opc, MRMSrcMem, (outs VR256:$dst),
+ (ins VR256:$src1, VR256:$src2, f256mem:$src3),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ []>, VEX_4V, VEX_I8IMM, XOP_W;
+ def mrY : IXOPi8<opc, MRMSrcMem, (outs VR256:$dst),
+ (ins VR256:$src1, f256mem:$src2, VR256:$src3),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ []>, VEX_4V, VEX_I8IMM;
+}
+
+let isAsmParserOnly = 1 in {
+ defm VPCMOV : xop4op256<0xA2, "vpcmov">;
+}
+
+multiclass xop5op<bits<8> opc, string OpcodeStr> {
+ def rr : IXOP5<opc, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src2, VR128:$src3, i8imm:$src4),
+ !strconcat(OpcodeStr,
+ "\t{$src4, $src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3, $src4}"),
+ []>;
+ def rm : IXOP5<opc, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src2, f128mem:$src3, i8imm:$src4),
+ !strconcat(OpcodeStr,
+ "\t{$src4, $src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3, $src4}"),
+ []>, XOP_W;
+ def mr : IXOP5<opc, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, f128mem:$src2, VR128:$src3, i8imm:$src4),
+ !strconcat(OpcodeStr,
+ "\t{$src4, $src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3, $src4}"),
+ []>;
+ def rrY : IXOP5<opc, MRMSrcReg, (outs VR256:$dst),
+ (ins VR256:$src1, VR256:$src2, VR256:$src3, i8imm:$src4),
+ !strconcat(OpcodeStr,
+ "\t{$src4, $src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3, $src4}"),
+ []>;
+ def rmY : IXOP5<opc, MRMSrcMem, (outs VR256:$dst),
+ (ins VR256:$src1, VR256:$src2, f256mem:$src3, i8imm:$src4),
+ !strconcat(OpcodeStr,
+ "\t{$src4, $src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3, $src4}"),
+ []>, XOP_W;
+ def mrY : IXOP5<opc, MRMSrcMem, (outs VR256:$dst),
+ (ins VR256:$src1, f256mem:$src2, VR256:$src3, i8imm:$src4),
+ !strconcat(OpcodeStr,
+ "\t{$src4, $src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3, $src4}"),
+ []>;
+}
+
+let isAsmParserOnly = 1 in {
+ defm VPERMIL2PD : xop5op<0x49, "vpermil2pd">;
+ defm VPERMIL2PS : xop5op<0x48, "vpermil2ps">;
+}
diff --git a/lib/Target/X86/X86JITInfo.cpp b/lib/Target/X86/X86JITInfo.cpp
index 3f88fa6..2145a33 100644
--- a/lib/Target/X86/X86JITInfo.cpp
+++ b/lib/Target/X86/X86JITInfo.cpp
@@ -424,7 +424,9 @@ X86CompilationCallback2(intptr_t *StackPtr, intptr_t RetAddr) {
TargetJITInfo::LazyResolverFn
X86JITInfo::getLazyResolverFunction(JITCompilerFn F) {
+ TsanIgnoreWritesBegin();
JITCompilerFunction = F;
+ TsanIgnoreWritesEnd();
#if defined (X86_32_JIT) && !defined (_MSC_VER)
if (Subtarget->hasSSE1())
diff --git a/lib/Target/X86/X86MCInstLower.cpp b/lib/Target/X86/X86MCInstLower.cpp
index 81ee665..9232196 100644
--- a/lib/Target/X86/X86MCInstLower.cpp
+++ b/lib/Target/X86/X86MCInstLower.cpp
@@ -368,10 +368,6 @@ ReSimplify:
case X86::SETB_C64r: LowerUnaryToTwoAddr(OutMI, X86::SBB64rr); break;
case X86::MOV8r0: LowerUnaryToTwoAddr(OutMI, X86::XOR8rr); break;
case X86::MOV32r0: LowerUnaryToTwoAddr(OutMI, X86::XOR32rr); break;
- case X86::FsFLD0SS: LowerUnaryToTwoAddr(OutMI, X86::PXORrr); break;
- case X86::FsFLD0SD: LowerUnaryToTwoAddr(OutMI, X86::PXORrr); break;
- case X86::VFsFLD0SS: LowerUnaryToTwoAddr(OutMI, X86::VPXORrr); break;
- case X86::VFsFLD0SD: LowerUnaryToTwoAddr(OutMI, X86::VPXORrr); break;
case X86::V_SETALLONES: LowerUnaryToTwoAddr(OutMI, X86::PCMPEQDrr); break;
case X86::AVX_SET0PSY: LowerUnaryToTwoAddr(OutMI, X86::VXORPSYrr); break;
case X86::AVX_SET0PDY: LowerUnaryToTwoAddr(OutMI, X86::VXORPDYrr); break;
diff --git a/lib/Target/X86/X86RegisterInfo.cpp b/lib/Target/X86/X86RegisterInfo.cpp
index c1ac9f3..4e80432 100644
--- a/lib/Target/X86/X86RegisterInfo.cpp
+++ b/lib/Target/X86/X86RegisterInfo.cpp
@@ -452,7 +452,7 @@ BitVector X86RegisterInfo::getReservedRegs(const MachineFunction &MF) const {
bool X86RegisterInfo::canRealignStack(const MachineFunction &MF) const {
const MachineFrameInfo *MFI = MF.getFrameInfo();
- return (RealignStack &&
+ return (MF.getTarget().Options.RealignStack &&
!MFI->hasVarSizedObjects());
}
@@ -583,7 +583,7 @@ eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
// sure we restore the stack pointer immediately after the call, there may
// be spill code inserted between the CALL and ADJCALLSTACKUP instructions.
