aboutsummaryrefslogtreecommitdiffstats
path: root/lib/VMCore
diff options
context:
space:
mode:
Diffstat (limited to 'lib/VMCore')
-rw-r--r--lib/VMCore/AutoUpgrade.cpp36
-rw-r--r--lib/VMCore/ConstantFold.cpp90
-rw-r--r--lib/VMCore/Constants.cpp336
-rw-r--r--lib/VMCore/Core.cpp3
-rw-r--r--lib/VMCore/Instructions.cpp2
-rw-r--r--lib/VMCore/LLVMContext.cpp59
-rw-r--r--lib/VMCore/LLVMContextImpl.cpp386
-rw-r--r--lib/VMCore/LLVMContextImpl.h350
8 files changed, 488 insertions, 774 deletions
diff --git a/lib/VMCore/AutoUpgrade.cpp b/lib/VMCore/AutoUpgrade.cpp
index 016a339..ca2e57d 100644
--- a/lib/VMCore/AutoUpgrade.cpp
+++ b/lib/VMCore/AutoUpgrade.cpp
@@ -271,20 +271,20 @@ void llvm::UpgradeIntrinsicCall(CallInst *CI, Function *NewFn) {
Context.getPointerTypeUnqual(Type::DoubleTy),
"upgraded.", CI);
Value *Load = new LoadInst(Addr, "upgraded.", false, 8, CI);
- Value *Idx = Context.getConstantInt(Type::Int32Ty, 0);
+ Value *Idx = ConstantInt::get(Type::Int32Ty, 0);
Op1 = InsertElementInst::Create(Op1, Load, Idx, "upgraded.", CI);
if (isLoadH) {
- Idxs.push_back(Context.getConstantInt(Type::Int32Ty, 0));
- Idxs.push_back(Context.getConstantInt(Type::Int32Ty, 2));
+ Idxs.push_back(ConstantInt::get(Type::Int32Ty, 0));
+ Idxs.push_back(ConstantInt::get(Type::Int32Ty, 2));
} else {
- Idxs.push_back(Context.getConstantInt(Type::Int32Ty, 2));
- Idxs.push_back(Context.getConstantInt(Type::Int32Ty, 1));
+ Idxs.push_back(ConstantInt::get(Type::Int32Ty, 2));
+ Idxs.push_back(ConstantInt::get(Type::Int32Ty, 1));
}
Value *Mask = Context.getConstantVector(Idxs);
SI = new ShuffleVectorInst(Op0, Op1, Mask, "upgraded.", CI);
} else if (isMovL) {
- Constant *Zero = Context.getConstantInt(Type::Int32Ty, 0);
+ Constant *Zero = ConstantInt::get(Type::Int32Ty, 0);
Idxs.push_back(Zero);
Idxs.push_back(Zero);
Idxs.push_back(Zero);
@@ -292,32 +292,32 @@ void llvm::UpgradeIntrinsicCall(CallInst *CI, Function *NewFn) {
Value *ZeroV = Context.getConstantVector(Idxs);
Idxs.clear();
- Idxs.push_back(Context.getConstantInt(Type::Int32Ty, 4));
- Idxs.push_back(Context.getConstantInt(Type::Int32Ty, 5));
- Idxs.push_back(Context.getConstantInt(Type::Int32Ty, 2));
- Idxs.push_back(Context.getConstantInt(Type::Int32Ty, 3));
+ Idxs.push_back(ConstantInt::get(Type::Int32Ty, 4));
+ Idxs.push_back(ConstantInt::get(Type::Int32Ty, 5));
+ Idxs.push_back(ConstantInt::get(Type::Int32Ty, 2));
+ Idxs.push_back(ConstantInt::get(Type::Int32Ty, 3));
Value *Mask = Context.getConstantVector(Idxs);
SI = new ShuffleVectorInst(ZeroV, Op0, Mask, "upgraded.", CI);
} else if (isMovSD ||
isUnpckhPD || isUnpcklPD || isPunpckhQPD || isPunpcklQPD) {
Value *Op1 = CI->getOperand(2);
if (isMovSD) {
- Idxs.push_back(Context.getConstantInt(Type::Int32Ty, 2));
- Idxs.push_back(Context.getConstantInt(Type::Int32Ty, 1));
+ Idxs.push_back(ConstantInt::get(Type::Int32Ty, 2));
+ Idxs.push_back(ConstantInt::get(Type::Int32Ty, 1));
} else if (isUnpckhPD || isPunpckhQPD) {
- Idxs.push_back(Context.getConstantInt(Type::Int32Ty, 1));
- Idxs.push_back(Context.getConstantInt(Type::Int32Ty, 3));
+ Idxs.push_back(ConstantInt::get(Type::Int32Ty, 1));
+ Idxs.push_back(ConstantInt::get(Type::Int32Ty, 3));
} else {
- Idxs.push_back(Context.getConstantInt(Type::Int32Ty, 0));
- Idxs.push_back(Context.getConstantInt(Type::Int32Ty, 2));
+ Idxs.push_back(ConstantInt::get(Type::Int32Ty, 0));
+ Idxs.push_back(ConstantInt::get(Type::Int32Ty, 2));
}
Value *Mask = Context.getConstantVector(Idxs);
SI = new ShuffleVectorInst(Op0, Op1, Mask, "upgraded.", CI);
} else if (isShufPD) {
Value *Op1 = CI->getOperand(2);
unsigned MaskVal = cast<ConstantInt>(CI->getOperand(3))->getZExtValue();
- Idxs.push_back(Context.getConstantInt(Type::Int32Ty, MaskVal & 1));
- Idxs.push_back(Context.getConstantInt(Type::Int32Ty,
+ Idxs.push_back(ConstantInt::get(Type::Int32Ty, MaskVal & 1));
+ Idxs.push_back(ConstantInt::get(Type::Int32Ty,
((MaskVal >> 1) & 1)+2));
Value *Mask = Context.getConstantVector(Idxs);
SI = new ShuffleVectorInst(Op0, Op1, Mask, "upgraded.", CI);
diff --git a/lib/VMCore/ConstantFold.cpp b/lib/VMCore/ConstantFold.cpp
index 0e4bf6c..a26bee8 100644
--- a/lib/VMCore/ConstantFold.cpp
+++ b/lib/VMCore/ConstantFold.cpp
@@ -171,7 +171,7 @@ static Constant *FoldBitCast(LLVMContext &Context,
// Handle ConstantFP input.
if (const ConstantFP *FP = dyn_cast<ConstantFP>(V))
// FP -> Integral.
- return Context.getConstantInt(FP->getValueAPF().bitcastToAPInt());
+ return ConstantInt::get(Context, FP->getValueAPF().bitcastToAPInt());
return 0;
}
@@ -258,7 +258,7 @@ Constant *llvm::ConstantFoldCastInstruction(LLVMContext &Context,
(void) V.convertToInteger(x, DestBitWidth, opc==Instruction::FPToSI,
APFloat::rmTowardZero, &ignored);
APInt Val(DestBitWidth, 2, x);
- return Context.getConstantInt(Val);
+ return ConstantInt::get(Context, Val);
}
return 0; // Can't fold.
case Instruction::IntToPtr: //always treated as unsigned
@@ -267,7 +267,7 @@ Constant *llvm::ConstantFoldCastInstruction(LLVMContext &Context,
return 0; // Other pointer types cannot be casted
case Instruction::PtrToInt: // always treated as unsigned
if (V->isNullValue()) // is it a null pointer value?
