diff options
Diffstat (limited to 'lib/VMCore/Dominators.cpp')
-rw-r--r-- | lib/VMCore/Dominators.cpp | 807 |
1 files changed, 807 insertions, 0 deletions
diff --git a/lib/VMCore/Dominators.cpp b/lib/VMCore/Dominators.cpp new file mode 100644 index 0000000..f8aef5d --- /dev/null +++ b/lib/VMCore/Dominators.cpp @@ -0,0 +1,807 @@ +//===- Dominators.cpp - Dominator Calculation -----------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file was developed by the LLVM research group and is distributed under +// the University of Illinois Open Source License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements simple dominator construction algorithms for finding +// forward dominators. Postdominators are available in libanalysis, but are not +// included in libvmcore, because it's not needed. Forward dominators are +// needed to support the Verifier pass. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Analysis/Dominators.h" +#include "llvm/Support/CFG.h" +#include "llvm/Assembly/Writer.h" +#include "llvm/ADT/DepthFirstIterator.h" +#include "llvm/ADT/SetOperations.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/Instructions.h" +#include "llvm/Support/Streams.h" +#include <algorithm> +using namespace llvm; + +namespace llvm { +static std::ostream &operator<<(std::ostream &o, + const std::set<BasicBlock*> &BBs) { + for (std::set<BasicBlock*>::const_iterator I = BBs.begin(), E = BBs.end(); + I != E; ++I) + if (*I) + WriteAsOperand(o, *I, false); + else + o << " <<exit node>>"; + return o; +} +} + +//===----------------------------------------------------------------------===// +// DominatorTree Implementation +//===----------------------------------------------------------------------===// +// +// DominatorTree construction - This pass constructs immediate dominator +// information for a flow-graph based on the algorithm described in this +// document: +// +// A Fast Algorithm for Finding Dominators in a Flowgraph +// T. Lengauer & R. Tarjan, ACM TOPLAS July 1979, pgs 121-141. +// +// This implements both the O(n*ack(n)) and the O(n*log(n)) versions of EVAL and +// LINK, but it turns out that the theoretically slower O(n*log(n)) +// implementation is actually faster than the "efficient" algorithm (even for +// large CFGs) because the constant overheads are substantially smaller. The +// lower-complexity version can be enabled with the following #define: +// +#define BALANCE_IDOM_TREE 0 +// +//===----------------------------------------------------------------------===// + +char DominatorTree::ID = 0; +static RegisterPass<DominatorTree> +E("domtree", "Dominator Tree Construction", true); + +// NewBB is split and now it has one successor. Update dominator tree to +// reflect this change. +void DominatorTree::splitBlock(BasicBlock *NewBB) { + + assert(NewBB->getTerminator()->getNumSuccessors() == 1 + && "NewBB should have a single successor!"); + BasicBlock *NewBBSucc = NewBB->getTerminator()->getSuccessor(0); + + std::vector<BasicBlock*> PredBlocks; + for (pred_iterator PI = pred_begin(NewBB), PE = pred_end(NewBB); + PI != PE; ++PI) + PredBlocks.push_back(*PI); + + assert(!PredBlocks.empty() && "No predblocks??"); + + // The newly inserted basic block will dominate existing basic blocks iff the + // PredBlocks dominate all of the non-pred blocks. If all predblocks dominate + // the non-pred blocks, then they all must be the same block! + // + bool NewBBDominatesNewBBSucc = true; + { + BasicBlock *OnePred = PredBlocks[0]; + unsigned i = 1, e = PredBlocks.size(); + for (i = 