aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Transforms/Vectorize/SLPVectorizer.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Transforms/Vectorize/SLPVectorizer.cpp')
-rw-r--r--lib/Transforms/Vectorize/SLPVectorizer.cpp1097
1 files changed, 899 insertions, 198 deletions
diff --git a/lib/Transforms/Vectorize/SLPVectorizer.cpp b/lib/Transforms/Vectorize/SLPVectorizer.cpp
index 9312b4b..c72b51f 100644
--- a/lib/Transforms/Vectorize/SLPVectorizer.cpp
+++ b/lib/Transforms/Vectorize/SLPVectorizer.cpp
@@ -25,8 +25,8 @@
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
-#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Analysis/Verifier.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/IR/DataLayout.h"
@@ -49,34 +49,24 @@ static cl::opt<int>
SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
cl::desc("Only vectorize if you gain more than this "
"number "));
+
+static cl::opt<bool>
+ShouldVectorizeHor("slp-vectorize-hor", cl::init(false), cl::Hidden,
+ cl::desc("Attempt to vectorize horizontal reductions"));
+
+static cl::opt<bool> ShouldStartVectorizeHorAtStore(
+ "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
+ cl::desc(
+ "Attempt to vectorize horizontal reductions feeding into a store"));
+
namespace {
static const unsigned MinVecRegSize = 128;
static const unsigned RecursionMaxDepth = 12;
-/// RAII pattern to save the insertion point of the IR builder.
-class BuilderLocGuard {
-public:
- BuilderLocGuard(IRBuilder<> &B) : Builder(B), Loc(B.GetInsertPoint()),
- DbgLoc(B.getCurrentDebugLocation()) {}
- ~BuilderLocGuard() {
- Builder.SetCurrentDebugLocation(DbgLoc);
- if (Loc)
- Builder.SetInsertPoint(Loc);
- }
-
-private:
- // Prevent copying.
- BuilderLocGuard(const BuilderLocGuard &);
- BuilderLocGuard &operator=(const BuilderLocGuard &);
- IRBuilder<> &Builder;
- AssertingVH<Instruction> Loc;
- DebugLoc DbgLoc;
-};
-
-/// A helper class for numbering instructions in multible blocks.
-/// Numbers starts at zero for each basic block.
+/// A helper class for numbering instructions in multiple blocks.
+/// Numbers start at zero for each basic block.
struct BlockNumbering {
BlockNumbering(BasicBlock *Bb) : BB(Bb), Valid(false) {}
@@ -173,6 +163,37 @@ static unsigned getSameOpcode(ArrayRef<Value *> VL) {
return Opcode;
}
+/// \returns \p I after propagating metadata from \p VL.
+static Instruction *propagateMetadata(Instruction *I, ArrayRef<Value *> VL) {
+ Instruction *I0 = cast<Instruction>(VL[0]);
+ SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
+ I0->getAllMetadataOtherThanDebugLoc(Metadata);
+
+ for (unsigned i = 0, n = Metadata.size(); i != n; ++i) {
+ unsigned Kind = Metadata[i].first;
+ MDNode *MD = Metadata[i].second;
+
+ for (int i = 1, e = VL.size(); MD && i != e; i++) {
+ Instruction *I = cast<Instruction>(VL[i]);
+ MDNode *IMD = I->getMetadata(Kind);
+
+ switch (Kind) {
+ default:
+ MD = 0; // Remove unknown metadata
+ break;
+ case LLVMContext::MD_tbaa:
+ MD = MDNode::getMostGenericTBAA(MD, IMD);
+ break;
+ case LLVMContext::MD_fpmath:
+ MD = MDNode::getMostGenericFPMath(MD, IMD);
+ break;
+ }
+ }
+ I->setMetadata(Kind, MD);
+ }
+ return I;
+}
+
/// \returns The type that all of the values in \p VL have or null if there
/// are different types.
static Type* getSameType(ArrayRef<Value *> VL) {
@@ -216,6 +237,104 @@ static bool CanReuseExtract(ArrayRef<Value *> VL) {
return true;
}
+static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
+ SmallVectorImpl<Value *> &Left,
+ SmallVectorImpl<Value *> &Right) {
+
+ SmallVector<Value *, 16> OrigLeft, OrigRight;
+
+ bool AllSameOpcodeLeft = true;
+ bool AllSameOpcodeRight = true;
+ for (unsigned i = 0, e = VL.size(); i != e; ++i) {
+ Instruction *I = cast<Instruction>(VL[i]);
+ Value *V0 = I->getOperand(0);
+ Value *V1 = I->getOperand(1);
+
+ OrigLeft.push_back(V0);
+ OrigRight.push_back(V1);
+
+ Instruction *I0 = dyn_cast<Instruction>(V0);
+ Instruction *I1 = dyn_cast<Instruction>(V1);
+
+ // Check whether all operands on one side have the same opcode. In this case
+ // we want to preserve the original order and not make things worse by
+ // reordering.
+ AllSameOpcodeLeft = I0;
+ AllSameOpcodeRight = I1;
+
+ if (i && AllSameOpcodeLeft) {
+ if(Instruction *P0 = dyn_cast<Instruction>(OrigLeft[i-1])) {
+ if(P0->getOpcode() != I0->getOpcode())
+ AllSameOpcodeLeft = false;
+ } else
+ AllSameOpcodeLeft = false;
+ }
+ if (i && AllSameOpcodeRight) {
+ if(Instruction *P1 = dyn_cast<Instruction>(OrigRight[i-1])) {
+ if(P1->getOpcode() != I1->getOpcode())
+ AllSameOpcodeRight = false;
+ } else
+ AllSameOpcodeRight = false;
+ }
+
+ // Sort two opcodes. In the code below we try to preserve the ability to use
+ // broadcast of values instead of individual inserts.
+ // vl1 = load
+ // vl2 = phi
+ // vr1 = load
+ // vr2 = vr2
+ // = vl1 x vr1
+ // = vl2 x vr2
+ // If we just sorted according to opcode we would leave the first line in
+ // tact but we would swap vl2 with vr2 because opcode(phi) > opcode(load).
+ // = vl1 x vr1
+ // = vr2 x vl2
+ // Because vr2 and vr1 are from the same load we loose the opportunity of a
+ // broadcast for the packed right side in the backend: we have [vr1, vl2]
+ // instead of [vr1, vr2=vr1].
+ if (I0 && I1) {
+ if(!i && I0->getOpcode() > I1->getOpcode()) {
+ Left.push_back(I1);
+ Right.push_back(I0);
+ } else if (i && I0->getOpcode() > I1->getOpcode() && Right[i-1] != I1) {
+ // Try not to destroy a broad cast for no apparent benefit.
+ Left.push_back(I1);
+ Right.push_back(I0);
+ } else if (i && I0->getOpcode() == I1->getOpcode() && Right[i-1] == I0) {
+ // Try preserve broadcasts.
+ Left.push_back(I1);
+ Right.push_back(I0);
+ } else if (i && I0->getOpcode() == I1->getOpcode() && Left[i-1] == I1) {
+ // Try preserve broadcasts.
+ Left.push_back(I1);
+ Right.push_back(I0);
+ } else {
+ Left.push_back(I0);
+ Right.push_back(I1);
+ }
+ continue;
+ }
+ // One opcode, put the instruction on the right.