- return Context.getConstantInt(DestTy, 0);
+ return ConstantInt::get(DestTy, 0);
return 0; // Other pointer types cannot be casted
case Instruction::UIToFP:
case Instruction::SIToFP:
@@ -287,7 +287,7 @@ Constant *llvm::ConstantFoldCastInstruction(LLVMContext &Context,
uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
APInt Result(CI->getValue());
Result.zext(BitWidth);
- return Context.getConstantInt(Result);
+ return ConstantInt::get(Context, Result);
}
return 0;
case Instruction::SExt:
@@ -295,7 +295,7 @@ Constant *llvm::ConstantFoldCastInstruction(LLVMContext &Context,
uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
APInt Result(CI->getValue());
Result.sext(BitWidth);
- return Context.getConstantInt(Result);
+ return ConstantInt::get(Context, Result);
}
return 0;
case Instruction::Trunc:
@@ -303,7 +303,7 @@ Constant *llvm::ConstantFoldCastInstruction(LLVMContext &Context,
uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
APInt Result(CI->getValue());
Result.trunc(BitWidth);
- return Context.getConstantInt(Result);
+ return ConstantInt::get(Context, Result);
}
return 0;
case Instruction::BitCast:
@@ -721,51 +721,51 @@ Constant *llvm::ConstantFoldBinaryInstruction(LLVMContext &Context,
default:
break;
case Instruction::Add:
- return Context.getConstantInt(C1V + C2V);
+ return ConstantInt::get(Context, C1V + C2V);
case Instruction::Sub:
- return Context.getConstantInt(C1V - C2V);
+ return ConstantInt::get(Context, C1V - C2V);
case Instruction::Mul:
- return Context.getConstantInt(C1V * C2V);
+ return ConstantInt::get(Context, C1V * C2V);
case Instruction::UDiv:
assert(!CI2->isNullValue() && "Div by zero handled above");
- return Context.getConstantInt(C1V.udiv(C2V));
+ return ConstantInt::get(Context, C1V.udiv(C2V));
case Instruction::SDiv:
assert(!CI2->isNullValue() && "Div by zero handled above");
if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
return Context.getUndef(CI1->getType()); // MIN_INT / -1 -> undef
- return Context.getConstantInt(C1V.sdiv(C2V));
+ return ConstantInt::get(Context, C1V.sdiv(C2V));
case Instruction::URem:
assert(!CI2->isNullValue() && "Div by zero handled above");
- return Context.getConstantInt(C1V.urem(C2V));
+ return ConstantInt::get(Context, C1V.urem(C2V));
case Instruction::SRem:
assert(!CI2->isNullValue() && "Div by zero handled above");
if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
return Context.getUndef(CI1->getType()); // MIN_INT % -1 -> undef
- return Context.getConstantInt(C1V.srem(C2V));
+ return ConstantInt::get(Context, C1V.srem(C2V));
case Instruction::And:
- return Context.getConstantInt(C1V & C2V);
+ return ConstantInt::get(Context, C1V & C2V);
case Instruction::Or:
- return Context.getConstantInt(C1V | C2V);
+ return ConstantInt::get(Context, C1V | C2V);
case Instruction::Xor:
- return Context.getConstantInt(C1V ^ C2V);
+ return ConstantInt::get(Context, C1V ^ C2V);
case Instruction::Shl: {
uint32_t shiftAmt = C2V.getZExtValue();
if (shiftAmt < C1V.getBitWidth())
- return Context.getConstantInt(C1V.shl(shiftAmt));
+ return ConstantInt::get(Context, C1V.shl(shiftAmt));
else
return Context.getUndef(C1->getType()); // too big shift is undef
}
case Instruction::LShr: {
uint32_t shiftAmt = C2V.getZExtValue();
if (shiftAmt < C1V.getBitWidth())
- return Context.getConstantInt(C1V.lshr(shiftAmt));
+ return ConstantInt::get(Context, C1V.lshr(shiftAmt));
else
return Context.getUndef(C1->getType()); // too big shift is undef
}
case Instruction::AShr: {
uint32_t shiftAmt = C2V.getZExtValue();
if (shiftAmt < C1V.getBitWidth())
- return Context.getConstantInt(C1V.ashr(shiftAmt));
+ return ConstantInt::get(Context, C1V.ashr(shiftAmt));
else
return Context.getUndef(C1->getType()); // too big shift is undef
}
@@ -1420,25 +1420,25 @@ Constant *llvm::ConstantFoldCompareInstruction(LLVMContext &Context,
switch (pred) {
default: llvm_unreachable("Invalid ICmp Predicate"); return 0;
case ICmpInst::ICMP_EQ:
- return Context.getConstantInt(Type::Int1Ty, V1 == V2);
+ return ConstantInt::get(Type::Int1Ty, V1 == V2);
case ICmpInst::ICMP_NE:
- return Context.getConstantInt(Type::Int1Ty, V1 != V2);
+ return ConstantInt::get(Type::Int1Ty, V1 != V2);
case ICmpInst::ICMP_SLT:
- return Context.getConstantInt(Type::Int1Ty, V1.slt(V2));
+ return ConstantInt::get(Type::Int1Ty, V1.slt(V2));
case ICmpInst::ICMP_SGT:
- return Context.getConstantInt(Type::Int1Ty, V1.sgt(V2));
+ return ConstantInt::get(Type::Int1Ty, V1.sgt(V2));
case ICmpInst::ICMP_SLE:
- return Context.getConstantInt(Type::Int1Ty, V1.sle(V2));
+ return ConstantInt::get(Type::Int1Ty, V1.sle(V2));
case ICmpInst::ICMP_SGE:
- return Context.getConstantInt(Type::Int1Ty, V1.sge(V2));
+ return ConstantInt::get(Type::Int1Ty, V1.sge(V2));
case ICmpInst::ICMP_ULT:
- return Context.getConstantInt(Type::Int1Ty, V1.ult(V2));
+ return ConstantInt::get(Type::Int1Ty, V1.ult(V2));
case ICmpInst::ICMP_UGT:
- return Context.getConstantInt(Type::Int1Ty, V1.ugt(V2));
+ return ConstantInt::get(Type::Int1Ty, V1.ugt(V2));
case ICmpInst::ICMP_ULE:
- return Context.getConstantInt(Type::Int1Ty, V1.ule(V2));
+ return ConstantInt::get(Type::Int1Ty, V1.ule(V2));
case ICmpInst::ICMP_UGE:
- return Context.getConstantInt(Type::Int1Ty, V1.uge(V2));
+ return ConstantInt::get(Type::Int1Ty, V1.uge(V2));
}
} else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
APFloat C1V = cast<ConstantFP>(C1)->getValueAPF();
@@ -1449,38 +1449,38 @@ Constant *llvm::ConstantFoldCompareInstruction(LLVMContext &Context,
case FCmpInst::FCMP_FALSE: return Context.getFalse();
case FCmpInst::FCMP_TRUE: return Context.getTrue();
case FCmpInst::FCMP_UNO:
- return Context.getConstantInt(Type::Int1Ty, R==APFloat::cmpUnordered);
+ return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered);
case FCmpInst::FCMP_ORD:
- return Context.getConstantInt(Type::Int1Ty, R!=APFloat::cmpUnordered);
+ return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpUnordered);
case FCmpInst::FCMP_UEQ:
- return Context.getConstantInt(Type::Int1Ty, R==APFloat::cmpUnordered ||
+ return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered ||
R==APFloat::cmpEqual);
case FCmpInst::FCMP_OEQ:
- return Context.getConstantInt(Type::Int1Ty, R==APFloat::cmpEqual);
+ return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpEqual);
case FCmpInst::FCMP_UNE:
- return Context.getConstantInt(Type::Int1Ty, R!=APFloat::cmpEqual);
+ return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpEqual);
case FCmpInst::FCMP_ONE:
- return Context.getConstantInt(Type::Int1Ty, R==APFloat::cmpLessThan ||
+ return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpLessThan ||
R==APFloat::cmpGreaterThan);
case FCmpInst::FCMP_ULT:
- return Context.getConstantInt(Type::Int1Ty, R==APFloat::cmpUnordered ||
+ return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered ||
R==APFloat::cmpLessThan);
case FCmpInst::FCMP_OLT:
- return Context.getConstantInt(Type::Int1Ty, R==APFloat::cmpLessThan);
+ return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpLessThan);
case FCmpInst::FCMP_UGT:
- return Context.getConstantInt(Type::Int1Ty, R==APFloat::cmpUnordered ||
+ return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered ||
R==APFloat::cmpGreaterThan);
case FCmpInst::FCMP_OGT:
- return Context.getConstantInt(Type::Int1Ty, R==APFloat::cmpGreaterThan);
+ return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpGreaterThan);
case FCmpInst::FCMP_ULE:
- return Context.getConstantInt(Type::Int1Ty, R!=APFloat::cmpGreaterThan);
+ return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpGreaterThan);
case FCmpInst::FCMP_OLE:
- return Context.getConstantInt(Type::Int1Ty, R==APFloat::cmpLessThan ||
+ return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpLessThan ||
R==APFloat::cmpEqual);
case FCmpInst::FCMP_UGE:
- return Context.getConstantInt(Type::Int1Ty, R!=APFloat::cmpLessThan);
+ return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpLessThan);
case FCmpInst::FCMP_OGE:
- return Context.getConstantInt(Type::Int1Ty, R==APFloat::cmpGreaterThan ||
+ return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpGreaterThan ||
R==APFloat::cmpEqual);
}
} else if (isa<VectorType>(C1->getType())) {
@@ -1555,7 +1555,7 @@ Constant *llvm::ConstantFoldCompareInstruction(LLVMContext &Context,
// If we evaluated the result, return it now.
if (Result != -1)
- return Context.getConstantInt(Type::Int1Ty, Result);
+ return ConstantInt::get(Type::Int1Ty, Result);
} else {
// Evaluate the relation between the two constants, per the predicate.