1; !isReachableFromEntry(OnePred); ++i) { + assert(i != e && "Didn't find reachable pred?"); + OnePred = PredBlocks[i]; + } + + for (; i != e; ++i) + if (PredBlocks[i] != OnePred && isReachableFromEntry(OnePred)){ + NewBBDominatesNewBBSucc = false; + break; + } + + if (NewBBDominatesNewBBSucc) + for (pred_iterator PI = pred_begin(NewBBSucc), E = pred_end(NewBBSucc); + PI != E; ++PI) + if (*PI != NewBB && !dominates(NewBBSucc, *PI)) { + NewBBDominatesNewBBSucc = false; + break; + } + } + + // The other scenario where the new block can dominate its successors are when + // all predecessors of NewBBSucc that are not NewBB are dominated by NewBBSucc + // already. + if (!NewBBDominatesNewBBSucc) { + NewBBDominatesNewBBSucc = true; + for (pred_iterator PI = pred_begin(NewBBSucc), E = pred_end(NewBBSucc); + PI != E; ++PI) + if (*PI != NewBB && !dominates(NewBBSucc, *PI)) { + NewBBDominatesNewBBSucc = false; + break; + } + } + + + // Find NewBB's immediate dominator and create new dominator tree node for NewBB. + BasicBlock *NewBBIDom = 0; + unsigned i = 0; + for (i = 0; i < PredBlocks.size(); ++i) + if (isReachableFromEntry(PredBlocks[i])) { + NewBBIDom = PredBlocks[i]; + break; + } + assert(i != PredBlocks.size() && "No reachable preds?"); + for (i = i + 1; i < PredBlocks.size(); ++i) { + if (isReachableFromEntry(PredBlocks[i])) + NewBBIDom = findNearestCommonDominator(NewBBIDom, PredBlocks[i]); + } + assert(NewBBIDom && "No immediate dominator found??"); + + // Create the new dominator tree node... and set the idom of NewBB. + DomTreeNode *NewBBNode = addNewBlock(NewBB, NewBBIDom); + + // If NewBB strictly dominates other blocks, then it is now the immediate + // dominator of NewBBSucc. Update the dominator tree as appropriate. + if (NewBBDominatesNewBBSucc) { + DomTreeNode *NewBBSuccNode = getNode(NewBBSucc); + changeImmediateDominator(NewBBSuccNode, NewBBNode); + } +} + +unsigned DominatorTree::DFSPass(BasicBlock *V, InfoRec &VInfo, + unsigned N) { + // This is more understandable as a recursive algorithm, but we can't use the + // recursive algorithm due to stack depth issues. Keep it here for + // documentation purposes. +#if 0 + VInfo.Semi = ++N; + VInfo.Label = V; + + Vertex.push_back(V); // Vertex[n] = V; + //Info[V].Ancestor = 0; // Ancestor[n] = 0 + //Info[V].Child = 0; // Child[v] = 0 + VInfo.Size = 1; // Size[v] = 1 + + for (succ_iterator SI = succ_begin(V), E = succ_end(V); SI != E; ++SI) { + InfoRec &SuccVInfo = Info[*SI]; + if (SuccVInfo.Semi == 0) { + SuccVInfo.Parent = V; + N = DFSPass(*SI, SuccVInfo, N); + } + } +#else + std::vector<std::pair<BasicBlock*, unsigned> > Worklist; + Worklist.push_back(std::make_pair(V, 0U)); + while (!Worklist.empty()) { + BasicBlock *BB = Worklist.back().first; + unsigned NextSucc = Worklist.back().second; + + // First time we visited this BB? + if (NextSucc == 0) { + InfoRec &BBInfo = Info[BB]; + BBInfo.Semi = ++N; + BBInfo.Label = BB; + + Vertex.push_back(BB); // Vertex[n] = V; + //BBInfo[V].Ancestor = 0; // Ancestor[n] = 0 + //BBInfo[V].Child = 0; // Child[v] = 0 + BBInfo.Size = 1; // Size[v] = 1 + } + + // If we are done with this block, remove it from the worklist. + if (NextSucc == BB->getTerminator()->getNumSuccessors()) { + Worklist.pop_back(); + continue; + } + + // Otherwise, increment the successor number for the next time we get to it. + ++Worklist.back().second; + + // Visit the successor next, if it isn't already visited. + BasicBlock *Succ = BB->getTerminator()->getSuccessor(NextSucc); + + InfoRec &SuccVInfo = Info[Succ]; + if (SuccVInfo.Semi == 