aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Transforms/Scalar/AlignmentFromAssumptions.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Transforms/Scalar/AlignmentFromAssumptions.cpp')
-rw-r--r--lib/Transforms/Scalar/AlignmentFromAssumptions.cpp428
1 files changed, 428 insertions, 0 deletions
diff --git a/lib/Transforms/Scalar/AlignmentFromAssumptions.cpp b/lib/Transforms/Scalar/AlignmentFromAssumptions.cpp
new file mode 100644
index 0000000..06c3dfd
--- /dev/null
+++ b/lib/Transforms/Scalar/AlignmentFromAssumptions.cpp
@@ -0,0 +1,428 @@
+//===----------------------- AlignmentFromAssumptions.cpp -----------------===//
+// Set Load/Store Alignments From Assumptions
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements a ScalarEvolution-based transformation to set
+// the alignments of load, stores and memory intrinsics based on the truth
+// expressions of assume intrinsics. The primary motivation is to handle
+// complex alignment assumptions that apply to vector loads and stores that
+// appear after vectorization and unrolling.
+//
+//===----------------------------------------------------------------------===//
+
+#define AA_NAME "alignment-from-assumptions"
+#define DEBUG_TYPE AA_NAME
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AssumptionTracker.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace llvm;
+
+STATISTIC(NumLoadAlignChanged,
+ "Number of loads changed by alignment assumptions");
+STATISTIC(NumStoreAlignChanged,
+ "Number of stores changed by alignment assumptions");
+STATISTIC(NumMemIntAlignChanged,
+ "Number of memory intrinsics changed by alignment assumptions");
+
+namespace {
+struct AlignmentFromAssumptions : public FunctionPass {
+ static char ID; // Pass identification, replacement for typeid
+ AlignmentFromAssumptions() : FunctionPass(ID) {
+ initializeAlignmentFromAssumptionsPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnFunction(Function &F);
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addRequired<AssumptionTracker>();
+ AU.addRequired<ScalarEvolution>();
+ AU.addRequired<DominatorTreeWrapperPass>();
+
+ AU.setPreservesCFG();
+ AU.addPreserved<LoopInfo>();
+ AU.addPreserved<DominatorTreeWrapperPass>();
+ AU.addPreserved<ScalarEvolution>();
+ }
+
+ // For memory transfers, we need a common alignment for both the source and
+ // destination. If we have a new alignment for only one operand of a transfer
+ // instruction, save it in these maps. If we reach the other operand through
+ // another assumption later, then we may change the alignment at that point.
+ DenseMap<MemTransferInst *, unsigned> NewDestAlignments, NewSrcAlignments;
+
+ AssumptionTracker *AT;
+ ScalarEvolution *SE;
+ DominatorTree *DT;
+ const DataLayout *DL;
+
+ bool extractAlignmentInfo(CallInst *I, Value *&AAPtr, const SCEV *&AlignSCEV,
+ const SCEV *&OffSCEV);
+ bool processAssumption(CallInst *I);
+};
+}
+
+char AlignmentFromAssumptions::ID = 0;
+static const char aip_name[] = "Alignment from assumptions";
+INITIALIZE_PASS_BEGIN(AlignmentFromAssumptions, AA_NAME,
+ aip_name, false, false)
+INITIALIZE_PASS_DEPENDENCY(AssumptionTracker)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
+INITIALIZE_PASS_END(AlignmentFromAssumptions, AA_NAME,
+ aip_name, false, false)
+
+FunctionPass *llvm::createAlignmentFromAssumptionsPass() {
+ return new AlignmentFromAssumptions();
+}
+
+// Given an expression for the (constant) alignment, AlignSCEV, and an
+// expression for the displacement between a pointer and the aligned address,
+// DiffSCEV, compute the alignment of the displaced pointer if it can be reduced
+// to a constant. Using SCEV to compute alignment handles the case where
+// DiffSCEV is a recurrence with constant start such that the aligned offset
+// is constant. e.g. {16,+,32} % 32 -> 16.