@@ -1632,7 +1632,7 @@ Constant *llvm::ConstantFoldCompareInstruction(LLVMContext &Context,
// If we evaluated the result, return it now.
if (Result != -1)
- return Context.getConstantInt(Type::Int1Ty, Result);
+ return ConstantInt::get(Type::Int1Ty, Result);
if (!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) {
// If C2 is a constant expr and C1 isn't, flip them around and fold the
diff --git a/lib/VMCore/Constants.cpp b/lib/VMCore/Constants.cpp
index f94cd9e..96f729a 100644
--- a/lib/VMCore/Constants.cpp
+++ b/lib/VMCore/Constants.cpp
@@ -11,6 +11,7 @@
//
//===----------------------------------------------------------------------===//
+#include "LLVMContextImpl.h"
#include "llvm/Constants.h"
#include "ConstantFold.h"
#include "llvm/DerivedTypes.h"
@@ -171,6 +172,72 @@ ConstantInt::ConstantInt(const IntegerType *Ty, const APInt& V)
assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
}
+// Get a ConstantInt from an APInt. Note that the value stored in the DenseMap
+// as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the
+// operator== and operator!= to ensure that the DenseMap doesn't attempt to
+// compare APInt's of different widths, which would violate an APInt class
+// invariant which generates an assertion.
+ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt& V) {
+ // Get the corresponding integer type for the bit width of the value.
+ const IntegerType *ITy = Context.getIntegerType(V.getBitWidth());
+ // get an existing value or the insertion position
+ DenseMapAPIntKeyInfo::KeyTy Key(V, ITy);
+
+ Context.pImpl->ConstantsLock.reader_acquire();
+ ConstantInt *&Slot = Context.pImpl->IntConstants[Key];
+ Context.pImpl->ConstantsLock.reader_release();
+
+ if (!Slot) {
+ sys::SmartScopedWriter<true> Writer(Context.pImpl->ConstantsLock);
+ ConstantInt *&NewSlot = Context.pImpl->IntConstants[Key];
+ if (!Slot) {
+ NewSlot = new ConstantInt(ITy, V);
+ }
+
+ return NewSlot;
+ } else {
+ return Slot;
+ }
+}
+
+Constant* ConstantInt::get(const Type* Ty, uint64_t V, bool isSigned) {
+ Constant *C = get(cast<IntegerType>(Ty->getScalarType()),
+ V, isSigned);
+
+ // For vectors, broadcast the value.
+ if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
+ return Ty->getContext().getConstantVector(
+ std::vector<Constant *>(VTy->getNumElements(), C));
+
+ return C;
+}
+
+ConstantInt* ConstantInt::get(const IntegerType* Ty, uint64_t V,
+ bool isSigned) {
+ return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
+}
+
+ConstantInt* ConstantInt::getSigned(const IntegerType* Ty, int64_t V) {
+ return get(Ty, V, true);
+}
+
+Constant *ConstantInt::getSigned(const Type *Ty, int64_t V) {
+ return get(Ty, V, true);
+}
+
+Constant* ConstantInt::get(const Type* Ty, const APInt& V) {
+ ConstantInt *C = get(Ty->getContext(), V);
+ assert(C->getType() == Ty->getScalarType() &&
+ "ConstantInt type doesn't match the type implied by its value!");
+
+ // For vectors, broadcast the value.
+ if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
+ return Ty->getContext().getConstantVector(
+ std::vector<Constant *>(VTy->getNumElements(), C));
+
+ return C;
+}
+
//===----------------------------------------------------------------------===//
// ConstantFP
//===----------------------------------------------------------------------===//
@@ -758,275 +825,6 @@ bool ConstantFP::isValueValidForType(const Type *Ty, const APFloat& Val) {
//===----------------------------------------------------------------------===//
// Factory Function Implementation
-
-// The number of operands for each ConstantCreator::create method is
-// determined by the ConstantTraits template.
-// ConstantCreator - A class that is used to create constants by
-// ValueMap*. This class should be partially specialized if there is
-// something strange that needs to be done to interface to the ctor for the
-// constant.
-//
-namespace llvm {
- template<class ValType>
- struct ConstantTraits;
-
- template<typename T, typename Alloc>
- struct VISIBILITY_HIDDEN ConstantTraits< std::vector<T, Alloc> > {
- static unsigned uses(const std::vector<T, Alloc>& v) {
- return v.size();
- }
- };
-
- template<class ConstantClass, class TypeClass, class ValType>
- struct VISIBILITY_HIDDEN ConstantCreator {
- static ConstantClass *create(const TypeClass *Ty, const ValType &V) {
- return new(ConstantTraits<ValType>::uses(V)) ConstantClass(Ty, V);
- }
- };
-
- template<class ConstantClass, class TypeClass>
- struct VISIBILITY_HIDDEN ConvertConstantType {
- static void convert(ConstantClass *OldC, const TypeClass *NewTy) {
- llvm_unreachable("This type cannot be converted!");
- }
- };
-
- template<class ValType, class TypeClass, class ConstantClass,
- bool HasLargeKey = false /*true for arrays and structs*/ >
- class VISIBILITY_HIDDEN ValueMap : public AbstractTypeUser {
- public:
- typedef std::pair<const Type*, ValType> MapKey;
- typedef std::map<MapKey, Constant *> MapTy;
- typedef std::map<Constant*, typename MapTy::iterator> InverseMapTy;
- typedef std::map<const Type*, typename MapTy::iterator> AbstractTypeMapTy;
- private:
- /// Map - This is the main map from the element descriptor to the Constants.
- /// This is the primary way we avoid creating two of the same shape
- /// constant.
- MapTy Map;
-
- /// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping
- /// from the constants to their element in Map. This is important for
- /// removal of constants from the array, which would otherwise have to scan
- /// through the map with very large keys.
- InverseMapTy InverseMap;
-
- /// AbstractTypeMap - Map for abstract type constants.
- ///
- AbstractTypeMapTy AbstractTypeMap;
-
- /// ValueMapLock - Mutex for this map.
- sys::SmartMutex<true> ValueMapLock;
-
- public:
- // NOTE: This function is not locked. It is the caller's responsibility
- // to enforce proper synchronization.
- typename MapTy::iterator map_end() { return Map.end(); }
-
- /// InsertOrGetItem - Return an iterator for the specified element.
- /// If the element exists in the map, the returned iterator points to the
- /// entry and Exists=true. If not, the iterator points to the newly
- /// inserted entry and returns Exists=false. Newly inserted entries have
- /// I->second == 0, and should be filled in.
- /// NOTE: This function is not locked. It is the caller's responsibility
- // to enforce proper synchronization.
- typename MapTy::iterator InsertOrGetItem(std::pair<MapKey, Constant *>
- &InsertVal,
- bool &Exists) {
- std::pair<typename MapTy::iterator, bool> IP = Map.insert(InsertVal);
- Exists = !IP.second;
- return IP.first;
- }
-
-private:
- typename MapTy::iterator FindExistingElement(ConstantClass *CP) {
- if (HasLargeKey) {
- typename InverseMapTy::iterator IMI = InverseMap.find(CP);
- assert(IMI != InverseMap.end() && IMI->second != Map.end() &&
- IMI->second->second == CP &&
- "InverseMap corrupt!");
- return IMI->second;
- }
-
- typename MapTy::iterator I =
- Map.find(MapKey(static_cast<const TypeClass*>(CP->getRawType()),
- getValType(CP)));
- if (I == Map.end() || I->second != CP) {
- // FIXME: This should not use a linear scan. If this gets to be a
- // performance problem, someone should look at this.
