aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Transforms/Scalar/InstructionCombining.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Transforms/Scalar/InstructionCombining.cpp')
-rw-r--r--lib/Transforms/Scalar/InstructionCombining.cpp152
1 files changed, 149 insertions, 3 deletions
diff --git a/lib/Transforms/Scalar/InstructionCombining.cpp b/lib/Transforms/Scalar/InstructionCombining.cpp
index b7a403d..b8b6495 100644
--- a/lib/Transforms/Scalar/InstructionCombining.cpp
+++ b/lib/Transforms/Scalar/InstructionCombining.cpp
@@ -241,6 +241,7 @@ namespace {
Instruction *transformCallThroughTrampoline(CallSite CS);
Instruction *transformZExtICmp(ICmpInst *ICI, Instruction &CI,
bool DoXform = true);
+ bool WillNotOverflowSignedAdd(Value *LHS, Value *RHS);
public:
// InsertNewInstBefore - insert an instruction New before instruction Old
@@ -377,7 +378,7 @@ namespace {
Value *EvaluateInDifferentType(Value *V, const Type *Ty, bool isSigned);
- void ComputeMaskedBits(Value *V, const APInt &Mask, APInt& KnownZero,
+ void ComputeMaskedBits(Value *V, const APInt &Mask, APInt& KnownZero,
APInt& KnownOne, unsigned Depth = 0) const;
bool MaskedValueIsZero(Value *V, const APInt& Mask, unsigned Depth = 0);
unsigned ComputeNumSignBits(Value *Op, unsigned Depth = 0) const;
@@ -2100,7 +2101,48 @@ unsigned InstCombiner::ComputeNumSignBits(Value *V, unsigned Depth) const{
}
break;
case Instruction::And:
+ // Logical binary ops preserve the number of sign bits at the worst.
+ Tmp = ComputeNumSignBits(U->getOperand(0), Depth+1);
+ if (Tmp != 1) {
+ Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth+1);
+ Tmp = std::min(Tmp, Tmp2);
+ }
+
+ // X & C has sign bits equal to C if C's top bits are zeros.
+ if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) {
+ // See what bits are known to be zero on the output.
+ APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
+ APInt Mask = APInt::getAllOnesValue(TyBits);
+ ComputeMaskedBits(U->getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
+
+ KnownZero |= ~C->getValue();
+ // If we know that we have leading zeros, we know we have at least that
+ // many sign bits.
+ Tmp = std::max(Tmp, KnownZero.countLeadingOnes());
+ }
+ return Tmp;
+
case Instruction::Or:
+ // Logical binary ops preserve the number of sign bits at the worst.
+ Tmp = ComputeNumSignBits(U->getOperand(0), Depth+1);
+ if (Tmp != 1) {
+ Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth+1);
+ Tmp = std::min(Tmp, Tmp2);
+ }
+ // X & C has sign bits equal to C if C's top bits are zeros.
+ if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) {
+ // See what bits are known to be one on the output.
+ APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
+ APInt Mask = APInt::getAllOnesValue(TyBits);
+ ComputeMaskedBits(U->getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
+
+ KnownOne |= C->getValue();
+ // If we know that we have leading ones, we know we have at least that
+ // many sign bits.
+ Tmp = std::max(Tmp, KnownOne.countLeadingOnes());
+ }
+ return Tmp;
+
case Instruction::Xor: // NOT is handled here.
// Logical binary ops preserve the number of sign bits.
Tmp = ComputeNumSignBits(U->getOperand(0), Depth+1);
@@ -2109,9 +2151,9 @@ unsigned InstCombiner::ComputeNumSignBits(Value *V, unsigned Depth) const{
return std::min(Tmp, Tmp2);
case Instruction::Select:
- Tmp = ComputeNumSignBits(U->getOperand(0), Depth+1);
+ Tmp = ComputeNumSignBits(U->getOperand(1), Depth+1);
if (Tmp == 1) return 1; // Early out.
- Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth+1);
+ Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth+1);
return std::min(Tmp, Tmp2);
case Instruction::Add:
@@ -2506,6 +2548,32 @@ static bool CannotBeNegativeZero(const Value *V) {
return false;
}
+/// WillNotOverflowSignedAdd - Return true if we can prove that:
+/// (sext (add LHS, RHS)) === (add (sext LHS), (sext RHS))
+/// This basically requires proving that the add in the original type would not
+/// overflow to change the sign bit or have a carry out.
+bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS) {
+ // There are different heuristics we can use for this. Here are some simple
+ // ones.
+
+ // Add has the property that adding any two 2's complement numbers can only
+ // have one carry bit which can change a sign. As such, if LHS and RHS each
+ // have at least two sign bits, we know that the addition of the two values will
+ // sign extend fine.
+ if (ComputeNumSignBits(LHS) > 1 && ComputeNumSignBits(RHS) > 1)
+ return true;
+
+
+ // If one of the operands only has one non-zero bit, and if the other operand
+ // has a known-zero bit in a more significant place than it (not including the
+ // sign bit) the ripple may go up to and fill the zero, but won't change the
+ // sign. For example, (X & ~4) + 1.
+
+ // TODO: Implement.
+
+ return false;
+}
+
Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
bool Changed = SimplifyCommutative(I);
@@ -2781,6 +2849,84 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
if (CFP->getValueAPF().isPosZero() && CannotBeNegativeZero(LHS))
return ReplaceInstUsesWith(I, LHS);
+ // Check for (add (sext x), y), see if we can merge this into an
+ // integer add followed by a sext.
+ if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) {
+ // (add (sext x), cst) --> (sext (add x, cst'))
+ if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
+ Constant *CI =
+ ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
+ if (LHSConv->hasOneUse() &&
+ ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
+ WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
+ // Insert the new, smaller add.
+ Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
+ CI, "addconv");
+ InsertNewInstBefore(NewAdd, I);
+ return new SExtInst(NewAdd, I.getType());
+ }
+ }
+
+ // (add (sext x), (sext y)) --> (sext (add int x, y))
+ if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
+ // Only do this if x/y have the same type, if at last one of them has a
+ // single use (so we don't increase the number of sexts), and if the
+ // integer add will not overflow.
+ if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
+ (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
+ WillNotOverflowSignedAdd(LHSConv->getOperand(0),
+ RHSConv->getOperand(0))) {
+ // Insert the new integer add.
+ Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
+ RHSConv->getOperand(0),
+ "addconv");
+ InsertNewInstBefore(NewAdd, I);
+ return new SExtInst(NewAdd, I.getType());
+ }
+ }
+ }
+
+ // Check for (add double (sitofp x), y), see if we can merge this into an
+ // integer add followed by a promotion.
+ if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
+ // (add double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
+ // ... if the constant fits in the integer value. This is useful for things
+ // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
+ // requires a constant pool load, and generally allows the add to be better
+ // instcombined.
+ if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
+ Constant *CI =
+ ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType());
+ if (LHSConv->hasOneUse() &&
+ ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
+ WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
+ // Insert the new integer add.
+ Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
+ CI, "addconv");
+ InsertNewInstBefore(NewAdd, I);
+ return new SIToFPInst(NewAdd, I.getType());
+ }
+ }
+
+ // (add double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
+ if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
+ // Only do this if x/y have the same type, if at last one of them has a
+ // single use (so we don't increase the number of int->fp conversions),
+ // and if the integer add will not overflow.
+ if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
+ (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
+ WillNotOverflowSignedAdd(LHSConv->getOperand(0),
+ RHSConv->getOperand(0))) {
+ // Insert the new integer add.
+ Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
+ RHSConv->getOperand(0),
+ "addconv");
+ InsertNewInstBefore(NewAdd, I);
+ return new SIToFPInst(NewAdd, I.getType());
+ }
+ }
+ }
+
return Changed ? &I : 0;
}