+ if (I0) {
+ Left.push_back(V1);
+ Right.push_back(I0);
+ continue;
+ }
+ Left.push_back(V0);
+ Right.push_back(V1);
+ }
+
+ bool LeftBroadcast = isSplat(Left);
+ bool RightBroadcast = isSplat(Right);
+
+ // Don't reorder if the operands where good to begin with.
+ if (!(LeftBroadcast || RightBroadcast) &&
+ (AllSameOpcodeRight || AllSameOpcodeLeft)) {
+ Left = OrigLeft;
+ Right = OrigRight;
+ }
+}
+
/// Bottom Up SLP Vectorizer.
class BoUpSLP {
public:
@@ -238,17 +357,20 @@ public:
}
/// \brief Vectorize the tree that starts with the elements in \p VL.
- void vectorizeTree();
+ /// Returns the vectorized root.
+ Value *vectorizeTree();
/// \returns the vectorization cost of the subtree that starts at \p VL.
/// A negative number means that this is profitable.
int getTreeCost();
- /// Construct a vectorizable tree that starts at \p Roots.
- void buildTree(ArrayRef<Value *> Roots);
+ /// Construct a vectorizable tree that starts at \p Roots and is possibly
+ /// used by a reduction of \p RdxOps.
+ void buildTree(ArrayRef<Value *> Roots, ValueSet *RdxOps = 0);
/// Clear the internal data structures that are created by 'buildTree'.
void deleteTree() {
+ RdxOps = 0;
VectorizableTree.clear();
ScalarToTreeEntry.clear();
MustGather.clear();
@@ -278,7 +400,7 @@ private:
/// \returns the pointer to the vectorized value if \p VL is already
/// vectorized, or NULL. They may happen in cycles.
- Value *alreadyVectorized(ArrayRef<Value *> VL);
+ Value *alreadyVectorized(ArrayRef<Value *> VL) const;
/// \brief Take the pointer operand from the Load/Store instruction.
/// \returns NULL if this is not a valid Load/Store instruction.
@@ -305,26 +427,31 @@ private:
/// \returns the pointer to the barrier instruction if we can't sink.
Value *getSinkBarrier(Instruction *Src, Instruction *Dst);
- /// \returns the index of the last instrucion in the BB from \p VL.
+ /// \returns the index of the last instruction in the BB from \p VL.
int getLastIndex(ArrayRef<Value *> VL);
- /// \returns the Instrucion in the bundle \p VL.
+ /// \returns the Instruction in the bundle \p VL.
Instruction *getLastInstruction(ArrayRef<Value *> VL);
+ /// \brief Set the Builder insert point to one after the last instruction in
+ /// the bundle
+ void setInsertPointAfterBundle(ArrayRef<Value *> VL);
+
/// \returns a vector from a collection of scalars in \p VL.
Value *Gather(ArrayRef<Value *> VL, VectorType *Ty);
+ /// \returns whether the VectorizableTree is fully vectoriable and will
+ /// be beneficial even the tree height is tiny.
+ bool isFullyVectorizableTinyTree();
+
struct TreeEntry {
TreeEntry() : Scalars(), VectorizedValue(0), LastScalarIndex(0),
NeedToGather(0) {}
/// \returns true if the scalars in VL are equal to this entry.
- bool isSame(ArrayRef<Value *> VL) {
+ bool isSame(ArrayRef<Value *> VL) const {
assert(VL.size() == Scalars.size() && "Invalid size");
- for (int i = 0, e = VL.size(); i != e; ++i)
- if (VL[i] != Scalars[i])
- return false;
- return true;
+ return std::equal(VL.begin(), VL.end(), Scalars.begin());
}
/// A vector of scalars.
@@ -393,10 +520,15 @@ private:
/// Holds all of the instructions that we gathered.
SetVector<Instruction *> GatherSeq;
+ /// A list of blocks that we are going to CSE.
+ SmallSet<BasicBlock *, 8> CSEBlocks;
/// Numbers instructions in different blocks.
DenseMap<BasicBlock *, BlockNumbering> BlocksNumbers;
+ /// Reduction operators.
+ ValueSet *RdxOps;
+
// Analysis and block reference.
Function *F;
ScalarEvolution *SE;
@@ -409,8 +541,9 @@ private:
IRBuilder<> Builder;
};
-void BoUpSLP::buildTree(ArrayRef<Value *> Roots) {
+void BoUpSLP::buildTree(ArrayRef<Value *> Roots, ValueSet *Rdx) {
deleteTree();
+ RdxOps = Rdx;
if (!getSameType(Roots))
return;
buildTree_rec(Roots, 0);
@@ -431,18 +564,20 @@ void BoUpSLP::buildTree(ArrayRef<Value *> Roots) {
UE = Scalar->use_end(); User != UE; ++User) {
DEBUG(dbgs() << "SLP: Checking user:" << **User << ".\n");
- bool Gathered = MustGather.count(*User);
-
// Skip in-tree scalars that become vectors.
- if (ScalarToTreeEntry.count(*User) && !Gathered) {
+ if (ScalarToTreeEntry.count(*User)) {
DEBUG(dbgs() << "SLP: \tInternal user will be removed:" <<
**User << ".\n");
int Idx = ScalarToTreeEntry[*User]; (void) Idx;
assert(!VectorizableTree[Idx].NeedToGather && "Bad state");
continue;
}
+ Instruction *UserInst = dyn_cast<Instruction>(*User);
+ if (!UserInst)
+ continue;
- if (!isa<Instruction>(*User))
+ // Ignore uses that are part of the reduction.
+ if (Rdx && std::find(Rdx->begin(), Rdx->end(), UserInst) != Rdx->end())
continue;
DEBUG(dbgs() << "SLP: Need to extract:" << **User << " from lane " <<
@@ -574,6 +709,10 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
continue;
}
+ // This user is part of the reduction.
+ if (RdxOps && RdxOps->count(User))
+ continue;
+
// Make sure that we can schedule this unknown user.
BlockNumbering &BN = BlocksNumbers[BB];
int UserIndex = BN.getIndex(User);
@@ -635,6 +774,18 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
switch (Opcode) {
case Instruction::PHI: {
PHINode *PH = dyn_cast<PHINode>(VL0);
+
+ // Check for terminator values (e.g. invoke).
+ for (unsigned j = 0; j < VL.size(); ++j)
+ for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
+ TerminatorInst *Term = dyn_cast<TerminatorInst>(cast<PHINode>(VL[j])->getIncomingValue(i));
+ if (Term) {
+ DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n");
+ newTreeEntry(VL, false);
+ return;
+ }
+ }
+
newTreeEntry(VL, true);
DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
@@ -658,13 +809,14 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
}
case Instruction::Load: {
// Check if the loads are consecutive or of we need to swizzle them.
- for (unsigned i = 0, e = VL.size() - 1; i < e; ++i)
- if (!isConsecutiveAccess(VL[i], VL[i + 1])) {
+ for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) {
+ LoadInst *L = cast<LoadInst>(VL[i]);
+ if (!L->isSimple() || !isConsecutiveAccess(VL[i], VL[i + 1])) {
newTreeEntry(VL, false);
DEBUG(dbgs() << "SLP: Need to swizzle loads.\n");
return;
}
-
+ }
newTreeEntry(VL, true);
DEBUG(dbgs() << "SLP: added a vector of loads.\n");
return;
@@ -753,6 +905,16 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
newTreeEntry(VL, true);
DEBUG(dbgs() << "SLP: added a vector of bin op.\n");
+ // Sort operands of the instructions so that each side is more likely to
+ // have the same opcode.