- for (I = Map.begin(); I != Map.end() && I->second != CP; ++I)
- /* empty */;
- }
- return I;
- }
-
- ConstantClass* Create(const TypeClass *Ty, const ValType &V,
- typename MapTy::iterator I) {
- ConstantClass* Result =
- ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V);
-
- assert(Result->getType() == Ty && "Type specified is not correct!");
- I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result));
-
- if (HasLargeKey) // Remember the reverse mapping if needed.
- InverseMap.insert(std::make_pair(Result, I));
-
- // If the type of the constant is abstract, make sure that an entry
- // exists for it in the AbstractTypeMap.
- if (Ty->isAbstract()) {
- typename AbstractTypeMapTy::iterator TI =
- AbstractTypeMap.find(Ty);
-
- if (TI == AbstractTypeMap.end()) {
- // Add ourselves to the ATU list of the type.
- cast<DerivedType>(Ty)->addAbstractTypeUser(this);
-
- AbstractTypeMap.insert(TI, std::make_pair(Ty, I));
- }
- }
-
- return Result;
- }
-public:
-
- /// getOrCreate - Return the specified constant from the map, creating it if
- /// necessary.
- ConstantClass *getOrCreate(const TypeClass *Ty, const ValType &V) {
- sys::SmartScopedLock<true> Lock(ValueMapLock);
- MapKey Lookup(Ty, V);
- ConstantClass* Result = 0;
-
- typename MapTy::iterator I = Map.find(Lookup);
- // Is it in the map?
- if (I != Map.end())
- Result = static_cast<ConstantClass *>(I->second);
-
- if (!Result) {
- // If no preexisting value, create one now...
- Result = Create(Ty, V, I);
- }
-
- return Result;
- }
-
- void remove(ConstantClass *CP) {
- sys::SmartScopedLock<true> Lock(ValueMapLock);
- typename MapTy::iterator I = FindExistingElement(CP);
- assert(I != Map.end() && "Constant not found in constant table!");
- assert(I->second == CP && "Didn't find correct element?");
-
- if (HasLargeKey) // Remember the reverse mapping if needed.
- InverseMap.erase(CP);
-
- // Now that we found the entry, make sure this isn't the entry that
- // the AbstractTypeMap points to.
- const TypeClass *Ty = static_cast<const TypeClass *>(I->first.first);
- if (Ty->isAbstract()) {
- assert(AbstractTypeMap.count(Ty) &&
- "Abstract type not in AbstractTypeMap?");
- typename MapTy::iterator &ATMEntryIt = AbstractTypeMap[Ty];
- if (ATMEntryIt == I) {
- // Yes, we are removing the representative entry for this type.
- // See if there are any other entries of the same type.
- typename MapTy::iterator TmpIt = ATMEntryIt;
-
- // First check the entry before this one...
- if (TmpIt != Map.begin()) {
- --TmpIt;
- if (TmpIt->first.first != Ty) // Not the same type, move back...
- ++TmpIt;
- }
-
- // If we didn't find the same type, try to move forward...
- if (TmpIt == ATMEntryIt) {
- ++TmpIt;
- if (TmpIt == Map.end() || TmpIt->first.first != Ty)
- --TmpIt; // No entry afterwards with the same type
- }
-
- // If there is another entry in the map of the same abstract type,
- // update the AbstractTypeMap entry now.
- if (TmpIt != ATMEntryIt) {
- ATMEntryIt = TmpIt;
- } else {
- // Otherwise, we are removing the last instance of this type
- // from the table. Remove from the ATM, and from user list.
- cast<DerivedType>(Ty)->removeAbstractTypeUser(this);
- AbstractTypeMap.erase(Ty);
- }
- }
- }
-
- Map.erase(I);
- }
-
-
- /// MoveConstantToNewSlot - If we are about to change C to be the element
- /// specified by I, update our internal data structures to reflect this
- /// fact.
- /// NOTE: This function is not locked. It is the responsibility of the
- /// caller to enforce proper synchronization if using this method.
- void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) {
- // First, remove the old location of the specified constant in the map.
- typename MapTy::iterator OldI = FindExistingElement(C);
- assert(OldI != Map.end() && "Constant not found in constant table!");
- assert(OldI->second == C && "Didn't find correct element?");
-
- // If this constant is the representative element for its abstract type,
- // update the AbstractTypeMap so that the representative element is I.
- if (C->getType()->isAbstract()) {
- typename AbstractTypeMapTy::iterator ATI =
- AbstractTypeMap.find(C->getType());
- assert(ATI != AbstractTypeMap.end() &&
- "Abstract type not in AbstractTypeMap?");
- if (ATI->second == OldI)
- ATI->second = I;
- }
-
- // Remove the old entry from the map.
- Map.erase(OldI);
-
- // Update the inverse map so that we know that this constant is now
- // located at descriptor I.
- if (HasLargeKey) {
- assert(I->second == C && "Bad inversemap entry!");
- InverseMap[C] = I;
- }
- }
-
- void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) {
- sys::SmartScopedLock<true> Lock(ValueMapLock);
- typename AbstractTypeMapTy::iterator I =
- AbstractTypeMap.find(cast<Type>(OldTy));
-
- assert(I != AbstractTypeMap.end() &&
- "Abstract type not in AbstractTypeMap?");
-
- // Convert a constant at a time until the last one is gone. The last one
- // leaving will remove() itself, causing the AbstractTypeMapEntry to be
- // eliminated eventually.
- do {
- ConvertConstantType<ConstantClass,
- TypeClass>::convert(
- static_cast<ConstantClass *>(I->second->second),
- cast<TypeClass>(NewTy));
-
- I = AbstractTypeMap.find(cast<Type>(OldTy));
- } while (I != AbstractTypeMap.end());
- }
-
- // If the type became concrete without being refined to any other existing
- // type, we just remove ourselves from the ATU list.
- void typeBecameConcrete(const DerivedType *AbsTy) {
- AbsTy->removeAbstractTypeUser(this);
- }
-
- void dump() const {
- DOUT << "Constant.cpp: ValueMap\n";
- }
- };
-}
-
/// destroyConstant - Remove the constant from the constant table...
///
void ConstantAggregateZero::destroyConstant() {
diff --git a/lib/VMCore/Core.cpp b/lib/VMCore/Core.cpp
index 55707b0..c35623e 100644
--- a/lib/VMCore/Core.cpp
+++ b/lib/VMCore/Core.cpp
@@ -365,8 +365,7 @@ LLVMValueRef LLVMConstPointerNull(LLVMTypeRef Ty) {
LLVMValueRef LLVMConstInt(LLVMTypeRef IntTy, unsigned long long N,
int SignExtend) {
- return wrap(getGlobalContext().getConstantInt(unwrap<IntegerType>(IntTy), N,
- SignExtend != 0));
+ return wrap(ConstantInt::get(unwrap<IntegerType>(IntTy), N, SignExtend != 0));
}
static const fltSemantics &SemanticsForType(Type *Ty) {
diff --git a/lib/VMCore/Instructions.cpp b/lib/VMCore/Instructions.cpp
index 5e5ce64..47cba01 100644
--- a/lib/VMCore/Instructions.cpp
+++ b/lib/VMCore/Instructions.cpp
@@ -704,7 +704,7 @@ void BranchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
static Value *getAISize(LLVMContext &Context, Value *Amt) {
if (!Amt)
- Amt = Context.getConstantInt(Type::Int32Ty, 1);
+ Amt = ConstantInt::get(Type::Int32Ty, 1);
else {
assert(!isa<BasicBlock>(Amt) &&
"Passed basic block into allocation size parameter! Use other ctor");
diff --git a/lib/VMCore/LLVMContext.cpp b/lib/VMCore/LLVMContext.cpp
index d0f05eb..db81c61 100644
--- a/lib/VMCore/LLVMContext.cpp
+++ b/lib/VMCore/LLVMContext.cpp
@@ -39,7 +39,7 @@ static const uint64_t zero[2] = {0, 0};
Constant* LLVMContext::getNullValue(const Type* Ty) {
switch (Ty->getTypeID()) {
case Type::IntegerTyID:
- return getConstantInt(Ty, 0);
+ return ConstantInt::get(Ty, 0);
case Type::FloatTyID:
return getConstantFP(APFloat(APInt(32, 0)));
case Type::DoubleTyID:
@@ -65,7 +65,7 @@ Constant* LLVMContext::getNullValue(const Type* Ty) {
Constant* LLVMContext::getAllOnesValue(const Type* Ty) {
if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty))
- return getConstantInt(APInt::getAllOnesValue(ITy->getBitWidth()));
+ return ConstantInt::get(*this, APInt::getAllOnesValue(ITy->getBitWidth()));
std::vector<Constant*> Elts;
const VectorType* VTy = cast<VectorType>(Ty);
@@ -92,51 +92,6 @@ ConstantInt* LLVMContext::getFalse() {
return pImpl->getFalse();
}
-Constant* LLVMContext::getConstantInt(const Type* Ty, uint64_t V,
- bool isSigned) {
- Constant *C = getConstantInt(cast<IntegerType>(Ty->getScalarType()),
- V, isSigned);
-
- // For vectors, broadcast the value.