0) { + SuccVInfo.Parent = BB; + Worklist.push_back(std::make_pair(Succ, 0U)); + } + } +#endif + return N; +} + +void DominatorTree::Compress(BasicBlock *VIn) { + + std::vector<BasicBlock *> Work; + std::set<BasicBlock *> Visited; + InfoRec &VInInfo = Info[VIn]; + BasicBlock *VInAncestor = VInInfo.Ancestor; + InfoRec &VInVAInfo = Info[VInAncestor]; + + if (VInVAInfo.Ancestor != 0) + Work.push_back(VIn); + + while (!Work.empty()) { + BasicBlock *V = Work.back(); + InfoRec &VInfo = Info[V]; + BasicBlock *VAncestor = VInfo.Ancestor; + InfoRec &VAInfo = Info[VAncestor]; + + // Process Ancestor first + if (Visited.count(VAncestor) == 0 && VAInfo.Ancestor != 0) { + Work.push_back(VAncestor); + Visited.insert(VAncestor); + continue; + } + Work.pop_back(); + + // Update VINfo based on Ancestor info + if (VAInfo.Ancestor == 0) + continue; + BasicBlock *VAncestorLabel = VAInfo.Label; + BasicBlock *VLabel = VInfo.Label; + if (Info[VAncestorLabel].Semi < Info[VLabel].Semi) + VInfo.Label = VAncestorLabel; + VInfo.Ancestor = VAInfo.Ancestor; + } +} + +BasicBlock *DominatorTree::Eval(BasicBlock *V) { + InfoRec &VInfo = Info[V]; +#if !BALANCE_IDOM_TREE + // Higher-complexity but faster implementation + if (VInfo.Ancestor == 0) + return V; + Compress(V); + return VInfo.Label; +#else + // Lower-complexity but slower implementation + if (VInfo.Ancestor == 0) + return VInfo.Label; + Compress(V); + BasicBlock *VLabel = VInfo.Label; + + BasicBlock *VAncestorLabel = Info[VInfo.Ancestor].Label; + if (Info[VAncestorLabel].Semi >= Info[VLabel].Semi) + return VLabel; + else + return VAncestorLabel; +#endif +} + +void DominatorTree::Link(BasicBlock *V, BasicBlock *W, InfoRec &WInfo){ +#if !BALANCE_IDOM_TREE + // Higher-complexity but faster implementation + WInfo.Ancestor = V; +#else + // Lower-complexity but slower implementation + BasicBlock *WLabel = WInfo.Label; + unsigned WLabelSemi = Info[WLabel].Semi; + BasicBlock *S = W; + InfoRec *SInfo = &Info[S]; + + BasicBlock *SChild = SInfo->Child; + InfoRec *SChildInfo = &Info[SChild]; + + while (WLabelSemi < Info[SChildInfo->Label].Semi) { + BasicBlock *SChildChild = SChildInfo->Child; + if (SInfo->Size+Info[SChildChild].Size >= 2*SChildInfo->Size) { + SChildInfo->Ancestor = S; + SInfo->Child = SChild = SChildChild; + SChildInfo = &Info[SChild]; + } else { + SChildInfo->Size = SInfo->Size; + S = SInfo->Ancestor = SChild; + SInfo = SChildInfo; + SChild = SChildChild; + SChildInfo = &Info[SChild]; + } + } + + InfoRec &VInfo = Info[V]; + SInfo->Label = WLabel; + + assert(V != W && "The optimization here will not work in this case!"); + unsigned WSize = WInfo.Size; + unsigned VSize = (VInfo.Size += WSize); + + if (VSize < 2*WSize) + std::swap(S, VInfo.Child); + + while (S) { + SInfo = &Info[S]; + SInfo->Ancestor = V; + S = SInfo->Child; + } +#endif +} + +void DominatorTree::calculate(Function& F) { + BasicBlock* Root = Roots[0]; + + // Add a node for the root... + DomTreeNodes[Root] = RootNode = new DomTreeNode(Root, 0); + + Vertex.push_back(0); + + // Step #1: Number blocks in depth-first order and initialize variables used + // in later stages of the algorithm. + unsigned N = 0; + for (unsigned i = 0, e = Roots.size(); i != e; ++i) + N = DFSPass(Roots[i], Info[Roots[i]], 0); + + for (unsigned i = N; i >= 2; --i) { + BasicBlock *W = Vertex[i]; + InfoRec &WInfo = Info[W]; + + // Step #2: Calculate the semidominators of all vertices + for (pred_iterator PI = pred_begin(W), E = pred_end(W); PI != E; ++PI) + if (Info.count(*PI)) { // Only if this predecessor is reachable! + unsigned