+ if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
+ ValueList Left, Right;
+ reorderInputsAccordingToOpcode(VL, Left, Right);
+ buildTree_rec(Left, Depth + 1);
+ buildTree_rec(Right, Depth + 1);
+ return;
+ }
+
for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
ValueList Operands;
// Prepare the operand vector.
@@ -874,9 +1036,24 @@ int BoUpSLP::getEntryCost(TreeEntry *E) {
TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty());
VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy);
} else {
- ScalarCost = VecTy->getNumElements() *
- TTI->getArithmeticInstrCost(Opcode, ScalarTy);
- VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy);
+ // Certain instructions can be cheaper to vectorize if they have a
+ // constant second vector operand.
+ TargetTransformInfo::OperandValueKind Op1VK =
+ TargetTransformInfo::OK_AnyValue;
+ TargetTransformInfo::OperandValueKind Op2VK =
+ TargetTransformInfo::OK_UniformConstantValue;
+
+ // Check whether all second operands are constant.
+ for (unsigned i = 0; i < VL.size(); ++i)
+ if (!isa<ConstantInt>(cast<Instruction>(VL[i])->getOperand(1))) {
+ Op2VK = TargetTransformInfo::OK_AnyValue;
+ break;
+ }
+
+ ScalarCost =
+ VecTy->getNumElements() *
+ TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK, Op2VK);
+ VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK);
}
return VecCost - ScalarCost;
}
@@ -884,14 +1061,14 @@ int BoUpSLP::getEntryCost(TreeEntry *E) {
// Cost of wide load - cost of scalar loads.
int ScalarLdCost = VecTy->getNumElements() *
TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 1, 0);
- int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 1, 0);
+ int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, 1, 0);
return VecLdCost - ScalarLdCost;
}
case Instruction::Store: {
// We know that we can merge the stores. Calculate the cost.
int ScalarStCost = VecTy->getNumElements() *
TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 1, 0);
- int VecStCost = TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 1, 0);
+ int VecStCost = TTI->getMemoryOpCost(Instruction::Store, VecTy, 1, 0);
return VecStCost - ScalarStCost;
}
default:
@@ -899,19 +1076,32 @@ int BoUpSLP::getEntryCost(TreeEntry *E) {
}
}
+bool BoUpSLP::isFullyVectorizableTinyTree() {
+ DEBUG(dbgs() << "SLP: Check whether the tree with height " <<
+ VectorizableTree.size() << " is fully vectorizable .\n");
+
+ // We only handle trees of height 2.
+ if (VectorizableTree.size() != 2)
+ return false;
+
+ // Gathering cost would be too much for tiny trees.
+ if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather)
+ return false;
+
+ return true;
+}
+
int BoUpSLP::getTreeCost() {
int Cost = 0;
DEBUG(dbgs() << "SLP: Calculating cost for tree of size " <<
VectorizableTree.size() << ".\n");
- // Don't vectorize tiny trees. Small load/store chains or consecutive stores
- // of constants will be vectoried in SelectionDAG in MergeConsecutiveStores.
- // The SelectionDAG vectorizer can only handle pairs (trees of height = 2).
- if (VectorizableTree.size() < 3) {
+ // We only vectorize tiny trees if it is fully vectorizable.
+ if (VectorizableTree.size() < 3 && !isFullyVectorizableTinyTree()) {
if (!VectorizableTree.size()) {
assert(!ExternalUses.size() && "We should not have any external users");
}
- return 0;
+ return INT_MAX;
}
unsigned BundleWidth = VectorizableTree[0].Scalars.size();
@@ -992,63 +1182,29 @@ bool BoUpSLP::isConsecutiveAccess(Value *A, Value *B) {
if (PtrA == PtrB || PtrA->getType() != PtrB->getType())
return false;
- // Calculate a constant offset from the base pointer without using SCEV
- // in the supported cases.
- // TODO: Add support for the case where one of the pointers is a GEP that
- // uses the other pointer.
- GetElementPtrInst *GepA = dyn_cast<GetElementPtrInst>(PtrA);
- GetElementPtrInst *GepB = dyn_cast<GetElementPtrInst>(PtrB);
-
- unsigned BW = DL->getPointerSizeInBits(ASA);
+ unsigned PtrBitWidth = DL->getPointerSizeInBits(ASA);
Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
- int64_t Sz = DL->getTypeStoreSize(Ty);
+ APInt Size(PtrBitWidth, DL->getTypeStoreSize(Ty));
- // Check if PtrA is the base and PtrB is a constant offset.
- if (GepB && GepB->getPointerOperand() == PtrA) {
- APInt Offset(BW, 0);
- if (GepB->accumulateConstantOffset(*DL, Offset))
- return Offset.getSExtValue() == Sz;
- return false;
- }
+ APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0);
+ PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(*DL, OffsetA);
+ PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(*DL, OffsetB);
- // Check if PtrB is the base and PtrA is a constant offset.
- if (GepA && GepA->getPointerOperand() == PtrB) {
- APInt Offset(BW, 0);
- if (GepA->accumulateConstantOffset(*DL, Offset))
- return Offset.getSExtValue() == -Sz;
- return false;
- }
+ APInt OffsetDelta = OffsetB - OffsetA;
- // If both pointers are GEPs:
- if (GepA && GepB) {
- // Check that they have the same base pointer and number of indices.
- if (GepA->getPointerOperand() != GepB->getPointerOperand() ||
- GepA->getNumIndices() != GepB->getNumIndices())
- return false;
+ // Check if they are based on the same pointer. That makes the offsets
+ // sufficient.
+ if (PtrA == PtrB)
+ return OffsetDelta == Size;
- // Try to strip the geps. This makes SCEV faster.
- // Make sure that all of the indices except for the last are identical.
- int LastIdx = GepA->getNumIndices();
- for (int i = 0; i < LastIdx - 1; i++) {
- if (GepA->getOperand(i+1) != GepB->getOperand(i+1))
- return false;
- }
-
- PtrA = GepA->getOperand(LastIdx);
- PtrB = GepB->getOperand(LastIdx);
- Sz = 1;
- }
-
- ConstantInt *CA = dyn_cast<ConstantInt>(PtrA);
- ConstantInt *CB = dyn_cast<ConstantInt>(PtrB);
- if (CA && CB) {
- return (CA->getSExtValue() + Sz == CB->getSExtValue());
- }
+ // Compute the necessary base pointer delta to have the necessary final delta
+ // equal to the size.
+ APInt BaseDelta = Size - OffsetDelta;
- // Calculate the distance.
+ // Otherwise compute the distance with SCEV between the base pointers.
const SCEV *PtrSCEVA = SE->getSCEV(PtrA);
const SCEV *PtrSCEVB = SE->getSCEV(PtrB);
- const SCEV *C = SE->getConstant(PtrSCEVA->getType(), Sz);
+ const SCEV *C = SE->getConstant(BaseDelta);
const SCEV *X = SE->getAddExpr(PtrSCEVA, C);
return X == PtrSCEVB;
}
@@ -1102,6 +1258,15 @@ Instruction *BoUpSLP::getLastInstruction(ArrayRef<Value *> VL) {
return I;
}
+void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL) {
+ Instruction *VL0 = cast<Instruction>(VL[0]);
+ Instruction *LastInst = getLastInstruction(VL);
+ BasicBlock::iterator NextInst = LastInst;
+ ++NextInst;
+ Builder.SetInsertPoint(VL0->getParent(), NextInst);
+ Builder.SetCurrentDebugLocation(VL0->getDebugLoc());
+}
+
Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) {
Value *Vec = UndefValue::get(Ty);
// Generate the 'InsertElement' instruction.