- if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
- return
- getConstantVector(std::vector<Constant *>(VTy->getNumElements(), C));
-
- return C;
-}
-
-
-ConstantInt* LLVMContext::getConstantInt(const IntegerType* Ty, uint64_t V,
- bool isSigned) {
- return getConstantInt(APInt(Ty->getBitWidth(), V, isSigned));
-}
-
-ConstantInt* LLVMContext::getConstantIntSigned(const IntegerType* Ty,
- int64_t V) {
- return getConstantInt(Ty, V, true);
-}
-
-Constant *LLVMContext::getConstantIntSigned(const Type *Ty, int64_t V) {
- return getConstantInt(Ty, V, true);
-}
-
-ConstantInt* LLVMContext::getConstantInt(const APInt& V) {
- return pImpl->getConstantInt(V);
-}
-
-Constant* LLVMContext::getConstantInt(const Type* Ty, const APInt& V) {
- ConstantInt *C = getConstantInt(V);
- assert(C->getType() == Ty->getScalarType() &&
- "ConstantInt type doesn't match the type implied by its value!");
-
- // For vectors, broadcast the value.
- if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
- return
- getConstantVector(std::vector<Constant *>(VTy->getNumElements(), C));
-
- return C;
-}
-
// ConstantPointerNull accessors.
ConstantPointerNull* LLVMContext::getConstantPointerNull(const PointerType* T) {
return ConstantPointerNull::get(T);
@@ -194,11 +149,11 @@ Constant* LLVMContext::getConstantArray(const std::string& Str,
bool AddNull) {
std::vector<Constant*> ElementVals;
for (unsigned i = 0; i < Str.length(); ++i)
- ElementVals.push_back(getConstantInt(Type::Int8Ty, Str[i]));
+ ElementVals.push_back(ConstantInt::get(Type::Int8Ty, Str[i]));
// Add a null terminator to the string...
if (AddNull) {
- ElementVals.push_back(getConstantInt(Type::Int8Ty, 0));
+ ElementVals.push_back(ConstantInt::get(Type::Int8Ty, 0));
}
ArrayType *ATy = getArrayType(Type::Int8Ty, ElementVals.size());
@@ -302,8 +257,8 @@ Constant* LLVMContext::getConstantExprAlignOf(const Type* Ty) {
// alignof is implemented as: (i64) gep ({i8,Ty}*)null, 0, 1
const Type *AligningTy = getStructType(Type::Int8Ty, Ty, NULL);
Constant *NullPtr = getNullValue(AligningTy->getPointerTo());
- Constant *Zero = getConstantInt(Type::Int32Ty, 0);
- Constant *One = getConstantInt(Type::Int32Ty, 1);
+ Constant *Zero = ConstantInt::get(Type::Int32Ty, 0);
+ Constant *One = ConstantInt::get(Type::Int32Ty, 1);
Constant *Indices[2] = { Zero, One };
Constant *GEP = getConstantExprGetElementPtr(NullPtr, Indices, 2);
return getConstantExprCast(Instruction::PtrToInt, GEP, Type::Int32Ty);
@@ -463,7 +418,7 @@ Constant* LLVMContext::getConstantExprInsertValue(Constant* Agg, Constant* Val,
Constant* LLVMContext::getConstantExprSizeOf(const Type* Ty) {
// sizeof is implemented as: (i64) gep (Ty*)null, 1
- Constant *GEPIdx = getConstantInt(Type::Int32Ty, 1);
+ Constant *GEPIdx = ConstantInt::get(Type::Int32Ty, 1);
Constant *GEP = getConstantExprGetElementPtr(
getNullValue(getPointerTypeUnqual(Ty)), &GEPIdx, 1);
return getConstantExprCast(Instruction::PtrToInt, GEP, Type::Int64Ty);
diff --git a/lib/VMCore/LLVMContextImpl.cpp b/lib/VMCore/LLVMContextImpl.cpp
index 34fc6e5..8e6c777 100644
--- a/lib/VMCore/LLVMContextImpl.cpp
+++ b/lib/VMCore/LLVMContextImpl.cpp
@@ -45,368 +45,10 @@ static std::vector<Constant*> getValType(ConstantVector *CP) {
return Elements;
}
-namespace llvm {
-template<typename T, typename Alloc>
-struct VISIBILITY_HIDDEN ConstantTraits< std::vector<T, Alloc> > {
- static unsigned uses(const std::vector<T, Alloc>& v) {
- return v.size();
- }
-};
-
-template<class ConstantClass, class TypeClass, class ValType>
-struct VISIBILITY_HIDDEN ConstantCreator {
- static ConstantClass *create(const TypeClass *Ty, const ValType &V) {
- return new(ConstantTraits<ValType>::uses(V)) ConstantClass(Ty, V);
- }
-};
-
-template<class ConstantClass, class TypeClass>
-struct VISIBILITY_HIDDEN ConvertConstantType {
- static void convert(ConstantClass *OldC, const TypeClass *NewTy) {
- llvm_unreachable("This type cannot be converted!");
- }
-};
-
-// ConstantAggregateZero does not take extra "value" argument...
-template<class ValType>
-struct ConstantCreator<ConstantAggregateZero, Type, ValType> {
- static ConstantAggregateZero *create(const Type *Ty, const ValType &V){
- return new ConstantAggregateZero(Ty);
- }
-};
-
-template<>
-struct ConvertConstantType<ConstantAggregateZero, Type> {
- static void convert(ConstantAggregateZero *OldC, const Type *NewTy) {
- // Make everyone now use a constant of the new type...
- Constant *New = NewTy->getContext().getConstantAggregateZero(NewTy);
- assert(New != OldC && "Didn't replace constant??");
- OldC->uncheckedReplaceAllUsesWith(New);
- OldC->destroyConstant(); // This constant is now dead, destroy it.
- }
-};
-
-template<>
-struct ConvertConstantType<ConstantArray, ArrayType> {
- static void convert(ConstantArray *OldC, const ArrayType *NewTy) {
- // Make everyone now use a constant of the new type...
- std::vector<Constant*> C;
- for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
- C.push_back(cast<Constant>(OldC->getOperand(i)));
- Constant *New = NewTy->getContext().getConstantArray(NewTy, C);
- assert(New != OldC && "Didn't replace constant??");
- OldC->uncheckedReplaceAllUsesWith(New);
- OldC->destroyConstant(); // This constant is now dead, destroy it.
- }
-};
-
-template<>
-struct ConvertConstantType<ConstantStruct, StructType> {
- static void convert(ConstantStruct *OldC, const StructType *NewTy) {
- // Make everyone now use a constant of the new type...
- std::vector<Constant*> C;
- for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
- C.push_back(cast<Constant>(OldC->getOperand(i)));
- Constant *New = NewTy->getContext().getConstantStruct(NewTy, C);
- assert(New != OldC && "Didn't replace constant??");
-
- OldC->uncheckedReplaceAllUsesWith(New);
- OldC->destroyConstant(); // This constant is now dead, destroy it.
- }
-};
-
-template<>
-struct ConvertConstantType<ConstantVector, VectorType> {
- static void convert(ConstantVector *OldC, const VectorType *NewTy) {
- // Make everyone now use a constant of the new type...
- std::vector<Constant*> C;
- for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
- C.push_back(cast<Constant>(OldC->getOperand(i)));
- Constant *New = OldC->getContext().getConstantVector(NewTy, C);
- assert(New != OldC && "Didn't replace constant??");
- OldC->uncheckedReplaceAllUsesWith(New);
- OldC->destroyConstant(); // This constant is now dead, destroy it.