+static unsigned getNewAlignmentDiff(const SCEV *DiffSCEV,
+ const SCEV *AlignSCEV,
+ ScalarEvolution *SE) {
+ // DiffUnits = Diff % int64_t(Alignment)
+ const SCEV *DiffAlignDiv = SE->getUDivExpr(DiffSCEV, AlignSCEV);
+ const SCEV *DiffAlign = SE->getMulExpr(DiffAlignDiv, AlignSCEV);
+ const SCEV *DiffUnitsSCEV = SE->getMinusSCEV(DiffAlign, DiffSCEV);
+
+ DEBUG(dbgs() << "\talignment relative to " << *AlignSCEV << " is " <<
+ *DiffUnitsSCEV << " (diff: " << *DiffSCEV << ")\n");
+
+ if (const SCEVConstant *ConstDUSCEV =
+ dyn_cast<SCEVConstant>(DiffUnitsSCEV)) {
+ int64_t DiffUnits = ConstDUSCEV->getValue()->getSExtValue();
+
+ // If the displacement is an exact multiple of the alignment, then the
+ // displaced pointer has the same alignment as the aligned pointer, so
+ // return the alignment value.
+ if (!DiffUnits)
+ return (unsigned)
+ cast<SCEVConstant>(AlignSCEV)->getValue()->getSExtValue();
+
+ // If the displacement is not an exact multiple, but the remainder is a
+ // constant, then return this remainder (but only if it is a power of 2).
+ uint64_t DiffUnitsAbs = abs64(DiffUnits);
+ if (isPowerOf2_64(DiffUnitsAbs))
+ return (unsigned) DiffUnitsAbs;
+ }
+
+ return 0;
+}
+
+// There is an address given by an offset OffSCEV from AASCEV which has an
+// alignment AlignSCEV. Use that information, if possible, to compute a new
+// alignment for Ptr.
+static unsigned getNewAlignment(const SCEV *AASCEV, const SCEV *AlignSCEV,
+ const SCEV *OffSCEV, Value *Ptr,
+ ScalarEvolution *SE) {
+ const SCEV *PtrSCEV = SE->getSCEV(Ptr);
+ const SCEV *DiffSCEV = SE->getMinusSCEV(PtrSCEV, AASCEV);
+
+ // On 32-bit platforms, DiffSCEV might now have type i32 -- we've always
+ // sign-extended OffSCEV to i64, so make sure they agree again.
+ DiffSCEV = SE->getNoopOrSignExtend(DiffSCEV, OffSCEV->getType());
+
+ // What we really want to know is the overall offset to the aligned
+ // address. This address is displaced by the provided offset.
+ DiffSCEV = SE->getMinusSCEV(DiffSCEV, OffSCEV);
+
+ DEBUG(dbgs() << "AFI: alignment of " << *Ptr << " relative to " <<
+ *AlignSCEV << " and offset " << *OffSCEV <<
+ " using diff " << *DiffSCEV << "\n");
+
+ unsigned NewAlignment = getNewAlignmentDiff(DiffSCEV, AlignSCEV, SE);
+ DEBUG(dbgs() << "\tnew alignment: " << NewAlignment << "\n");
+
+ if (NewAlignment) {
+ return NewAlignment;
+ } else if (const SCEVAddRecExpr *DiffARSCEV =
+ dyn_cast<SCEVAddRecExpr>(DiffSCEV)) {
+ // The relative offset to the alignment assumption did not yield a constant,
+ // but we should try harder: if we assume that a is 32-byte aligned, then in
+ // for (i = 0; i < 1024; i += 4) r += a[i]; not all of the loads from a are
+ // 32-byte aligned, but instead alternate between 32 and 16-byte alignment.
+ // As a result, the new alignment will not be a constant, but can still
+ // be improved over the default (of 4) to 16.