@@ -1109,6 +1274,7 @@ Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) {
Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i));
if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) {
GatherSeq.insert(Insrt);
+ CSEBlocks.insert(Insrt->getParent());
// Add to our 'need-to-extract' list.
if (ScalarToTreeEntry.count(VL[i])) {
@@ -1132,10 +1298,12 @@ Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) {
return Vec;
}
-Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL) {
- if (ScalarToTreeEntry.count(VL[0])) {
- int Idx = ScalarToTreeEntry[VL[0]];
- TreeEntry *En = &VectorizableTree[Idx];
+Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL) const {
+ SmallDenseMap<Value*, int>::const_iterator Entry
+ = ScalarToTreeEntry.find(VL[0]);
+ if (Entry != ScalarToTreeEntry.end()) {
+ int Idx = Entry->second;
+ const TreeEntry *En = &VectorizableTree[Idx];
if (En->isSame(VL) && En->VectorizedValue)
return En->VectorizedValue;
}
@@ -1159,38 +1327,48 @@ Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
}
Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
- BuilderLocGuard Guard(Builder);
+ IRBuilder<>::InsertPointGuard Guard(Builder);
if (E->VectorizedValue) {
DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
return E->VectorizedValue;
}
- Type *ScalarTy = E->Scalars[0]->getType();
- if (StoreInst *SI = dyn_cast<StoreInst>(E->Scalars[0]))
+ Instruction *VL0 = cast<Instruction>(E->Scalars[0]);
+ Type *ScalarTy = VL0->getType();
+ if (StoreInst *SI = dyn_cast<StoreInst>(VL0))
ScalarTy = SI->getValueOperand()->getType();
VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size());
if (E->NeedToGather) {
+ setInsertPointAfterBundle(E->Scalars);
return Gather(E->Scalars, VecTy);
}
- Instruction *VL0 = cast<Instruction>(E->Scalars[0]);
unsigned Opcode = VL0->getOpcode();
assert(Opcode == getSameOpcode(E->Scalars) && "Invalid opcode");
switch (Opcode) {
case Instruction::PHI: {
PHINode *PH = dyn_cast<PHINode>(VL0);
- Builder.SetInsertPoint(PH->getParent()->getFirstInsertionPt());
+ Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
Builder.SetCurrentDebugLocation(PH->getDebugLoc());
PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
E->VectorizedValue = NewPhi;
+ // PHINodes may have multiple entries from the same block. We want to
+ // visit every block once.
+ SmallSet<BasicBlock*, 4> VisitedBBs;
+
for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
ValueList Operands;
BasicBlock *IBB = PH->getIncomingBlock(i);
+ if (!VisitedBBs.insert(IBB)) {
+ NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
+ continue;
+ }
+
// Prepare the operand vector.
for (unsigned j = 0; j < E->Scalars.size(); ++j)
Operands.push_back(cast<PHINode>(E->Scalars[j])->
@@ -1231,8 +1409,7 @@ Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
for (int i = 0, e = E->Scalars.size(); i < e; ++i)
INVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
- Builder.SetInsertPoint(getLastInstruction(E->Scalars));
- Builder.SetCurrentDebugLocation(VL0->getDebugLoc());
+ setInsertPointAfterBundle(E->Scalars);
Value *InVec = vectorizeTree(INVL);
@@ -1252,8 +1429,7 @@ Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
RHSV.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1));
}
- Builder.SetInsertPoint(getLastInstruction(E->Scalars));
- Builder.SetCurrentDebugLocation(VL0->getDebugLoc());
+ setInsertPointAfterBundle(E->Scalars);
Value *L = vectorizeTree(LHSV);
Value *R = vectorizeTree(RHSV);
@@ -1279,8 +1455,7 @@ Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
FalseVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(2));
}
- Builder.SetInsertPoint(getLastInstruction(E->Scalars));
- Builder.SetCurrentDebugLocation(VL0->getDebugLoc());
+ setInsertPointAfterBundle(E->Scalars);
Value *Cond = vectorizeTree(CondVec);
Value *True = vectorizeTree(TrueVec);
@@ -1288,7 +1463,7 @@ Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
if (Value *V = alreadyVectorized(E->Scalars))
return V;
-
+
Value *V = Builder.CreateSelect(Cond, True, False);
E->VectorizedValue = V;
return V;
@@ -1312,13 +1487,15 @@ Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
case Instruction::Or:
case Instruction::Xor: {
ValueList LHSVL, RHSVL;
- for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
- LHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
- RHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1));
- }
+ if (isa<BinaryOperator>(VL0) && VL0->isCommutative())
+ reorderInputsAccordingToOpcode(E->Scalars, LHSVL, RHSVL);
+ else
+ for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
+ LHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
+ RHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1));
+ }
- Builder.SetInsertPoint(getLastInstruction(E->Scalars));
- Builder.SetCurrentDebugLocation(VL0->getDebugLoc());
+ setInsertPointAfterBundle(E->Scalars);
Value *LHS = vectorizeTree(LHSVL);
Value *RHS = vectorizeTree(RHSVL);
@@ -1333,41 +1510,46 @@ Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
BinaryOperator *BinOp = cast<BinaryOperator>(VL0);
Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS);
E->VectorizedValue = V;
+
+ if (Instruction *I = dyn_cast<Instruction>(V))
+ return propagateMetadata(I, E->Scalars);
+
return V;
}
case Instruction::Load: {
// Loads are inserted at the head of the tree because we don't want to
// sink them all the way down past store instructions.