- }
-};
-}
-
-template<class ValType, class TypeClass, class ConstantClass,
- bool HasLargeKey /*true for arrays and structs*/ >
-class VISIBILITY_HIDDEN ValueMap : public AbstractTypeUser {
-public:
- typedef std::pair<const Type*, ValType> MapKey;
- typedef std::map<MapKey, Constant *> MapTy;
- typedef std::map<Constant*, typename MapTy::iterator> InverseMapTy;
- typedef std::map<const Type*, typename MapTy::iterator> AbstractTypeMapTy;
-private:
- /// Map - This is the main map from the element descriptor to the Constants.
- /// This is the primary way we avoid creating two of the same shape
- /// constant.
- MapTy Map;
-
- /// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping
- /// from the constants to their element in Map. This is important for
- /// removal of constants from the array, which would otherwise have to scan
- /// through the map with very large keys.
- InverseMapTy InverseMap;
-
- /// AbstractTypeMap - Map for abstract type constants.
- ///
- AbstractTypeMapTy AbstractTypeMap;
-
- /// ValueMapLock - Mutex for this map.
- sys::SmartMutex<true> ValueMapLock;
-
-public:
- // NOTE: This function is not locked. It is the caller's responsibility
- // to enforce proper synchronization.
- typename MapTy::iterator map_end() { return Map.end(); }
-
- /// InsertOrGetItem - Return an iterator for the specified element.
- /// If the element exists in the map, the returned iterator points to the
- /// entry and Exists=true. If not, the iterator points to the newly
- /// inserted entry and returns Exists=false. Newly inserted entries have
- /// I->second == 0, and should be filled in.
- /// NOTE: This function is not locked. It is the caller's responsibility
- // to enforce proper synchronization.
- typename MapTy::iterator InsertOrGetItem(std::pair<MapKey, Constant *>
- &InsertVal,
- bool &Exists) {
- std::pair<typename MapTy::iterator, bool> IP = Map.insert(InsertVal);
- Exists = !IP.second;
- return IP.first;
- }
-
-private:
- typename MapTy::iterator FindExistingElement(ConstantClass *CP) {
- if (HasLargeKey) {
- typename InverseMapTy::iterator IMI = InverseMap.find(CP);
- assert(IMI != InverseMap.end() && IMI->second != Map.end() &&
- IMI->second->second == CP &&
- "InverseMap corrupt!");
- return IMI->second;
- }
-
- typename MapTy::iterator I =
- Map.find(MapKey(static_cast<const TypeClass*>(CP->getRawType()),
- getValType(CP)));
- if (I == Map.end() || I->second != CP) {
- // FIXME: This should not use a linear scan. If this gets to be a
- // performance problem, someone should look at this.
- for (I = Map.begin(); I != Map.end() && I->second != CP; ++I)
- /* empty */;
- }
- return I;
- }
-
- ConstantClass* Create(const TypeClass *Ty, const ValType &V,
- typename MapTy::iterator I) {
- ConstantClass* Result =
- ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V);
-
- assert(Result->getType() == Ty && "Type specified is not correct!");
- I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result));
-
- if (HasLargeKey) // Remember the reverse mapping if needed.
- InverseMap.insert(std::make_pair(Result, I));
-
- // If the type of the constant is abstract, make sure that an entry
- // exists for it in the AbstractTypeMap.
- if (Ty->isAbstract()) {
- typename AbstractTypeMapTy::iterator TI =
- AbstractTypeMap.find(Ty);
-
- if (TI == AbstractTypeMap.end()) {
- // Add ourselves to the ATU list of the type.
- cast<DerivedType>(Ty)->addAbstractTypeUser(this);
-
- AbstractTypeMap.insert(TI, std::make_pair(Ty, I));
- }
- }
-
- return Result;
- }
-public:
-
- /// getOrCreate - Return the specified constant from the map, creating it if
- /// necessary.
- ConstantClass *getOrCreate(const TypeClass *Ty, const ValType &V) {
- sys::SmartScopedLock<true> Lock(ValueMapLock);
- MapKey Lookup(Ty, V);
- ConstantClass* Result = 0;
-
- typename MapTy::iterator I = Map.find(Lookup);
- // Is it in the map?
- if (I != Map.end())
- Result = static_cast<ConstantClass *>(I->second);
-
- if (!Result) {
- // If no preexisting value, create one now...
- Result = Create(Ty, V, I);
- }
-
- return Result;
- }
-
- void remove(ConstantClass *CP) {
- sys::SmartScopedLock<true> Lock(ValueMapLock);
- typename MapTy::iterator I = FindExistingElement(CP);
- assert(I != Map.end() && "Constant not found in constant table!");
- assert(I->second == CP && "Didn't find correct element?");
-
- if (HasLargeKey) // Remember the reverse mapping if needed.
- InverseMap.erase(CP);
-
- // Now that we found the entry, make sure this isn't the entry that
- // the AbstractTypeMap points to.
- const TypeClass *Ty = static_cast<const TypeClass *>(I->first.first);
- if (Ty->isAbstract()) {
- assert(AbstractTypeMap.count(Ty) &&
- "Abstract type not in AbstractTypeMap?");
- typename MapTy::iterator &ATMEntryIt = AbstractTypeMap[Ty];
- if (ATMEntryIt == I) {
- // Yes, we are removing the representative entry for this type.
- // See if there are any other entries of the same type.
- typename MapTy::iterator TmpIt = ATMEntryIt;
-
- // First check the entry before this one...
- if (TmpIt != Map.begin()) {
- --TmpIt;
- if (TmpIt->first.first != Ty) // Not the same type, move back...
- ++TmpIt;
- }
-
- // If we didn't find the same type, try to move forward...
- if (TmpIt == ATMEntryIt) {
- ++TmpIt;
- if (TmpIt == Map.end() || TmpIt->first.first != Ty)
- --TmpIt; // No entry afterwards with the same type
- }
-
- // If there is another entry in the map of the same abstract type,
- // update the AbstractTypeMap entry now.
- if (TmpIt != ATMEntryIt) {
- ATMEntryIt = TmpIt;
- } else {
- // Otherwise, we are removing the last instance of this type
- // from the table. Remove from the ATM, and from user list.
- cast<DerivedType>(Ty)->removeAbstractTypeUser(this);
- AbstractTypeMap.erase(Ty);
- }
- }
- }
-
- Map.erase(I);
- }
-
-
- /// MoveConstantToNewSlot - If we are about to change C to be the element
- /// specified by I, update our internal data structures to reflect this
- /// fact.
- /// NOTE: This function is not locked. It is the responsibility of the
- /// caller to enforce proper synchronization if using this method.
- void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) {
- // First, remove the old location of the specified constant in the map.
- typename MapTy::iterator OldI = FindExistingElement(C);
- assert(OldI != Map.end() && "Constant not found in constant table!");
- assert(OldI->second == C && "Didn't find correct element?");
-
- // If this constant is the representative element for its abstract type,
- // update the AbstractTypeMap so that the representative element is I.
- if (C->getType()->isAbstract()) {
- typename AbstractTypeMapTy::iterator ATI =
- AbstractTypeMap.find(C->getType());
- assert(ATI != AbstractTypeMap.end() &&
- "Abstract type not in AbstractTypeMap?");
- if (ATI->second == OldI)
- ATI->second = I;
- }
-
- // Remove the old entry from the map.
- Map.erase(OldI);
-
- // Update the inverse map so that we know that this constant is now
- // located at descriptor I.
- if (HasLargeKey) {
- assert(I->second == C && "Bad inversemap entry!");
- InverseMap[C] = I;
- }
- }
-
- void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) {
- sys::SmartScopedLock<true> Lock(ValueMapLock);
- typename AbstractTypeMapTy::iterator I =
- AbstractTypeMap.find(cast<Type>(OldTy));
-
- assert(I != AbstractTypeMap.end() &&
- "Abstract type not in AbstractTypeMap?");
-
- // Convert a constant at a time until the last one is gone. The last one
- // leaving will remove() itself, causing the AbstractTypeMapEntry to be
- // eliminated eventually.
- do {
- ConvertConstantType<ConstantClass,
- TypeClass>::convert(
- static_cast<ConstantClass *>(I->second->second),
- cast<TypeClass>(NewTy));
-
- I = AbstractTypeMap.find(cast<Type>(OldTy));
- } while (I != AbstractTypeMap.end());
- }
-
- // If the type became concrete without being refined to any other existing
- // type, we just remove ourselves from the ATU list.
