diff options
Diffstat (limited to 'lib/Transforms/InstCombine/InstCombineAddSub.cpp')
-rw-r--r-- | lib/Transforms/InstCombine/InstCombineAddSub.cpp | 266 |
1 files changed, 159 insertions, 107 deletions
diff --git a/lib/Transforms/InstCombine/InstCombineAddSub.cpp b/lib/Transforms/InstCombine/InstCombineAddSub.cpp index c37a9cf..99f0f1f 100644 --- a/lib/Transforms/InstCombine/InstCombineAddSub.cpp +++ b/lib/Transforms/InstCombine/InstCombineAddSub.cpp @@ -865,69 +865,170 @@ Value *FAddCombine::createAddendVal return createFMul(OpndVal, Coeff.getValue(Instr->getType())); } -// dyn_castFoldableMul - If this value is a multiply that can be folded into -// other computations (because it has a constant operand), return the -// non-constant operand of the multiply, and set CST to point to the multiplier. -// Otherwise, return null. -// -static inline Value *dyn_castFoldableMul(Value *V, Constant *&CST) { - if (!V->hasOneUse() || !V->getType()->isIntOrIntVectorTy()) - return nullptr; - - Instruction *I = dyn_cast<Instruction>(V); - if (!I) return nullptr; - - if (I->getOpcode() == Instruction::Mul) - if ((CST = dyn_cast<Constant>(I->getOperand(1)))) - return I->getOperand(0); - if (I->getOpcode() == Instruction::Shl) - if ((CST = dyn_cast<Constant>(I->getOperand(1)))) { - // The multiplier is really 1 << CST. - CST = ConstantExpr::getShl(ConstantInt::get(V->getType(), 1), CST); - return I->getOperand(0); - } - return nullptr; +// If one of the operands only has one non-zero bit, and if the other +// operand has a known-zero bit in a more significant place than it (not +// including the sign bit) the ripple may go up to and fill the zero, but +// won't change the sign. For example, (X & ~4) + 1. +static bool checkRippleForAdd(const APInt &Op0KnownZero, + const APInt &Op1KnownZero) { + APInt Op1MaybeOne = ~Op1KnownZero; + // Make sure that one of the operand has at most one bit set to 1. + if (Op1MaybeOne.countPopulation() != 1) + return false; + + // Find the most significant known 0 other than the sign bit. + int BitWidth = Op0KnownZero.getBitWidth(); + APInt Op0KnownZeroTemp(Op0KnownZero); + Op0KnownZeroTemp.clearBit(BitWidth - 1); + int Op0ZeroPosition = BitWidth - Op0KnownZeroTemp.countLeadingZeros() - 1; + + int Op1OnePosition = BitWidth - Op1MaybeOne.countLeadingZeros() - 1; + assert(Op1OnePosition >= 0); + + // This also covers the case of no known zero, since in that case + // Op0ZeroPosition is -1. + return Op0ZeroPosition >= Op1OnePosition; } - /// WillNotOverflowSignedAdd - Return true if we can prove that: /// (sext (add LHS, RHS)) === (add (sext LHS), (sext RHS)) /// This basically requires proving that the add in the original type would not /// overflow to change the sign bit or have a carry out. +/// TODO: Handle this for Vectors. bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS) { // There are different heuristics we can use for this. Here are some simple // ones. - // Add has the property that adding any two 2's complement numbers can only - // have one carry bit which can change a sign. As such, if LHS and RHS each - // have at least two sign bits, we know that the addition of the two values - // will sign extend fine. + // If LHS and RHS each have at least two sign bits, the addition will look + // like + // + // XX..... + + // YY..... + // + // If the carry into the most significant position is 0, X and Y can't both + // be 1 and therefore the carry out of the addition is also 0. + // + // If the carry into the most significant position is 1, X and Y can't both + // be 0 and therefore the carry out of the addition is also 1. + // + // Since the carry into the most significant position is always equal to + // the carry out of the addition, there is no signed overflow. if (ComputeNumSignBits(LHS) > 1 && ComputeNumSignBits(RHS) > 1) return true; + if (IntegerType *IT = dyn_cast<IntegerType>(LHS->getType())) { + int BitWidth = IT->getBitWidth(); + APInt LHSKnownZero(BitWidth, 0); + APInt LHSKnownOne(BitWidth, 0); + computeKnownBits(LHS, LHSKnownZero, LHSKnownOne); - // If one of the operands only has one non-zero bit, and if the other operand - // has a known-zero bit in a more significant place than it (not including the - // sign bit) the ripple may go up to and fill the zero, but won't change