- Builder.SetInsertPoint(getLastInstruction(E->Scalars));
- Builder.SetCurrentDebugLocation(VL0->getDebugLoc());
+ setInsertPointAfterBundle(E->Scalars);
LoadInst *LI = cast<LoadInst>(VL0);
- Value *VecPtr =
- Builder.CreateBitCast(LI->getPointerOperand(), VecTy->getPointerTo());
+ unsigned AS = LI->getPointerAddressSpace();
+
+ Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(),
+ VecTy->getPointerTo(AS));
unsigned Alignment = LI->getAlignment();
LI = Builder.CreateLoad(VecPtr);
LI->setAlignment(Alignment);
E->VectorizedValue = LI;
- return LI;
+ return propagateMetadata(LI, E->Scalars);
}
case Instruction::Store: {
StoreInst *SI = cast<StoreInst>(VL0);
unsigned Alignment = SI->getAlignment();
+ unsigned AS = SI->getPointerAddressSpace();
ValueList ValueOp;
for (int i = 0, e = E->Scalars.size(); i < e; ++i)
ValueOp.push_back(cast<StoreInst>(E->Scalars[i])->getValueOperand());
- Builder.SetInsertPoint(getLastInstruction(E->Scalars));
- Builder.SetCurrentDebugLocation(VL0->getDebugLoc());
+ setInsertPointAfterBundle(E->Scalars);
Value *VecValue = vectorizeTree(ValueOp);
- Value *VecPtr =
- Builder.CreateBitCast(SI->getPointerOperand(), VecTy->getPointerTo());
+ Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(),
+ VecTy->getPointerTo(AS));
StoreInst *S = Builder.CreateStore(VecValue, VecPtr);
S->setAlignment(Alignment);
E->VectorizedValue = S;
- return S;
+ return propagateMetadata(S, E->Scalars);
}
default:
llvm_unreachable("unknown inst");
@@ -1375,7 +1557,7 @@ Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
return 0;
}
-void BoUpSLP::vectorizeTree() {
+Value *BoUpSLP::vectorizeTree() {
Builder.SetInsertPoint(F->getEntryBlock().begin());
vectorizeTree(&VectorizableTree[0]);
@@ -1407,6 +1589,7 @@ void BoUpSLP::vectorizeTree() {
if (PHINode *PN = dyn_cast<PHINode>(Vec)) {
Builder.SetInsertPoint(PN->getParent()->getFirstInsertionPt());
Value *Ex = Builder.CreateExtractElement(Vec, Lane);
+ CSEBlocks.insert(PN->getParent());
User->replaceUsesOfWith(Scalar, Ex);
} else if (isa<Instruction>(Vec)){
if (PHINode *PH = dyn_cast<PHINode>(User)) {
@@ -1414,17 +1597,20 @@ void BoUpSLP::vectorizeTree() {
if (PH->getIncomingValue(i) == Scalar) {
Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
Value *Ex = Builder.CreateExtractElement(Vec, Lane);
+ CSEBlocks.insert(PH->getIncomingBlock(i));
PH->setOperand(i, Ex);
}
}
} else {
Builder.SetInsertPoint(cast<Instruction>(User));
Value *Ex = Builder.CreateExtractElement(Vec, Lane);
+ CSEBlocks.insert(cast<Instruction>(User)->getParent());
User->replaceUsesOfWith(Scalar, Ex);
}
} else {
Builder.SetInsertPoint(F->getEntryBlock().begin());
Value *Ex = Builder.CreateExtractElement(Vec, Lane);
+ CSEBlocks.insert(&F->getEntryBlock());
User->replaceUsesOfWith(Scalar, Ex);
}
@@ -1450,9 +1636,10 @@ void BoUpSLP::vectorizeTree() {
for (Value::use_iterator User = Scalar->use_begin(),
UE = Scalar->use_end(); User != UE; ++User) {
DEBUG(dbgs() << "SLP: \tvalidating user:" << **User << ".\n");
- assert(!MustGather.count(*User) &&
- "Replacing gathered value with undef");
- assert(ScalarToTreeEntry.count(*User) &&
+
+ assert((ScalarToTreeEntry.count(*User) ||
+ // It is legal to replace the reduction users by undef.
+ (RdxOps && RdxOps->count(*User))) &&
"Replacing out-of-tree value with undef");
}
Value *Undef = UndefValue::get(Ty);
@@ -1467,8 +1654,20 @@ void BoUpSLP::vectorizeTree() {
BlocksNumbers[it].forget();
}
Builder.ClearInsertionPoint();
+
+ return VectorizableTree[0].VectorizedValue;
}
+class DTCmp {
+ const DominatorTree *DT;
+
+public:
+ DTCmp(const DominatorTree *DT) : DT(DT) {}
+ bool operator()(const BasicBlock *A, const BasicBlock *B) const {
+ return DT->properlyDominates(A, B);
+ }
+};
+
void BoUpSLP::optimizeGatherSequence() {
DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()
<< " gather sequences instructions.\n");
@@ -1504,45 +1703,48 @@ void BoUpSLP::optimizeGatherSequence() {
Insert->moveBefore(PreHeader->getTerminator());
}
+ // Sort blocks by domination. This ensures we visit a block after all blocks
+ // dominating it are visited.
+ SmallVector<BasicBlock *, 8> CSEWorkList(CSEBlocks.begin(), CSEBlocks.end());
+ std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(), DTCmp(DT));
+
// Perform O(N^2) search over the gather sequences and merge identical
// instructions. TODO: We can further optimize this scan if we split the
// instructions into different buckets based on the insert lane.
- SmallPtrSet<Instruction*, 16> Visited;
- SmallVector<Instruction*, 16> ToRemove;
- ReversePostOrderTraversal<Function*> RPOT(F);
- for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
- E = RPOT.end(); I != E; ++I) {
+ SmallVector<Instruction *, 16> Visited;
+ for (SmallVectorImpl<BasicBlock *>::iterator I = CSEWorkList.begin(),
+ E = CSEWorkList.end();
+ I != E; ++I) {
+ assert((I == CSEWorkList.begin() || !DT->dominates(*I, *llvm::prior(I))) &&
+ "Worklist not sorted properly!");
BasicBlock *BB = *I;
- // For all instructions in the function:
- for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
- Instruction *In = it;
- if ((!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) ||
- !GatherSeq.count(In))
+ // For all instructions in blocks containing gather sequences:
+ for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
+ Instruction *In = it++;
+ if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In))
continue;
// Check if we can replace this instruction with any of the
// visited instructions.
- for (SmallPtrSet<Instruction*, 16>::iterator v = Visited.begin(),
- ve = Visited.end(); v != ve; ++v) {
+ for (SmallVectorImpl<Instruction *>::iterator v = Visited.begin(),
+ ve = Visited.end();
+ v != ve; ++v) {
if (In->isIdenticalTo(*v) &&
DT->dominates((*v)->getParent(), In->getParent())) {
In->replaceAllUsesWith(*v);
- ToRemove.push_back(In);
+ In->eraseFromParent();
In = 0;
break;
}
}
- if (In)
- Visited.insert(In);
+ if (In) {
+ assert(std::find(Visited.begin(), Visited.end(), In) == Visited.end());
+ Visited.push_back(In);
+ }
}
}
-
- // Erase all of the instructions that we RAUWed.
- for (SmallVectorImpl<Instruction *>::iterator v = ToRemove.begin(),
- ve = ToRemove.end(); v != ve; ++v) {
- assert((*v)->getNumUses() == 0 && "Can't remove instructions with uses");
- (*v)->eraseFromParent();
- }
+ CSEBlocks.clear();
+ GatherSeq.clear();
}
/// The SLPVectorizer Pass.
@@ -1575,14 +1777,18 @@ struct SLPVectorizer : public FunctionPass {
StoreRefs.clear();
bool Changed = false;
+ // If the target claims to have no vector registers don't attempt
+ // vectorization.
+ if (!TTI->getNumberOfRegisters(true))
+ return false;
+
// Must have DataLayout. We can't require it because some tests run w/o
// triple.
if (!DL)
return false;
// Don't vectorize when the attribute NoImplicitFloat is used.
- if (F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
- Attribute::NoImplicitFloat))
+ if (F.hasFnAttribute(Attribute::NoImplicitFloat))
return false;
DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
@@ -1661,6 +1867,21 @@ private:
StoreListMap StoreRefs;
};
+/// \brief Check that the Values in the slice in VL array are still existant in
+/// the WeakVH array.
+/// Vectorization of part of the VL array may cause later values in the VL array
+/// to become invalid. We track when this has happened in the WeakVH array.
+static bool hasValueBeenRAUWed(ArrayRef<Value *> &VL,
+ SmallVectorImpl<WeakVH> &VH,
+ unsigned SliceBegin,
+ unsigned SliceSize) {
+ for (unsigned i = SliceBegin; i < SliceBegin + SliceSize; ++i)
+ if (VH[i] != VL[i])
+ return true;
+
+ return false;
+}
+
bool SLPVectorizer::vectorizeStoreChain(ArrayRef<Value *> Chain,
int CostThreshold, BoUpSLP &R) {
unsigned ChainLen = Chain.size();
@@ -1673,11 +1894,19 @@ bool SLPVectorizer::vectorizeStoreChain(ArrayRef<Value *> Chain,
if (!isPowerOf2_32(Sz) || VF < 2)
return false;
+ // Keep track of values that were delete by vectorizing in the loop below.