+
+ const SCEV *DiffStartSCEV = DiffARSCEV->getStart();
+ const SCEV *DiffIncSCEV = DiffARSCEV->getStepRecurrence(*SE);
+
+ DEBUG(dbgs() << "\ttrying start/inc alignment using start " <<
+ *DiffStartSCEV << " and inc " << *DiffIncSCEV << "\n");
+
+ // Now compute the new alignment using the displacement to the value in the
+ // first iteration, and also the alignment using the per-iteration delta.
+ // If these are the same, then use that answer. Otherwise, use the smaller
+ // one, but only if it divides the larger one.
+ NewAlignment = getNewAlignmentDiff(DiffStartSCEV, AlignSCEV, SE);
+ unsigned NewIncAlignment = getNewAlignmentDiff(DiffIncSCEV, AlignSCEV, SE);
+
+ DEBUG(dbgs() << "\tnew start alignment: " << NewAlignment << "\n");
+ DEBUG(dbgs() << "\tnew inc alignment: " << NewIncAlignment << "\n");
+
+ if (!NewAlignment || !NewIncAlignment) {
+ return 0;
+ } else if (NewAlignment > NewIncAlignment) {
+ if (NewAlignment % NewIncAlignment == 0) {
+ DEBUG(dbgs() << "\tnew start/inc alignment: " <<
+ NewIncAlignment << "\n");
+ return NewIncAlignment;
+ }
+ } else if (NewIncAlignment > NewAlignment) {
+ if (NewIncAlignment % NewAlignment == 0) {
+ DEBUG(dbgs() << "\tnew start/inc alignment: " <<
+ NewAlignment << "\n");
+ return NewAlignment;
+ }
+ } else if (NewIncAlignment == NewAlignment) {
+ DEBUG(dbgs() << "\tnew start/inc alignment: " <<
+ NewAlignment << "\n");
+ return NewAlignment;
+ }
+ }
+
+ return 0;
+}
+
+bool AlignmentFromAssumptions::extractAlignmentInfo(CallInst *I,
+ Value *&AAPtr, const SCEV *&AlignSCEV,
+ const SCEV *&OffSCEV) {
+ // An alignment assume must be a statement about the least-significant
+ // bits of the pointer being zero, possibly with some offset.
+ ICmpInst *ICI = dyn_cast<ICmpInst>(I->getArgOperand(0));
+ if (!ICI)
+ return false;
+
+ // This must be an expression of the form: x & m == 0.
+ if (ICI->getPredicate() != ICmpInst::ICMP_EQ)
+ return false;
+
+ // Swap things around so that the RHS is 0.
+ Value *CmpLHS = ICI->getOperand(0);
+ Value *CmpRHS = ICI->getOperand(1);
+ const SCEV *CmpLHSSCEV = SE->getSCEV(CmpLHS);
+ const SCEV *CmpRHSSCEV = SE->getSCEV(CmpRHS);
+ if (CmpLHSSCEV->isZero())
+ std::swap(CmpLHS, CmpRHS);
+ else if (!CmpRHSSCEV->isZero())
+ return false;
+
+ BinaryOperator *CmpBO = dyn_cast<BinaryOperator>(CmpLHS);
+ if (!CmpBO || CmpBO->getOpcode() != Instruction::And)
+ return false;
+
+ // Swap things around so that the right operand of the and is a constant
+ // (the mask); we cannot deal with variable masks.
+ Value *AndLHS = CmpBO->getOperand(0);
+ Value *AndRHS = CmpBO->getOperand(1);
+ const SCEV *AndLHSSCEV = SE->getSCEV(AndLHS);
+ const SCEV *AndRHSSCEV = SE->getSCEV(AndRHS);
+ if (isa<SCEVConstant>(AndLHSSCEV)) {
+ std::swap(AndLHS, AndRHS);
+ std::swap(AndLHSSCEV, AndRHSSCEV);
+ }
+
+ const SCEVConstant *MaskSCEV = dyn_cast<SCEVConstant>(AndRHSSCEV);
+ if (!MaskSCEV)
+ return false;
+
+ // The mask must have some trailing ones (otherwise the condition is
+ // trivial and tells us nothing about the alignment of the left operand).