the - // sign. For example, (X & ~4) + 1. + APInt RHSKnownZero(BitWidth, 0); + APInt RHSKnownOne(BitWidth, 0); + computeKnownBits(RHS, RHSKnownZero, RHSKnownOne); + + // Addition of two 2's compliment numbers having opposite signs will never + // overflow. + if ((LHSKnownOne[BitWidth - 1] && RHSKnownZero[BitWidth - 1]) || + (LHSKnownZero[BitWidth - 1] && RHSKnownOne[BitWidth - 1])) + return true; + + // Check if carry bit of addition will not cause overflow. + if (checkRippleForAdd(LHSKnownZero, RHSKnownZero)) + return true; + if (checkRippleForAdd(RHSKnownZero, LHSKnownZero)) + return true; + } + return false; +} - // TODO: Implement. +/// WillNotOverflowUnsignedAdd - Return true if we can prove that: +/// (zext (add LHS, RHS)) === (add (zext LHS), (zext RHS)) +bool InstCombiner::WillNotOverflowUnsignedAdd(Value *LHS, Value *RHS) { + // There are different heuristics we can use for this. Here is a simple one. + // If the sign bit of LHS and that of RHS are both zero, no unsigned wrap. + bool LHSKnownNonNegative, LHSKnownNegative; + bool RHSKnownNonNegative, RHSKnownNegative; + ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, 0); + ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, 0); + if (LHSKnownNonNegative && RHSKnownNonNegative) + return true; return false; } -Instruction *InstCombiner::visitAdd(BinaryOperator &I) { - bool Changed = SimplifyAssociativeOrCommutative(I); +// Checks if any operand is negative and we can convert add to sub. +// This function checks for following negative patterns +// ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C)) +// ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C)) +// XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even +static Value *checkForNegativeOperand(BinaryOperator &I, + InstCombiner::BuilderTy *Builder) { Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); - if (Value *V = SimplifyVectorOp(I)) - return ReplaceInstUsesWith(I, V); + // This function creates 2 instructions to replace ADD, we need at least one + // of LHS or RHS to have one use to ensure benefit in transform. + if (!LHS->hasOneUse() && !RHS->hasOneUse()) + return nullptr; - if (Value *V = SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(), - I.hasNoUnsignedWrap(), DL)) - return ReplaceInstUsesWith(I, V); + Value *X = nullptr, *Y = nullptr, *Z = nullptr; + const APInt *C1 = nullptr, *C2 = nullptr; + + // if ONE is on other side, swap + if (match(RHS, m_Add(m_Value(X), m_One()))) + std::swap(LHS, RHS); + + if (match(LHS, m_Add(m_Value(X), m_One()))) { + // if XOR on other side, swap + if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1)))) + std::swap(X, RHS); + + if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) { + // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1)) + // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1)) + if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) { + Value *NewAnd = Builder->CreateAnd(Z, *C1); + return Builder->CreateSub(RHS, NewAnd, "sub"); + } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) { + // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1)) + // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1)) + Value *NewOr = Builder->CreateOr(Z, ~(*C1)); + return Builder->CreateSub(RHS, NewOr, "sub"); + } + } + } + + // Restore LHS and RHS + LHS = I.getOperand(0); + RHS = I.getOperand(1); + + // if XOR is on other side, swap + if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1)))) + std::swap(LHS, RHS); + + // C2 is ODD + // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2)) + // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2)) + if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1)))) + if (C1->countTrailingZeros() == 0) + if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) { + Value *NewOr = Builder->CreateOr(Z, ~(*C2)); + return Builder->CreateSub(RHS, NewOr, "sub"); + } + return nullptr; +} + +Instruction *InstCombiner::visitAdd(BinaryOperator &I) { + bool Changed = SimplifyAssociativeOrCommutative(I); + Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); + + if (Value *V = SimplifyVectorOp(I)) + return ReplaceInstUsesWith(I, V); - // (A*B)+(A*C) -> A*(B+C) etc + if (Value *V = SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(), + I.hasNoUnsignedWrap(), DL)) + return