+ SmallVector<WeakVH, 8> TrackValues(Chain.begin(), Chain.end());
+
bool Changed = false;
// Look for profitable vectorizable trees at all offsets, starting at zero.
for (unsigned i = 0, e = ChainLen; i < e; ++i) {
if (i + VF > e)
break;
+
+ // Check that a previous iteration of this loop did not delete the Value.
+ if (hasValueBeenRAUWed(Chain, TrackValues, i, VF))
+ continue;
+
DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i
<< "\n");
ArrayRef<Value *> Operands = Chain.slice(i, VF);
@@ -1697,7 +1926,7 @@ bool SLPVectorizer::vectorizeStoreChain(ArrayRef<Value *> Chain,
}
}
- return Changed;
+ return Changed;
}
bool SLPVectorizer::vectorizeStores(ArrayRef<StoreInst *> Stores,
@@ -1764,15 +1993,17 @@ unsigned SLPVectorizer::collectStores(BasicBlock *BB, BoUpSLP &R) {
if (!SI)
continue;
+ // Don't touch volatile stores.
+ if (!SI->isSimple())
+ continue;
+
// Check that the pointer points to scalars.
Type *Ty = SI->getValueOperand()->getType();
if (Ty->isAggregateType() || Ty->isVectorTy())
return 0;
- // Find the base of the GEP.
- Value *Ptr = SI->getPointerOperand();
- if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
- Ptr = GEP->getPointerOperand();
+ // Find the base pointer.
+ Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), DL);
// Save the store locations.
StoreRefs[Ptr].push_back(SI);
@@ -1797,28 +2028,61 @@ bool SLPVectorizer::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R) {
// Check that all of the parts are scalar instructions of the same type.
Instruction *I0 = dyn_cast<Instruction>(VL[0]);
if (!I0)
- return 0;
+ return false;
unsigned Opcode0 = I0->getOpcode();
+ Type *Ty0 = I0->getType();
+ unsigned Sz = DL->getTypeSizeInBits(Ty0);
+ unsigned VF = MinVecRegSize / Sz;
+
for (int i = 0, e = VL.size(); i < e; ++i) {
Type *Ty = VL[i]->getType();
if (Ty->isAggregateType() || Ty->isVectorTy())
- return 0;
+ return false;
Instruction *Inst = dyn_cast<Instruction>(VL[i]);
if (!Inst || Inst->getOpcode() != Opcode0)
- return 0;
+ return false;
}
- R.buildTree(VL);
- int Cost = R.getTreeCost();
+ bool Changed = false;
- if (Cost >= -SLPCostThreshold)
- return false;
+ // Keep track of values that were delete by vectorizing in the loop below.
+ SmallVector<WeakVH, 8> TrackValues(VL.begin(), VL.end());
- DEBUG(dbgs() << "SLP: Vectorizing pair at cost:" << Cost << ".\n");
- R.vectorizeTree();
- return true;
+ for (unsigned i = 0, e = VL.size(); i < e; ++i) {
+ unsigned OpsWidth = 0;
+
+ if (i + VF > e)
+ OpsWidth = e - i;
+ else
+ OpsWidth = VF;
+
+ if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2)
+ break;
+
+ // Check that a previous iteration of this loop did not delete the Value.
+ if (hasValueBeenRAUWed(VL, TrackValues, i, OpsWidth))
+ continue;
+
+ DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
+ << "\n");
+ ArrayRef<Value *> Ops = VL.slice(i, OpsWidth);
+
+ R.buildTree(Ops);
+ int Cost = R.getTreeCost();
+
+ if (Cost < -SLPCostThreshold) {
+ DEBUG(dbgs() << "SLP: Vectorizing pair at cost:" << Cost << ".\n");
+ R.vectorizeTree();
+
+ // Move to the next bundle.
+ i += VF - 1;
+ Changed = true;
+ }
+ }
+
+ return Changed;
}
bool SLPVectorizer::tryToVectorize(BinaryOperator *V, BoUpSLP &R) {
@@ -1861,30 +2125,405 @@ bool SLPVectorizer::tryToVectorize(BinaryOperator *V, BoUpSLP &R) {
return 0;
}
+/// \brief Generate a shuffle mask to be used in a reduction tree.
+///
+/// \param VecLen The length of the vector to be reduced.
+/// \param NumEltsToRdx The number of elements that should be reduced in the
+/// vector.
+/// \param IsPairwise Whether the reduction is a pairwise or splitting
+/// reduction. A pairwise reduction will generate a mask of
+/// <0,2,...> or <1,3,..> while a splitting reduction will generate
+/// <2,3, undef,undef> for a vector of 4 and NumElts = 2.
+/// \param IsLeft True will generate a mask of even elements, odd otherwise.
+static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx,
+ bool IsPairwise, bool IsLeft,
+ IRBuilder<> &Builder) {
+ assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask");
+
+ SmallVector<Constant *, 32> ShuffleMask(
+ VecLen, UndefValue::get(Builder.getInt32Ty()));
+
+ if (IsPairwise)
+ // Build a mask of 0, 2, ... (left) or 1, 3, ... (right).
+ for (unsigned i = 0; i != NumEltsToRdx; ++i)
+ ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft);
+ else
+ // Move the upper half of the vector to the lower half.
+ for (unsigned i = 0; i != NumEltsToRdx; ++i)
+ ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i);
+
+ return ConstantVector::get(ShuffleMask);
+}
+
+
+/// Model horizontal reductions.
+///
+/// A horizontal reduction is a tree of reduction operations (currently add and
+/// fadd) that has operations that can be put into a vector as its leaf.
+/// For example, this tree:
+///
+/// mul mul mul mul
+/// \ / \ /
+/// + +
+/// \ /
+/// +
+/// This tree has "mul" as its reduced values and "+" as its reduction
+/// operations. A reduction might be feeding into a store or a binary operation
+/// feeding a phi.
+/// ...
+/// \ /
+/// +
+/// |
+/// phi +=
+///
+/// Or:
+/// ...
+/// \ /
+/// +
+/// |
+/// *p =
+///
+class HorizontalReduction {
+ SmallPtrSet<Value *, 16> ReductionOps;
+ SmallVector<Value *, 32> ReducedVals;
+
+ BinaryOperator *ReductionRoot;
+ PHINode *ReductionPHI;
+
+ /// The opcode of the reduction.
+ unsigned ReductionOpcode;
+ /// The opcode of the values we perform a reduction on.
+ unsigned ReducedValueOpcode;
+ /// The width of one full horizontal reduction operation.
+ unsigned ReduxWidth;
+ /// Should we model this reduction as a pairwise reduction tree or a tree that
+ /// splits the vector in halves and adds those halves.
+ bool IsPairwiseReduction;
+
+public:
+ HorizontalReduction()
+ : ReductionRoot(0), ReductionPHI(0), ReductionOpcode(0),
+ ReducedValueOpcode(0), ReduxWidth(0), IsPairwiseReduction(false) {}
+
+ /// \brief Try to find a reduction tree.
+ bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B,
+ DataLayout *DL) {
+ assert((!Phi ||
+ std::find(Phi->op_begin(), Phi->op_end(), B) != Phi->op_end()) &&
+ "Thi phi needs to use the binary operator");
+
+ // We could have a initial reductions that is not an add.