MachineBasicBlock::iterator B = MBB.begin();
- while (I != B && !llvm::prior(I)->getDesc().isCall())
+ while (I != B && !llvm::prior(I)->isCall())
--I;
MBB.insert(I, New);
}
@@ -665,7 +665,7 @@ unsigned getX86SubSuperRegister(unsigned Reg, EVT VT, bool High) {
case MVT::i8:
if (High) {
switch (Reg) {
- default: return 0;
+ default: return getX86SubSuperRegister(Reg, MVT::i64, High);
case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
return X86::AH;
case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
@@ -785,6 +785,22 @@ unsigned getX86SubSuperRegister(unsigned Reg, EVT VT, bool High) {
return X86::R15D;
}
case MVT::i64:
+ // For 64-bit mode if we've requested a "high" register and the
+ // Q or r constraints we want one of these high registers or
+ // just the register name otherwise.
+ if (High) {
+ switch (Reg) {
+ case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
+ return X86::SI;
+ case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
+ return X86::DI;
+ case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
+ return X86::BP;
+ case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
+ return X86::SP;
+ // Fallthrough.
+ }
+ }
switch (Reg) {
default: return Reg;
case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
diff --git a/lib/Target/X86/X86Subtarget.cpp b/lib/Target/X86/X86Subtarget.cpp
index e7bcbf8..6e092c7 100644
--- a/lib/Target/X86/X86Subtarget.cpp
+++ b/lib/Target/X86/X86Subtarget.cpp
@@ -273,6 +273,8 @@ void X86Subtarget::AutoDetectSubtargetFeatures() {
if (IsAMD && ((ECX >> 16) & 0x1)) {
HasFMA4 = true;
ToggleFeature(X86::FeatureFMA4);
+ HasXOP = true;
+ ToggleFeature(X86::FeatureXOP);
}
}
}
@@ -317,6 +319,7 @@ X86Subtarget::X86Subtarget(const std::string &TT, const std::string &CPU,
, HasCLMUL(false)
, HasFMA3(false)
, HasFMA4(false)
+ , HasXOP(false)
, HasMOVBE(false)
, HasRDRAND(false)
, HasF16C(false)
@@ -387,9 +390,6 @@ X86Subtarget::X86Subtarget(const std::string &TT, const std::string &CPU,
assert((!In64BitMode || HasX86_64) &&
"64-bit code requested on a subtarget that doesn't support it!");
- if(EnableSegmentedStacks && !isTargetELF())
- report_fatal_error("Segmented stacks are only implemented on ELF.");
-
// Stack alignment is 16 bytes on Darwin, FreeBSD, Linux and Solaris (both
// 32 and 64 bit) and for all 64-bit targets.
if (StackAlignOverride)
diff --git a/lib/Target/X86/X86Subtarget.h b/lib/Target/X86/X86Subtarget.h
index e93f8e9..ccb9be0 100644
--- a/lib/Target/X86/X86Subtarget.h
+++ b/lib/Target/X86/X86Subtarget.h
@@ -93,6 +93,9 @@ protected:
/// HasFMA4 - Target has 4-operand fused multiply-add
bool HasFMA4;
+ /// HasXOP - Target has XOP instructions
+ bool HasXOP;
+
/// HasMOVBE - True if the processor has the MOVBE instruction.
bool HasMOVBE;
@@ -198,6 +201,7 @@ public:
bool hasCLMUL() const { return HasCLMUL; }
bool hasFMA3() const { return HasFMA3; }
bool hasFMA4() const { return HasFMA4; }
+ bool hasXOP() const { return HasXOP; }
bool hasMOVBE() const { return HasMOVBE; }
bool hasRDRAND() const { return HasRDRAND; }
bool hasF16C() const { return HasF16C; }
diff --git a/lib/Target/X86/X86TargetMachine.cpp b/lib/Target/X86/X86TargetMachine.cpp
index 1c9f3bd..126042e 100644
--- a/lib/Target/X86/X86TargetMachine.cpp
+++ b/lib/Target/X86/X86TargetMachine.cpp
@@ -31,9 +31,10 @@ extern "C" void LLVMInitializeX86Target() {
X86_32TargetMachine::X86_32TargetMachine(const Target &T, StringRef TT,
StringRef CPU, StringRef FS,
+ const TargetOptions &Options,
Reloc::Model RM, CodeModel::Model CM,
CodeGenOpt::Level OL)
- : X86TargetMachine(T, TT, CPU, FS, RM, CM, OL, false),
+ : X86TargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false),
DataLayout(getSubtargetImpl()->isTargetDarwin() ?