ReplaceInstUsesWith(I, V); + + // (A*B)+(A*C) -> A*(B+C) etc if (Value *V = SimplifyUsingDistributiveLaws(I)) return ReplaceInstUsesWith(I, V); @@ -1025,23 +1126,8 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) { if (Value *V = dyn_castNegVal(RHS)) return BinaryOperator::CreateSub(LHS, V); - - { - Constant *C2; - if (Value *X = dyn_castFoldableMul(LHS, C2)) { - if (X == RHS) // X*C + X --> X * (C+1) - return BinaryOperator::CreateMul(RHS, AddOne(C2)); - - // X*C1 + X*C2 --> X * (C1+C2) - Constant *C1; - if (X == dyn_castFoldableMul(RHS, C1)) - return BinaryOperator::CreateMul(X, ConstantExpr::getAdd(C1, C2)); - } - - // X + X*C --> X * (C+1) - if (dyn_castFoldableMul(RHS, C2) == LHS) - return BinaryOperator::CreateMul(LHS, AddOne(C2)); - } + if (Value *V = checkForNegativeOperand(I, Builder)) + return ReplaceInstUsesWith(I, V); // A+B --> A|B iff A and B have no bits set in common. if (IntegerType *IT = dyn_cast<IntegerType>(I.getType())) { @@ -1059,29 +1145,6 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) { } } - // W*X + Y*Z --> W * (X+Z) iff W == Y - { - Value *W, *X, *Y, *Z; - if (match(LHS, m_Mul(m_Value(W), m_Value(X))) && - match(RHS, m_Mul(m_Value(Y), m_Value(Z)))) { - if (W != Y) { - if (W == Z) { - std::swap(Y, Z); - } else if (Y == X) { - std::swap(W, X); - } else if (X == Z) { - std::swap(Y, Z); - std::swap(W, X); - } - } - - if (W == Y) { - Value *NewAdd = Builder->CreateAdd(X, Z, LHS->getName()); - return BinaryOperator::CreateMul(W, NewAdd); - } - } - } - if (Constant *CRHS = dyn_cast<Constant>(RHS)) { Value *X; if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X @@ -1191,6 +1254,18 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) { return BinaryOperator::CreateOr(A, B); } + // TODO(jingyue): Consider WillNotOverflowSignedAdd and + // WillNotOverflowUnsignedAdd to reduce the number of invocations of + // computeKnownBits. + if (!I.hasNoSignedWrap() && WillNotOverflowSignedAdd(LHS, RHS)) { + Changed = true; + I.setHasNoSignedWrap(true); + } + if (!I.hasNoUnsignedWrap() && WillNotOverflowUnsignedAdd(LHS, RHS)) { + Changed = true; + I.setHasNoUnsignedWrap(true); + } + return Changed ? &I : nullptr; } @@ -1478,9 +1553,9 @@ Instruction *InstCombiner::visitSub(BinaryOperator &I) { return BinaryOperator::CreateAnd(Op0, Builder->CreateNot(Y, Y->getName() + ".not")); - // 0 - (X sdiv C) -> (X sdiv -C) - if (match(Op1, m_SDiv(m_Value(X), m_Constant(C))) && - match(Op0, m_Zero())) + // 0 - (X sdiv C) -> (X sdiv -C) provided the negation doesn't overflow. + if (match(Op1, m_SDiv(m_Value(X), m_Constant(C))) && match(Op0, m_Zero()) && + !C->isMinSignedValue()) return BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(C)); // 0 - (X << Y) -> (-X << Y) when X is freely negatable. @@ -1488,19 +1563,6 @@ Instruction *InstCombiner::visitSub(BinaryOperator &I) { if (Value *XNeg = dyn_castNegVal(X)) return BinaryOperator::CreateShl(XNeg, Y); - // X - X*C --> X * (1-C) - if (match(Op1, m_Mul(m_Specific(Op0), m_Constant(CI)))) { - Constant *CP1 = ConstantExpr::getSub(ConstantInt::get(I.getType(),1), CI); - return BinaryOperator::CreateMul(Op0, CP1); - } - - // X - X<<C --> X * (1-(1<<C)) - if (match(Op1, m_Shl(m_Specific(Op0), m_Constant(CI)))) { - Constant *One = ConstantInt::get(I.getType(), 1); - C = ConstantExpr::getSub(One, ConstantExpr::getShl(One, CI)); - return BinaryOperator::CreateMul(Op0, C); - } - // X - A*-B -> X + A*B // X - -A*B -> X + A*B Value *A, *B; @@ -1517,16 +1579,6 @@ Instruction *InstCombiner::visitSub(BinaryOperator &I) { } } - Constant *C1; - if (Value *X = dyn_castFoldableMul(Op0, C1)) { - if (X == Op1) // X*C - X --> X * (C-1) - return BinaryOperator::CreateMul(Op1, SubOne(C1)); - - Constant *C2; // X*C1 - X*C2 -> X * (C1-C2) - if (X == dyn_castFoldableMul(Op1, C2)) - return BinaryOperator::CreateMul(X, ConstantExpr::getSub(C1, C2)); - } - // Optimize pointer differences into the same array into a size. Consider: // &A[10] - &A[0]: we should compile this to "10". if (DL) { @@ -1541,7 +1593,7 @@ Instruction *InstCombiner::visitSub(BinaryOperator &I) { match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp))))) if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType())) return ReplaceInstUsesWith(I, Res); - } + } return nullptr; } |