SemiU = Info[Eval(*PI)].Semi; + if (SemiU < WInfo.Semi) + WInfo.Semi = SemiU; + } + + Info[Vertex[WInfo.Semi]].Bucket.push_back(W); + + BasicBlock *WParent = WInfo.Parent; + Link(WParent, W, WInfo); + + // Step #3: Implicitly define the immediate dominator of vertices + std::vector<BasicBlock*> &WParentBucket = Info[WParent].Bucket; + while (!WParentBucket.empty()) { + BasicBlock *V = WParentBucket.back(); + WParentBucket.pop_back(); + BasicBlock *U = Eval(V); + IDoms[V] = Info[U].Semi < Info[V].Semi ? U : WParent; + } + } + + // Step #4: Explicitly define the immediate dominator of each vertex + for (unsigned i = 2; i <= N; ++i) { + BasicBlock *W = Vertex[i]; + BasicBlock *&WIDom = IDoms[W]; + if (WIDom != Vertex[Info[W].Semi]) + WIDom = IDoms[WIDom]; + } + + // Loop over all of the reachable blocks in the function... + for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) + if (BasicBlock *ImmDom = getIDom(I)) { // Reachable block. + DomTreeNode *&BBNode = DomTreeNodes[I]; + if (!BBNode) { // Haven't calculated this node yet? + // Get or calculate the node for the immediate dominator + DomTreeNode *IDomNode = getNodeForBlock(ImmDom); + + // Add a new tree node for this BasicBlock, and link it as a child of + // IDomNode + DomTreeNode *C = new DomTreeNode(I, IDomNode); + DomTreeNodes[I] = C; + BBNode = IDomNode->addChild(C); + } + } + + // Free temporary memory used to construct idom's + Info.clear(); + IDoms.clear(); + std::vector<BasicBlock*>().swap(Vertex); + + updateDFSNumbers(); +} + +void DominatorTreeBase::updateDFSNumbers() +{ + int dfsnum = 0; + // Iterate over all nodes in depth first order. + for (unsigned i = 0, e = Roots.size(); i != e; ++i) + for (df_iterator<BasicBlock*> I = df_begin(Roots[i]), + E = df_end(Roots[i]); I != E; ++I) { + BasicBlock *BB = *I; + DomTreeNode *BBNode = getNode(BB); + if (BBNode) { + if (!BBNode->getIDom()) + BBNode->assignDFSNumber(dfsnum); + } + } + SlowQueries = 0; + DFSInfoValid = true; +} + +/// isReachableFromEntry - Return true if A is dominated by the entry +/// block of the function containing it. +const bool DominatorTreeBase::isReachableFromEntry(BasicBlock* A) { + assert (!isPostDominator() + && "This is not implemented for post dominators"); + return dominates(&A->getParent()->getEntryBlock(), A); +} + +// dominates - Return true if A dominates B. THis performs the +// special checks necessary if A and B are in the same basic block. +bool DominatorTreeBase::dominates(Instruction *A, Instruction *B) { + BasicBlock *BBA = A->getParent(), *BBB = B->getParent(); + if (BBA != BBB) return dominates(BBA, BBB); + + // It is not possible to determine dominance between two PHI nodes + // based on their ordering. + if (isa<PHINode>(A) && isa<PHINode>(B)) + return false; + + // Loop through the basic block until we find A or B. + BasicBlock::iterator I = BBA->begin(); + for (; &*I != A && &*I != B; ++I) /*empty*/; + + if(!IsPostDominators) { + // A dominates B if it is found first in the basic block. + return &*I == A; + } else { + // A post-dominates B if B is found first in the basic block. + return &*I == B; + } +} + +// DominatorTreeBase::reset - Free all of the tree node memory. +// +void DominatorTreeBase::reset() { + for (DomTreeNodeMapType::iterator I = DomTreeNodes.begin(), + E = DomTreeNodes.end(); I != E; ++I) + delete I->second; + DomTreeNodes.clear(); + IDoms.clear(); + Roots.clear(); + Vertex.clear(); + RootNode = 0; +} + +/// findNearestCommonDominator - Find nearest common dominator basic block +/// for basic block A and B. If