+ unsigned TrailingOnes =
+ MaskSCEV->getValue()->getValue().countTrailingOnes();
+ if (!TrailingOnes)
+ return false;
+
+ // Cap the alignment at the maximum with which LLVM can deal (and make sure
+ // we don't overflow the shift).
+ uint64_t Alignment;
+ TrailingOnes = std::min(TrailingOnes,
+ unsigned(sizeof(unsigned) * CHAR_BIT - 1));
+ Alignment = std::min(1u << TrailingOnes, +Value::MaximumAlignment);
+
+ Type *Int64Ty = Type::getInt64Ty(I->getParent()->getParent()->getContext());
+ AlignSCEV = SE->getConstant(Int64Ty, Alignment);
+
+ // The LHS might be a ptrtoint instruction, or it might be the pointer
+ // with an offset.
+ AAPtr = nullptr;
+ OffSCEV = nullptr;
+ if (PtrToIntInst *PToI = dyn_cast<PtrToIntInst>(AndLHS)) {
+ AAPtr = PToI->getPointerOperand();
+ OffSCEV = SE->getConstant(Int64Ty, 0);
+ } else if (const SCEVAddExpr* AndLHSAddSCEV =
+ dyn_cast<SCEVAddExpr>(AndLHSSCEV)) {
+ // Try to find the ptrtoint; subtract it and the rest is the offset.
+ for (SCEVAddExpr::op_iterator J = AndLHSAddSCEV->op_begin(),
+ JE = AndLHSAddSCEV->op_end(); J != JE; ++J)
+ if (const SCEVUnknown *OpUnk = dyn_cast<SCEVUnknown>(*J))
+ if (PtrToIntInst *PToI = dyn_cast<PtrToIntInst>(OpUnk->getValue())) {
+ AAPtr = PToI->getPointerOperand();
+ OffSCEV = SE->getMinusSCEV(AndLHSAddSCEV, *J);
+ break;
+ }
+ }
+
+ if (!AAPtr)
+ return false;
+
+ // Sign extend the offset to 64 bits (so that it is like all of the other
+ // expressions).
+ unsigned OffSCEVBits = OffSCEV->getType()->getPrimitiveSizeInBits();
+ if (OffSCEVBits < 64)
+ OffSCEV = SE->getSignExtendExpr(OffSCEV, Int64Ty);
+ else if (OffSCEVBits > 64)
+ return false;
+
+ AAPtr = AAPtr->stripPointerCasts();
+ return true;
+}
+
+bool AlignmentFromAssumptions::processAssumption(CallInst *ACall) {
+ Value *AAPtr;
+ const SCEV *AlignSCEV, *OffSCEV;
+ if (!extractAlignmentInfo(ACall, AAPtr, AlignSCEV, OffSCEV))
+ return false;
+
+ const SCEV *AASCEV = SE->getSCEV(AAPtr);
+
+ // Apply the assumption to all other users of the specified pointer.
+ SmallPtrSet<Instruction *, 32> Visited;
+ SmallVector<Instruction*, 16> WorkList;
+ for (User *J : AAPtr->users()) {
+ if (J == ACall)
+ continue;
+
+ if (Instruction *K = dyn_cast<Instruction>(J))
+ if (isValidAssumeForContext(ACall, K, DL, DT))
+ WorkList.push_back(K);
+ }
+
+ while (!WorkList.empty()) {
+ Instruction *J = WorkList.pop_back_val();
+
+ if (LoadInst *LI = dyn_cast<LoadInst>(J)) {
+ unsigned NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
+ LI->getPointerOperand(), SE);
+
+ if (NewAlignment > LI->getAlignment()) {
+ LI->setAlignment(NewAlignment);
+ ++NumLoadAlignChanged;
+ }
+ } else if (StoreInst *SI = dyn_cast<StoreInst>(J)) {
+ unsigned NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
+ SI->getPointerOperand(), SE);
+
+ if (NewAlignment > SI->getAlignment()) {
+ SI->setAlignment(NewAlignment);
+ ++NumStoreAlignChanged;
+ }
+ } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(J)) {
+ unsigned NewDestAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
+ MI->getDest(), SE);
+
+ // For memory transfers, we need a common alignment for both the
+ // source and destination. If we have a new alignment for this
+ // instruction, but only for one operand, save it. If we reach the
+ // other operand through another assumption later, then we may
+ // change the alignment at that point.