- void typeBecameConcrete(const DerivedType *AbsTy) {
- AbsTy->removeAbstractTypeUser(this);
- }
-
- void dump() const {
- DOUT << "Constant.cpp: ValueMap\n";
- }
-};
LLVMContextImpl::LLVMContextImpl(LLVMContext &C) :
- Context(C), TheTrueVal(0), TheFalseVal(0) {
- AggZeroConstants = new ValueMap<char, Type, ConstantAggregateZero>();
- ArrayConstants = new ArrayConstantsTy();
- StructConstants = new StructConstantsTy();
- VectorConstants = new VectorConstantsTy();
-}
+ Context(C), TheTrueVal(0), TheFalseVal(0) { }
-LLVMContextImpl::~LLVMContextImpl() {
- delete AggZeroConstants;
- delete ArrayConstants;
- delete StructConstants;
- delete VectorConstants;
-}
-
-// Get a ConstantInt from an APInt. Note that the value stored in the DenseMap
-// as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the
-// operator== and operator!= to ensure that the DenseMap doesn't attempt to
-// compare APInt's of different widths, which would violate an APInt class
-// invariant which generates an assertion.
-ConstantInt *LLVMContextImpl::getConstantInt(const APInt& V) {
- // Get the corresponding integer type for the bit width of the value.
- const IntegerType *ITy = Context.getIntegerType(V.getBitWidth());
- // get an existing value or the insertion position
- DenseMapAPIntKeyInfo::KeyTy Key(V, ITy);
-
- ConstantsLock.reader_acquire();
- ConstantInt *&Slot = IntConstants[Key];
- ConstantsLock.reader_release();
-
- if (!Slot) {
- sys::SmartScopedWriter<true> Writer(ConstantsLock);
- ConstantInt *&NewSlot = IntConstants[Key];
- if (!Slot) {
- NewSlot = new ConstantInt(ITy, V);
- }
-
- return NewSlot;
- } else {
- return Slot;
- }
-}
ConstantFP *LLVMContextImpl::getConstantFP(const APFloat &V) {
DenseMapAPFloatKeyInfo::KeyTy Key(V);
@@ -483,7 +125,7 @@ LLVMContextImpl::getConstantAggregateZero(const Type *Ty) {
"Cannot create an aggregate zero of non-aggregate type!");
// Implicitly locked.
- return AggZeroConstants->getOrCreate(Ty, 0);
+ return AggZeroConstants.getOrCreate(Ty, 0);
}
Constant *LLVMContextImpl::getConstantArray(const ArrayType *Ty,
@@ -493,12 +135,12 @@ Constant *LLVMContextImpl::getConstantArray(const ArrayType *Ty,
Constant *C = V[0];
if (!C->isNullValue()) {
// Implicitly locked.
- return ArrayConstants->getOrCreate(Ty, V);
+ return ArrayConstants.getOrCreate(Ty, V);
}
for (unsigned i = 1, e = V.size(); i != e; ++i)
if (V[i] != C) {
// Implicitly locked.
- return ArrayConstants->getOrCreate(Ty, V);
+ return ArrayConstants.getOrCreate(Ty, V);
}
}
@@ -511,7 +153,7 @@ Constant *LLVMContextImpl::getConstantStruct(const StructType *Ty,
for (unsigned i = 0, e = V.size(); i != e; ++i)
if (!V[i]->isNullValue())
// Implicitly locked.
- return StructConstants->getOrCreate(Ty, V);
+ return StructConstants.getOrCreate(Ty, V);
return Context.getConstantAggregateZero(Ty);
}
@@ -539,7 +181,7 @@ Constant *LLVMContextImpl::getConstantVector(const VectorType *Ty,
return Context.getUndef(Ty);
// Implicitly locked.
- return VectorConstants->getOrCreate(Ty, V);
+ return VectorConstants.getOrCreate(Ty, V);
}
// *** erase methods ***
@@ -556,19 +198,19 @@ void LLVMContextImpl::erase(MDNode *M) {
}
void LLVMContextImpl::erase(ConstantAggregateZero *Z) {
- AggZeroConstants->remove(Z);
+ AggZeroConstants.remove(Z);
}
void LLVMContextImpl::erase(ConstantArray *C) {
- ArrayConstants->remove(C);
+ ArrayConstants.remove(C);
}
void LLVMContextImpl::erase(ConstantStruct *S) {
- StructConstants->remove(S);
+ StructConstants.remove(S);
}
void LLVMContextImpl::erase(ConstantVector *V) {
- VectorConstants->remove(V);
+ VectorConstants.remove(V);
}
// *** RAUW helpers ***
@@ -621,7 +263,7 @@ Constant *LLVMContextImpl::replaceUsesOfWithOnConstant(ConstantArray *CA,
sys::SmartScopedWriter<true> Writer(ConstantsLock);
bool Exists;
ArrayConstantsTy::MapTy::iterator I =
- ArrayConstants->InsertOrGetItem(Lookup, Exists);
+ ArrayConstants.InsertOrGetItem(Lookup, Exists);
if (Exists) {
Replacement = I->second;
@@ -630,7 +272,7 @@ Constant *LLVMContextImpl::replaceUsesOfWithOnConstant(ConstantArray *CA,
// creating a new constant array, inserting it, replaceallusesof'ing the
// old with the new, then deleting the old... just update the current one
// in place!
- ArrayConstants->MoveConstantToNewSlot(CA, I);
+ ArrayConstants.MoveConstantToNewSlot(CA, I);
// Update to the new value. Optimize for the case when we have a single
// operand that we're changing, but handle bulk updates efficiently.
@@ -693,7 +335,7 @@ Constant *LLVMContextImpl::replaceUsesOfWithOnConstant(ConstantStruct *CS,
sys::SmartScopedWriter<true> Writer(ConstantsLock);
bool Exists;
StructConstantsTy::MapTy::iterator I =
- StructConstants->InsertOrGetItem(Lookup, Exists);
+ StructConstants.InsertOrGetItem(Lookup, Exists);
if (Exists) {
Replacement = I->second;
@@ -702,7 +344,7 @@ Constant *LLVMContextImpl::replaceUsesOfWithOnConstant(ConstantStruct *CS,
// creating a new constant struct, inserting it, replaceallusesof'ing the
// old with the new, then deleting the old... just update the current one
// in place!
- StructConstants->MoveConstantToNewSlot(CS, I);
+ StructConstants.MoveConstantToNewSlot(CS, I);
// Update to the new value.
CS->setOperand(OperandToUpdate, ToC);
diff --git a/lib/VMCore/LLVMContextImpl.h b/lib/VMCore/LLVMContextImpl.h
index 7351624..96ac0f8 100644
--- a/lib/VMCore/LLVMContextImpl.h
+++ b/lib/VMCore/LLVMContextImpl.h
@@ -16,6 +16,7 @@
#define LLVM_LLVMCONTEXT_IMPL_H
#include "llvm/LLVMContext.h"
+#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
@@ -29,14 +30,336 @@
#include <map>
#include <vector>
-template<class ValType, class TypeClass, class ConstantClass,
- bool HasLargeKey = false /*true for arrays and structs*/ >
-class ValueMap;
-
namespace llvm {
template<class ValType>
struct ConstantTraits;
+// The number of operands for each ConstantCreator::create method is
+// determined by the ConstantTraits template.
+// ConstantCreator - A class that is used to create constants by
+// ValueMap*. This class should be partially specialized if there is
+// something strange that needs to be done to interface to the ctor for the
+// constant.
+//
+template<typename T, typename Alloc>
+struct VISIBILITY_HIDDEN ConstantTraits< std::vector<T, Alloc> > {
+ static unsigned uses(const std::vector<T, Alloc>& v) {
+ return v.size();
+ }
+};
+
+template<class ConstantClass, class TypeClass, class ValType>
+struct VISIBILITY_HIDDEN ConstantCreator {
+ static ConstantClass *create(const TypeClass *Ty, const ValType &V) {
+ return new(ConstantTraits<ValType>::uses(V)) ConstantClass(Ty, V);
+ }
+};
+
+template<class ConstantClass, class TypeClass>
+struct VISIBILITY_HIDDEN ConvertConstantType {
+ static void convert(ConstantClass *OldC, const TypeClass *NewTy) {
+ llvm_unreachable("This type cannot be converted!");
+ }
+};
+
+// ConstantAggregateZero does not take extra "value" argument...