there is no such block then return NULL. +BasicBlock *DominatorTreeBase::findNearestCommonDominator(BasicBlock *A, + BasicBlock *B) { + + assert (!isPostDominator() + && "This is not implemented for post dominators"); + assert (A->getParent() == B->getParent() + && "Two blocks are not in same function"); + + // If either A or B is a entry block then it is nearest common dominator. + BasicBlock &Entry = A->getParent()->getEntryBlock(); + if (A == &Entry || B == &Entry) + return &Entry; + + // If B dominates A then B is nearest common dominator. + if (dominates(B,A)) + return B; + + // If A dominates B then A is nearest common dominator. + if (dominates(A,B)) + return A; + + DomTreeNode *NodeA = getNode(A); + DomTreeNode *NodeB = getNode(B); + + // Collect NodeA dominators set. + SmallPtrSet<DomTreeNode*, 16> NodeADoms; + NodeADoms.insert(NodeA); + DomTreeNode *IDomA = NodeA->getIDom(); + while(IDomA) { + NodeADoms.insert(IDomA); + IDomA = IDomA->getIDom(); + } + + // Walk NodeB immediate dominators chain and find common dominator node. + DomTreeNode *IDomB = NodeB->getIDom(); + while(IDomB) { + if (NodeADoms.count(IDomB) != 0) + return IDomB->getBlock(); + + IDomB = IDomB->getIDom(); + } + + return NULL; +} + +/// assignDFSNumber - Assign In and Out numbers while walking dominator tree +/// in dfs order. +void DomTreeNode::assignDFSNumber(int num) { + std::vector<DomTreeNode *> workStack; + std::set<DomTreeNode *> visitedNodes; + + workStack.push_back(this); + visitedNodes.insert(this); + this->DFSNumIn = num++; + + while (!workStack.empty()) { + DomTreeNode *Node = workStack.back(); + + bool visitChild = false; + for (std::vector<DomTreeNode*>::iterator DI = Node->begin(), + E = Node->end(); DI != E && !visitChild; ++DI) { + DomTreeNode *Child = *DI; + if (visitedNodes.count(Child) == 0) { + visitChild = true; + Child->DFSNumIn = num++; + workStack.push_back(Child); + visitedNodes.insert(Child); + } + } + if (!visitChild) { + // If we reach here means all children are visited + Node->DFSNumOut = num++; + workStack.pop_back(); + } + } +} + +void DomTreeNode::setIDom(DomTreeNode *NewIDom) { + assert(IDom && "No immediate dominator?"); + if (IDom != NewIDom) { + std::vector<DomTreeNode*>::iterator I = + std::find(IDom->Children.begin(), IDom->Children.end(), this); + assert(I != IDom->Children.end() && + "Not in immediate dominator children set!"); + // I am no longer your child... + IDom->Children.erase(I); + + // Switch to new dominator + IDom = NewIDom; + IDom->Children.push_back(this); + } +} + +DomTreeNode *DominatorTree::getNodeForBlock(BasicBlock *BB) { + DomTreeNode *&BBNode = DomTreeNodes[BB]; + if (BBNode) return BBNode; + + // Haven't calculated this node yet? Get or calculate the node for the + // immediate dominator. + BasicBlock *IDom = getIDom(BB); + DomTreeNode *IDomNode = getNodeForBlock(IDom); + + // Add a new tree node for this BasicBlock, and link it as a child of + // IDomNode + DomTreeNode *C = new DomTreeNode(BB, IDomNode); + DomTreeNodes[BB] = C; + return BBNode = IDomNode->addChild(C); +} + +static std::ostream &operator<<(std::ostream &o, + const DomTreeNode *Node) { + if (Node->getBlock()) + WriteAsOperand(o, Node->getBlock(), false); + else + o << " <<exit node>>"; + return o << "\n"; +} + +static void PrintDomTree(const DomTreeNode *N, std::ostream &o, + unsigned Lev) { + o << std::string(2*Lev, ' ') << "[" << Lev << "] " << N; + for (DomTreeNode::const_iterator I = N->begin(), E = N->end(); + I != E; ++I) + PrintDomTree(*I, o, Lev+1); +} + +void DominatorTreeBase::print(std::ostream &o, const Module* ) const { + o << "=============================--------------------------------\n" + << "Inorder Dominator Tree:\n"; + PrintDomTree(getRootNode(), o, 1); +} + +void DominatorTreeBase::dump() { + print (llvm::cerr); +} + +bool DominatorTree::runOnFunction(Function &F) { + reset(); // Reset from the last time we were run... + Roots.push_back(&F.getEntryBlock()); + calculate(F); + return false; +} + +//===----------------------------------------------------------------------===// +// DominanceFrontier Implementation +//===----------------------------------------------------------------------===// + +char DominanceFrontier::ID = 0; +static RegisterPass<DominanceFrontier> +G("domfrontier", "Dominance Frontier Construction", true); + +// NewBB is split and now it has one successor. Update dominace frontier to +// reflect this change. +void DominanceFrontier::splitBlock(BasicBlock *NewBB) { + + assert(NewBB->getTerminator()->getNumSuccessors() == 1 + && "NewBB should have a single successor!"); + BasicBlock *NewBBSucc = NewBB->getTerminator()->getSuccessor(0); + + std::vector<BasicBlock*> PredBlocks; + for (pred_iterator PI = pred_begin(NewBB), PE = pred_end(NewBB); + PI != PE; ++PI) + PredBlocks.push_back(*PI); + + assert(!PredBlocks.empty() && "No predblocks??"); + + DominatorTree &DT = getAnalysis<DominatorTree>(); + bool NewBBDominatesNewBBSucc = true; + if (!DT.dominates(NewBB, NewBBSucc)) + NewBBDominatesNewBBSucc = false; + + // If NewBB dominates NewBBSucc, then DF(NewBB) is now going to be the + // DF(PredBlocks[0]) without the stuff that the new block does not dominate + // a predecessor of. + if (NewBBDominatesNewBBSucc) { + DominanceFrontier::iterator DFI = find(PredBlocks[0]); + if (DFI != end()) { + DominanceFrontier::DomSetType Set = DFI->second; + // Filter out stuff in Set that we do not dominate a predecessor of. + for (DominanceFrontier::DomSetType::iterator SetI = Set.begin(), + E = Set.end(); SetI != E;) { + bool DominatesPred = false; + for (pred_iterator PI = pred_begin(*SetI), E = pred_end(*SetI); + PI != E; ++PI) + if (DT.dominates(NewBB, *PI)) + DominatesPred = true; + if (!DominatesPred) + Set.erase(SetI++); + else + ++SetI; + } + + addBasicBlock(NewBB, Set); + } + + } else { + // DF(NewBB) is {NewBBSucc} because NewBB does not strictly dominate + // NewBBSucc, but it does dominate itself (and there is an edge (NewBB -> + // NewBBSucc)). NewBBSucc is the single successor of NewBB. + DominanceFrontier::DomSetType NewDFSet; + NewDFSet.insert(NewBBSucc); + addBasicBlock(NewBB, NewDFSet); + } + + // Now we must loop over all of the dominance frontiers in the function, + // replacing occurrences of NewBBSucc with NewBB in some cases. All + // blocks that dominate a block in PredBlocks and contained NewBBSucc in + // their dominance frontier must be updated to contain NewBB instead. + // + for (Function::iterator FI = NewBB->getParent()->begin(), + FE = NewBB->getParent()->end(); FI != FE; ++FI) { + DominanceFrontier::iterator DFI = find(FI); + if (DFI == end()) continue; // unreachable block. + + // Only consider dominators of NewBBSucc + if (!DFI->second.count(NewBBSucc)) continue; + + bool BlockDominatesAny = false; + for (std::vector<BasicBlock*>::const_iterator BI = PredBlocks.begin(), + BE = PredBlocks.end(); BI != BE; ++BI) { + if (DT.dominates(FI, *BI)) { + BlockDominatesAny = true; + break; + } + } + + if (BlockDominatesAny) { + // If NewBBSucc should not stay in our dominator frontier, remove it. + // We remove it unless there is a