+ // r *= v1 + v2 + v3 + v4
+ // In such a case start looking for a tree rooted in the first '+'.
+ if (Phi) {
+ if (B->getOperand(0) == Phi) {
+ Phi = 0;
+ B = dyn_cast<BinaryOperator>(B->getOperand(1));
+ } else if (B->getOperand(1) == Phi) {
+ Phi = 0;
+ B = dyn_cast<BinaryOperator>(B->getOperand(0));
+ }
+ }
+
+ if (!B)
+ return false;
+
+ Type *Ty = B->getType();
+ if (Ty->isVectorTy())
+ return false;
+
+ ReductionOpcode = B->getOpcode();
+ ReducedValueOpcode = 0;
+ ReduxWidth = MinVecRegSize / DL->getTypeSizeInBits(Ty);
+ ReductionRoot = B;
+ ReductionPHI = Phi;
+
+ if (ReduxWidth < 4)
+ return false;
+
+ // We currently only support adds.
+ if (ReductionOpcode != Instruction::Add &&
+ ReductionOpcode != Instruction::FAdd)
+ return false;
+
+ // Post order traverse the reduction tree starting at B. We only handle true
+ // trees containing only binary operators.
+ SmallVector<std::pair<BinaryOperator *, unsigned>, 32> Stack;
+ Stack.push_back(std::make_pair(B, 0));
+ while (!Stack.empty()) {
+ BinaryOperator *TreeN = Stack.back().first;
+ unsigned EdgeToVist = Stack.back().second++;
+ bool IsReducedValue = TreeN->getOpcode() != ReductionOpcode;
+
+ // Only handle trees in the current basic block.
+ if (TreeN->getParent() != B->getParent())
+ return false;
+
+ // Each tree node needs to have one user except for the ultimate
+ // reduction.
+ if (!TreeN->hasOneUse() && TreeN != B)
+ return false;
+
+ // Postorder vist.
+ if (EdgeToVist == 2 || IsReducedValue) {
+ if (IsReducedValue) {
+ // Make sure that the opcodes of the operations that we are going to
+ // reduce match.
+ if (!ReducedValueOpcode)
+ ReducedValueOpcode = TreeN->getOpcode();
+ else if (ReducedValueOpcode != TreeN->getOpcode())
+ return false;
+ ReducedVals.push_back(TreeN);
+ } else {
+ // We need to be able to reassociate the adds.
+ if (!TreeN->isAssociative())
+ return false;
+ ReductionOps.insert(TreeN);
+ }
+ // Retract.
+ Stack.pop_back();
+ continue;
+ }
+
+ // Visit left or right.
+ Value *NextV = TreeN->getOperand(EdgeToVist);
+ BinaryOperator *Next = dyn_cast<BinaryOperator>(NextV);
+ if (Next)
+ Stack.push_back(std::make_pair(Next, 0));
+ else if (NextV != Phi)
+ return false;
+ }
+ return true;
+ }
+
+ /// \brief Attempt to vectorize the tree found by
+ /// matchAssociativeReduction.
+ bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
+ if (ReducedVals.empty())
+ return false;
+
+ unsigned NumReducedVals = ReducedVals.size();
+ if (NumReducedVals < ReduxWidth)
+ return false;
+
+ Value *VectorizedTree = 0;
+ IRBuilder<> Builder(ReductionRoot);
+ FastMathFlags Unsafe;
+ Unsafe.setUnsafeAlgebra();
+ Builder.SetFastMathFlags(Unsafe);
+ unsigned i = 0;
+
+ for (; i < NumReducedVals - ReduxWidth + 1; i += ReduxWidth) {
+ ArrayRef<Value *> ValsToReduce(&ReducedVals[i], ReduxWidth);
+ V.buildTree(ValsToReduce, &ReductionOps);
+
+ // Estimate cost.
+ int Cost = V.getTreeCost() + getReductionCost(TTI, ReducedVals[i]);
+ if (Cost >= -SLPCostThreshold)
+ break;
+
+ DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost
+ << ". (HorRdx)\n");
+
+ // Vectorize a tree.
+ DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
+ Value *VectorizedRoot = V.vectorizeTree();
+
+ // Emit a reduction.
+ Value *ReducedSubTree = emitReduction(VectorizedRoot, Builder);
+ if (VectorizedTree) {
+ Builder.SetCurrentDebugLocation(Loc);
+ VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree,
+ ReducedSubTree, "bin.rdx");
+ } else
+ VectorizedTree = ReducedSubTree;
+ }
+
+ if (VectorizedTree) {
+ // Finish the reduction.
+ for (; i < NumReducedVals; ++i) {
+ Builder.SetCurrentDebugLocation(
+ cast<Instruction>(ReducedVals[i])->getDebugLoc());
+ VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree,
+ ReducedVals[i]);
+ }
+ // Update users.
+ if (ReductionPHI) {
+ assert(ReductionRoot != NULL && "Need a reduction operation");
+ ReductionRoot->setOperand(0, VectorizedTree);
+ ReductionRoot->setOperand(1, ReductionPHI);
+ } else
+ ReductionRoot->replaceAllUsesWith(VectorizedTree);
+ }
+ return VectorizedTree != 0;
+ }
+
+private:
+
+ /// \brief Calcuate the cost of a reduction.
+ int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal) {
+ Type *ScalarTy = FirstReducedVal->getType();
+ Type *VecTy = VectorType::get(ScalarTy, ReduxWidth);
+
+ int PairwiseRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, true);
+ int SplittingRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, false);
+
+ IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost;
+ int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost;
+
+ int ScalarReduxCost =
+ ReduxWidth * TTI->getArithmeticInstrCost(ReductionOpcode, VecTy);
+
+ DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost
+ << " for reduction that starts with " << *FirstReducedVal
+ << " (It is a "
+ << (IsPairwiseReduction ? "pairwise" : "splitting")
+ << " reduction)\n");
+
+ return VecReduxCost - ScalarReduxCost;
+ }
+
+ static Value *createBinOp(IRBuilder<> &Builder, unsigned Opcode, Value *L,
+ Value *R, const Twine &Name = "") {
+ if (Opcode == Instruction::FAdd)
+ return Builder.CreateFAdd(L, R, Name);
+ return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, L, R, Name);
+ }
+
+ /// \brief Emit a horizontal reduction of the vectorized value.
+ Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder) {
+ assert(VectorizedValue && "Need to have a vectorized tree node");
+ Instruction *ValToReduce = dyn_cast<Instruction>(VectorizedValue);
+ assert(isPowerOf2_32(ReduxWidth) &&
+ "We only handle power-of-two reductions for now");
+
+ Value *TmpVec = ValToReduce;
+ for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) {
+ if (IsPairwiseReduction) {
+ Value *LeftMask =
+ createRdxShuffleMask(ReduxWidth, i, true, true, Builder);
+ Value *RightMask =
+ createRdxShuffleMask(ReduxWidth, i, true, false, Builder);
+
+ Value *LeftShuf = Builder.CreateShuffleVector(
+ TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l");
+ Value *RightShuf = Builder.CreateShuffleVector(
+ TmpVec, UndefValue::get(TmpVec->getType()), (RightMask),
+ "rdx.shuf.r");
+ TmpVec = createBinOp(Builder, ReductionOpcode, LeftShuf, RightShuf,
+ "bin.rdx");
+ } else {
+ Value *UpperHalf =
+ createRdxShuffleMask(ReduxWidth, i, false, false, Builder);
+ Value *Shuf = Builder.CreateShuffleVector(
+ TmpVec, UndefValue::get(TmpVec->getType()), UpperHalf, "rdx.shuf");
+ TmpVec = createBinOp(Builder, ReductionOpcode, TmpVec, Shuf, "bin.rdx");
+ }
+ }
+
+ // The result is in the first element of the vector.