"e-p:32:32-f64:32:64-i64:32:64-f80:128:128-f128:128:128-"
"n8:16:32-S128" :
@@ -52,9 +53,10 @@ X86_32TargetMachine::X86_32TargetMachine(const Target &T, StringRef TT,
X86_64TargetMachine::X86_64TargetMachine(const Target &T, StringRef TT,
StringRef CPU, StringRef FS,
+ const TargetOptions &Options,
Reloc::Model RM, CodeModel::Model CM,
CodeGenOpt::Level OL)
- : X86TargetMachine(T, TT, CPU, FS, RM, CM, OL, true),
+ : X86TargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true),
DataLayout("e-p:64:64-s:64-f64:64:64-i64:64:64-f80:128:128-f128:128:128-"
"n8:16:32:64-S128"),
InstrInfo(*this),
@@ -67,11 +69,12 @@ X86_64TargetMachine::X86_64TargetMachine(const Target &T, StringRef TT,
///
X86TargetMachine::X86TargetMachine(const Target &T, StringRef TT,
StringRef CPU, StringRef FS,
+ const TargetOptions &Options,
Reloc::Model RM, CodeModel::Model CM,
CodeGenOpt::Level OL,
bool is64Bit)
- : LLVMTargetMachine(T, TT, CPU, FS, RM, CM, OL),
- Subtarget(TT, CPU, FS, StackAlignmentOverride, is64Bit),
+ : LLVMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL),
+ Subtarget(TT, CPU, FS, Options.StackAlignmentOverride, is64Bit),
FrameLowering(*this, Subtarget),
ELFWriterInfo(is64Bit, true) {
// Determine the PICStyle based on the target selected.
@@ -95,8 +98,11 @@ X86TargetMachine::X86TargetMachine(const Target &T, StringRef TT,
}
// default to hard float ABI
- if (FloatABIType == FloatABI::Default)
- FloatABIType = FloatABI::Hard;
+ if (Options.FloatABIType == FloatABI::Default)
+ this->Options.FloatABIType = FloatABI::Hard;
+
+ if (Options.EnableSegmentedStacks && !Subtarget.isTargetELF())
+ report_fatal_error("Segmented stacks are only implemented on ELF.");
}
//===----------------------------------------------------------------------===//
diff --git a/lib/Target/X86/X86TargetMachine.h b/lib/Target/X86/X86TargetMachine.h
index 64be458..3ac1769 100644
--- a/lib/Target/X86/X86TargetMachine.h
+++ b/lib/Target/X86/X86TargetMachine.h
@@ -38,7 +38,7 @@ class X86TargetMachine : public LLVMTargetMachine {
public:
X86TargetMachine(const Target &T, StringRef TT,
- StringRef CPU, StringRef FS,
+ StringRef CPU, StringRef FS, const TargetOptions &Options,
Reloc::Model RM, CodeModel::Model CM,
CodeGenOpt::Level OL,
bool is64Bit);
@@ -85,7 +85,7 @@ class X86_32TargetMachine : public X86TargetMachine {
X86JITInfo JITInfo;
public:
X86_32TargetMachine(const Target &T, StringRef TT,
- StringRef CPU, StringRef FS,
+ StringRef CPU, StringRef FS, const TargetOptions &Options,
Reloc::Model RM, CodeModel::Model CM,
CodeGenOpt::Level OL);
virtual const TargetData *getTargetData() const { return &DataLayout; }
@@ -113,7 +113,7 @@ class X86_64TargetMachine : public X86TargetMachine {
X86JITInfo JITInfo;
public:
X86_64TargetMachine(const Target &T, StringRef TT,
- StringRef CPU, StringRef FS,
+ StringRef CPU, StringRef FS, const TargetOptions &Options,
Reloc::Model RM, CodeModel::Model CM,
CodeGenOpt::Level OL);
virtual const TargetData *getTargetData() const { return &DataLayout; }
diff --git a/lib/Target/X86/X86VZeroUpper.cpp b/lib/Target/X86/X86VZeroUpper.cpp
index 9bb54a8..f8c30eb 100644
--- a/lib/Target/X86/X86VZeroUpper.cpp
+++ b/lib/Target/X86/X86VZeroUpper.cpp
@@ -220,7 +220,7 @@ bool VZeroUpperInserter::processBasicBlock(MachineFunction &MF,
for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
MachineInstr *MI = I;
DebugLoc dl = I->getDebugLoc();
- bool isControlFlow = MI->getDesc().isCall() || MI->getDesc().isReturn();
+ bool isControlFlow = MI->isCall() || MI->isReturn();
// Shortcut: don't need to check regular instructions in dirty state.
if (!isControlFlow && CurState == ST_DIRTY)