+ if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
+ unsigned NewSrcAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
+ MTI->getSource(), SE);
+
+ DenseMap<MemTransferInst *, unsigned>::iterator DI =
+ NewDestAlignments.find(MTI);
+ unsigned AltDestAlignment = (DI == NewDestAlignments.end()) ?
+ 0 : DI->second;
+
+ DenseMap<MemTransferInst *, unsigned>::iterator SI =
+ NewSrcAlignments.find(MTI);
+ unsigned AltSrcAlignment = (SI == NewSrcAlignments.end()) ?
+ 0 : SI->second;
+
+ DEBUG(dbgs() << "\tmem trans: " << NewDestAlignment << " " <<
+ AltDestAlignment << " " << NewSrcAlignment <<
+ " " << AltSrcAlignment << "\n");
+
+ // Of these four alignments, pick the largest possible...
+ unsigned NewAlignment = 0;
+ if (NewDestAlignment <= std::max(NewSrcAlignment, AltSrcAlignment))
+ NewAlignment = std::max(NewAlignment, NewDestAlignment);
+ if (AltDestAlignment <= std::max(NewSrcAlignment, AltSrcAlignment))
+ NewAlignment = std::max(NewAlignment, AltDestAlignment);
+ if (NewSrcAlignment <= std::max(NewDestAlignment, AltDestAlignment))
+ NewAlignment = std::max(NewAlignment, NewSrcAlignment);
+ if (AltSrcAlignment <= std::max(NewDestAlignment, AltDestAlignment))
+ NewAlignment = std::max(NewAlignment, AltSrcAlignment);
+
+ if (NewAlignment > MI->getAlignment()) {
+ MI->setAlignment(ConstantInt::get(Type::getInt32Ty(
+ MI->getParent()->getContext()), NewAlignment));
+ ++NumMemIntAlignChanged;
+ }
+
+ NewDestAlignments.insert(std::make_pair(MTI, NewDestAlignment));
+ NewSrcAlignments.insert(std::make_pair(MTI, NewSrcAlignment));
+ } else if (NewDestAlignment > MI->getAlignment()) {
+ assert((!isa<MemIntrinsic>(MI) || isa<MemSetInst>(MI)) &&
+ "Unknown memory intrinsic");
+
+ MI->setAlignment(ConstantInt::get(Type::getInt32Ty(
+ MI->getParent()->getContext()), NewDestAlignment));
+ ++NumMemIntAlignChanged;
+ }
+ }
+
+ // Now that we've updated that use of the pointer, look for other uses of
+ // the pointer to update.
+ Visited.insert(J);
+ for (User *UJ : J->users()) {
+ Instruction *K = cast<Instruction>(UJ);
+ if (!Visited.count(K) && isValidAssumeForContext(ACall, K, DL, DT))
+ WorkList.push_back(K);
+ }
+ }
+
+ return true;
+}
+
+bool AlignmentFromAssumptions::runOnFunction(Function &F) {
+ bool Changed = false;
+ AT = &getAnalysis<AssumptionTracker>();
+ SE = &getAnalysis<ScalarEvolution>();
+ DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+ DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
+ DL = DLP ? &DLP->getDataLayout() : nullptr;
+
+ NewDestAlignments.clear();
+ NewSrcAlignments.clear();
+
+ for (auto &I : AT->assumptions(&F))
+ Changed |= processAssumption(I);
+
+ return Changed;
+}
+