+ return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
+ }
+};
+
+/// \brief Recognize construction of vectors like
+/// %ra = insertelement <4 x float> undef, float %s0, i32 0
+/// %rb = insertelement <4 x float> %ra, float %s1, i32 1
+/// %rc = insertelement <4 x float> %rb, float %s2, i32 2
+/// %rd = insertelement <4 x float> %rc, float %s3, i32 3
+///
+/// Returns true if it matches
+///
+static bool findBuildVector(InsertElementInst *IE,
+ SmallVectorImpl<Value *> &Ops) {
+ if (!isa<UndefValue>(IE->getOperand(0)))
+ return false;
+
+ while (true) {
+ Ops.push_back(IE->getOperand(1));
+
+ if (IE->use_empty())
+ return false;
+
+ InsertElementInst *NextUse = dyn_cast<InsertElementInst>(IE->use_back());
+ if (!NextUse)
+ return true;
+
+ // If this isn't the final use, make sure the next insertelement is the only
+ // use. It's OK if the final constructed vector is used multiple times
+ if (!IE->hasOneUse())
+ return false;
+
+ IE = NextUse;
+ }
+
+ return false;
+}
+
+static bool PhiTypeSorterFunc(Value *V, Value *V2) {
+ return V->getType() < V2->getType();
+}
+
bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
bool Changed = false;
SmallVector<Value *, 4> Incoming;
- // Collect the incoming values from the PHIs.
- for (BasicBlock::iterator instr = BB->begin(), ie = BB->end(); instr != ie;
- ++instr) {
- PHINode *P = dyn_cast<PHINode>(instr);
-
- if (!P)
- break;
+ SmallSet<Value *, 16> VisitedInstrs;
+
+ bool HaveVectorizedPhiNodes = true;
+ while (HaveVectorizedPhiNodes) {
+ HaveVectorizedPhiNodes = false;
+
+ // Collect the incoming values from the PHIs.
+ Incoming.clear();
+ for (BasicBlock::iterator instr = BB->begin(), ie = BB->end(); instr != ie;
+ ++instr) {
+ PHINode *P = dyn_cast<PHINode>(instr);
+ if (!P)
+ break;
- // Stop constructing the list when you reach a different type.
- if (Incoming.size() && P->getType() != Incoming[0]->getType()) {
- Changed |= tryToVectorizeList(Incoming, R);
- Incoming.clear();
+ if (!VisitedInstrs.count(P))
+ Incoming.push_back(P);
}
- Incoming.push_back(P);
+ // Sort by type.
+ std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc);
+
+ // Try to vectorize elements base on their type.
+ for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
+ E = Incoming.end();
+ IncIt != E;) {
+
+ // Look for the next elements with the same type.
+ SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
+ while (SameTypeIt != E &&
+ (*SameTypeIt)->getType() == (*IncIt)->getType()) {
+ VisitedInstrs.insert(*SameTypeIt);
+ ++SameTypeIt;
+ }
+
+ // Try to vectorize them.
+ unsigned NumElts = (SameTypeIt - IncIt);
+ DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n");
+ if (NumElts > 1 &&
+ tryToVectorizeList(ArrayRef<Value *>(IncIt, NumElts), R)) {
+ // Success start over because instructions might have been changed.
+ HaveVectorizedPhiNodes = true;
+ Changed = true;
+ break;
+ }
+
+ // Start over at the next instruction of a differnt type (or the end).
+ IncIt = SameTypeIt;
+ }
}
- if (Incoming.size() > 1)
- Changed |= tryToVectorizeList(Incoming, R);
+ VisitedInstrs.clear();
+
+ for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) {
+ // We may go through BB multiple times so skip the one we have checked.
+ if (!VisitedInstrs.insert(it))
+ continue;
- for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
if (isa<DbgInfoIntrinsic>(it))
continue;
@@ -1902,24 +2541,86 @@ bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
if (!BI)
continue;
- Value *Inst = BI->getOperand(0);
+ // Try to match and vectorize a horizontal reduction.
+ HorizontalReduction HorRdx;
+ if (ShouldVectorizeHor &&
+ HorRdx.matchAssociativeReduction(P, BI, DL) &&
+ HorRdx.tryToReduce(R, TTI)) {
+ Changed = true;
+ it = BB->begin();
+ e = BB->end();
+ continue;
+ }
+
+ Value *Inst = BI->getOperand(0);
if (Inst == P)
Inst = BI->getOperand(1);
- Changed |= tryToVectorize(dyn_cast<BinaryOperator>(Inst), R);
+ if (tryToVectorize(dyn_cast<BinaryOperator>(Inst), R)) {
+ // We would like to start over since some instructions are deleted
+ // and the iterator may become invalid value.
+ Changed = true;
+ it = BB->begin();
+ e = BB->end();
+ continue;
+ }
+
continue;
}
+ // Try to vectorize horizontal reductions feeding into a store.
+ if (ShouldStartVectorizeHorAtStore)
+ if (StoreInst *SI = dyn_cast<StoreInst>(it))
+ if (BinaryOperator *BinOp =
+ dyn_cast<BinaryOperator>(SI->getValueOperand())) {
+ HorizontalReduction HorRdx;
+ if (((HorRdx.matchAssociativeReduction(0, BinOp, DL) &&
+ HorRdx.tryToReduce(R, TTI)) ||
+ tryToVectorize(BinOp, R))) {
+ Changed = true;
+ it = BB->begin();
+ e = BB->end();
+ continue;
+ }
+ }
+
// Try to vectorize trees that start at compare instructions.
if (CmpInst *CI = dyn_cast<CmpInst>(it)) {
if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) {
- Changed |= true;
+ Changed = true;
+ // We would like to start over since some instructions are deleted
+ // and the iterator may become invalid value.
+ it = BB->begin();
+ e = BB->end();
+ continue;
+ }
+
+ for (int i = 0; i < 2; ++i) {
+ if (BinaryOperator *BI = dyn_cast<BinaryOperator>(CI->getOperand(i))) {
+ if (tryToVectorizePair(BI->getOperand(0), BI->getOperand(1), R)) {
+ Changed = true;
+ // We would like to start over since some instructions are deleted
+ // and the iterator may become invalid value.
+ it = BB->begin();
+ e = BB->end();
+ }
+ }
+ }
+ continue;
+ }
+
+ // Try to vectorize trees that start at insertelement instructions.
+ if (InsertElementInst *IE = dyn_cast<InsertElementInst>(it)) {
+ SmallVector<Value *, 8> Ops;
+ if (!findBuildVector(IE, Ops))
continue;
+
+ if (tryToVectorizeList(Ops, R)) {
+ Changed = true;
+ it = BB->begin();
+ e = BB->end();
}
- for (int i = 0; i < 2; ++i)
- if (BinaryOperator *BI = dyn_cast<BinaryOperator>(CI->getOperand(i)))
- Changed |=
- tryToVectorizePair(BI->getOperand(0), BI->getOperand(1), R);
+
continue;
}
}