predecessor of NewBBSucc that we + // dominate, but we don't strictly dominate NewBBSucc. + bool ShouldRemove = true; + if ((BasicBlock*)FI == NewBBSucc + || !DT.dominates(FI, NewBBSucc)) { + // Okay, we know that PredDom does not strictly dominate NewBBSucc. + // Check to see if it dominates any predecessors of NewBBSucc. + for (pred_iterator PI = pred_begin(NewBBSucc), + E = pred_end(NewBBSucc); PI != E; ++PI) + if (DT.dominates(FI, *PI)) { + ShouldRemove = false; + break; + } + + if (ShouldRemove) + removeFromFrontier(DFI, NewBBSucc); + addToFrontier(DFI, NewBB); + + break; + } + } + } +} + +namespace { + class DFCalculateWorkObject { + public: + DFCalculateWorkObject(BasicBlock *B, BasicBlock *P, + const DomTreeNode *N, + const DomTreeNode *PN) + : currentBB(B), parentBB(P), Node(N), parentNode(PN) {} + BasicBlock *currentBB; + BasicBlock *parentBB; + const DomTreeNode *Node; + const DomTreeNode *parentNode; + }; +} + +const DominanceFrontier::DomSetType & +DominanceFrontier::calculate(const DominatorTree &DT, + const DomTreeNode *Node) { + BasicBlock *BB = Node->getBlock(); + DomSetType *Result = NULL; + + std::vector<DFCalculateWorkObject> workList; + SmallPtrSet<BasicBlock *, 32> visited; + + workList.push_back(DFCalculateWorkObject(BB, NULL, Node, NULL)); + do { + DFCalculateWorkObject *currentW = &workList.back(); + assert (currentW && "Missing work object."); + + BasicBlock *currentBB = currentW->currentBB; + BasicBlock *parentBB = currentW->parentBB; + const DomTreeNode *currentNode = currentW->Node; + const DomTreeNode *parentNode = currentW->parentNode; + assert (currentBB && "Invalid work object. Missing current Basic Block"); + assert (currentNode && "Invalid work object. Missing current Node"); + DomSetType &S = Frontiers[currentBB]; + + // Visit each block only once. + if (visited.count(currentBB) == 0) { + visited.insert(currentBB); + + // Loop over CFG successors to calculate DFlocal[currentNode] + for (succ_iterator SI = succ_begin(currentBB), SE = succ_end(currentBB); + SI != SE; ++SI) { + // Does Node immediately dominate this successor? + if (DT[*SI]->getIDom() != currentNode) + S.insert(*SI); + } + } + + // At this point, S is DFlocal. Now we union in DFup's of our children... + // Loop through and visit the nodes that Node immediately dominates (Node's + // children in the IDomTree) + bool visitChild = false; + for (DomTreeNode::const_iterator NI = currentNode->begin(), + NE = currentNode->end(); NI != NE; ++NI) { + DomTreeNode *IDominee = *NI; + BasicBlock *childBB = IDominee->getBlock(); + if (visited.count(childBB) == 0) { + workList.push_back(DFCalculateWorkObject(childBB, currentBB, + IDominee, currentNode)); + visitChild = true; + } + } + + // If all children are visited or there is any child then pop this block + // from the workList. + if (!visitChild) { + + if (!parentBB) { + Result = &S; + break; + } + + DomSetType::const_iterator CDFI = S.begin(), CDFE = S.end(); + DomSetType &parentSet = Frontiers[parentBB]; + for (; CDFI != CDFE; ++CDFI) { + if (!DT.properlyDominates(parentNode, DT[*CDFI])) + parentSet.insert(*CDFI); + } + workList.pop_back(); + } + + } while (!workList.empty()); + + return *Result; +} + +void DominanceFrontierBase::print(std::ostream &o, const Module* ) const { + for (const_iterator I = begin(), E = end(); I != E; ++I) { + o << " DomFrontier for BB"; + if (I->first) + WriteAsOperand(o, I->first, false); + else + o << " <<exit node>>"; + o << " is:\t" << I->second << "\n"; + } +} + +void DominanceFrontierBase::dump() { + print (llvm::cerr); +} |