+template<class ValType>
+struct ConstantCreator<ConstantAggregateZero, Type, ValType> {
+ static ConstantAggregateZero *create(const Type *Ty, const ValType &V){
+ return new ConstantAggregateZero(Ty);
+ }
+};
+
+template<>
+struct ConvertConstantType<ConstantAggregateZero, Type> {
+ static void convert(ConstantAggregateZero *OldC, const Type *NewTy) {
+ // Make everyone now use a constant of the new type...
+ Constant *New = NewTy->getContext().getConstantAggregateZero(NewTy);
+ assert(New != OldC && "Didn't replace constant??");
+ OldC->uncheckedReplaceAllUsesWith(New);
+ OldC->destroyConstant(); // This constant is now dead, destroy it.
+ }
+};
+
+template<>
+struct ConvertConstantType<ConstantArray, ArrayType> {
+ static void convert(ConstantArray *OldC, const ArrayType *NewTy) {
+ // Make everyone now use a constant of the new type...
+ std::vector<Constant*> C;
+ for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
+ C.push_back(cast<Constant>(OldC->getOperand(i)));
+ Constant *New = NewTy->getContext().getConstantArray(NewTy, C);
+ assert(New != OldC && "Didn't replace constant??");
+ OldC->uncheckedReplaceAllUsesWith(New);
+ OldC->destroyConstant(); // This constant is now dead, destroy it.
+ }
+};
+
+template<>
+struct ConvertConstantType<ConstantStruct, StructType> {
+ static void convert(ConstantStruct *OldC, const StructType *NewTy) {
+ // Make everyone now use a constant of the new type...
+ std::vector<Constant*> C;
+ for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
+ C.push_back(cast<Constant>(OldC->getOperand(i)));
+ Constant *New = NewTy->getContext().getConstantStruct(NewTy, C);
+ assert(New != OldC && "Didn't replace constant??");
+
+ OldC->uncheckedReplaceAllUsesWith(New);
+ OldC->destroyConstant(); // This constant is now dead, destroy it.
+ }
+};
+
+template<>
+struct ConvertConstantType<ConstantVector, VectorType> {
+ static void convert(ConstantVector *OldC, const VectorType *NewTy) {
+ // Make everyone now use a constant of the new type...
+ std::vector<Constant*> C;
+ for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
+ C.push_back(cast<Constant>(OldC->getOperand(i)));
+ Constant *New = OldC->getContext().getConstantVector(NewTy, C);
+ assert(New != OldC && "Didn't replace constant??");
+ OldC->uncheckedReplaceAllUsesWith(New);
+ OldC->destroyConstant(); // This constant is now dead, destroy it.
+ }
+};
+
+template<class ValType, class TypeClass, class ConstantClass,
+ bool HasLargeKey = false /*true for arrays and structs*/ >
+class ValueMap : public AbstractTypeUser {
+public:
+ typedef std::pair<const Type*, ValType> MapKey;
+ typedef std::map<MapKey, Constant *> MapTy;
+ typedef std::map<Constant*, typename MapTy::iterator> InverseMapTy;
+ typedef std::map<const Type*, typename MapTy::iterator> AbstractTypeMapTy;
+private:
+ /// Map - This is the main map from the element descriptor to the Constants.
+ /// This is the primary way we avoid creating two of the same shape
+ /// constant.
+ MapTy Map;
+
+ /// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping
+ /// from the constants to their element in Map. This is important for
+ /// removal of constants from the array, which would otherwise have to scan
+ /// through the map with very large keys.
+ InverseMapTy InverseMap;
+
+ /// AbstractTypeMap - Map for abstract type constants.
+ ///
+ AbstractTypeMapTy AbstractTypeMap;
+
+ /// ValueMapLock - Mutex for this map.
+ sys::SmartMutex<true> ValueMapLock;
+
+public:
+ // NOTE: This function is not locked. It is the caller's responsibility
+ // to enforce proper synchronization.
+ typename MapTy::iterator map_end() { return Map.end(); }
+
+ /// InsertOrGetItem - Return an iterator for the specified element.
+ /// If the element exists in the map, the returned iterator points to the
+ /// entry and Exists=true. If not, the iterator points to the newly
+ /// inserted entry and returns Exists=false. Newly inserted entries have
+ /// I->second == 0, and should be filled in.
+ /// NOTE: This function is not locked. It is the caller's responsibility
+ // to enforce proper synchronization.
+ typename MapTy::iterator InsertOrGetItem(std::pair<MapKey, Constant *>
+ &InsertVal,
+ bool &Exists) {
+ std::pair<typename MapTy::iterator, bool> IP = Map.insert(InsertVal);
+ Exists = !IP.second;
+ return IP.first;
+ }
+
+private:
+ typename MapTy::iterator FindExistingElement(ConstantClass *CP) {
+ if (HasLargeKey) {
+ typename InverseMapTy::iterator IMI = InverseMap.find(CP);
+ assert(IMI != InverseMap.end() && IMI->second != Map.end() &&
+ IMI->second->second == CP &&
+ "InverseMap corrupt!");
+ return IMI->second;
+ }
+
+ typename MapTy::iterator I =
+ Map.find(MapKey(static_cast<const TypeClass*>(CP->getRawType()),
+ getValType(CP)));
+ if (I == Map.end() || I->second != CP) {
+ // FIXME: This should not use a linear scan. If this gets to be a
+ // performance problem, someone should look at this.
+ for (I = Map.begin(); I != Map.end() && I->second != CP; ++I)
+ /* empty */;
+ }
+ return I;
+ }
+
+ ConstantClass* Create(const TypeClass *Ty, const ValType &V,
+ typename MapTy::iterator I) {
+ ConstantClass* Result =
+ ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V);
+
+ assert(Result->getType() == Ty && "Type specified is not correct!");
+ I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result));
+
+ if (HasLargeKey) // Remember the reverse mapping if needed.
+ InverseMap.insert(std::make_pair(Result, I));
+
+ // If the type of the constant is abstract, make sure that an entry
+ // exists for it in the AbstractTypeMap.
+ if (Ty->isAbstract()) {
+ typename AbstractTypeMapTy::iterator TI =
+ AbstractTypeMap.find(Ty);
+
+ if (TI == AbstractTypeMap.end()) {
+ // Add ourselves to the ATU list of the type.
+ cast<DerivedType>(Ty)->addAbstractTypeUser(this);
+
+ AbstractTypeMap.insert(TI, std::make_pair(Ty, I));
+ }
+ }
+
+ return Result;
+ }
+public:
+
+ /// getOrCreate - Return the specified constant from the map, creating it if
+ /// necessary.
+ ConstantClass *getOrCreate(const TypeClass *Ty, const ValType &V) {
+ sys::SmartScopedLock<true> Lock(ValueMapLock);
+ MapKey Lookup(Ty, V);
+ ConstantClass* Result = 0;
+
+ typename MapTy::iterator I = Map.find(Lookup);
+ // Is it in the map?
+ if (I != Map.end())
+ Result = static_cast<ConstantClass *>(I->second);
+
+ if (!Result) {
+ // If no preexisting value, create one now...
+ Result = Create(Ty, V, I);
+ }
+
+ return Result;
+ }
+
+ void remove(ConstantClass *CP) {
+ sys::SmartScopedLock<true> Lock(ValueMapLock);
+ typename MapTy::iterator I = FindExistingElement(CP);
+ assert(I != Map.end() && "Constant not found in constant table!");
+ assert(I->second == CP && "Didn't find correct element?");
+
+ if (HasLargeKey) // Remember the reverse mapping if needed.
+ InverseMap.erase(CP);
+
+ // Now that we found the entry, make sure this isn't the entry that
+ // the AbstractTypeMap points to.
+ const TypeClass *Ty = static_cast<const TypeClass *>(I->first.first);
+ if (Ty->isAbstract()) {
+ assert(AbstractTypeMap.count(Ty) &&
+ "Abstract type not in AbstractTypeMap?");
+ typename MapTy::iterator &ATMEntryIt = AbstractTypeMap[Ty];
+ if (ATMEntryIt == I) {
+ // Yes, we are removing the representative entry for this type.
+ // See if there are any other entries of the same type.
+ typename MapTy::iterator TmpIt = ATMEntryIt;
+
+ // First check the entry before this one...
+ if (TmpIt != Map.begin()) {
+ --TmpIt;
+ if (TmpIt->first.first != Ty) // Not the same type, move back...
+ ++TmpIt;
+ }
+
+ // If we didn't find the same type, try to move forward...
+ if (TmpIt == ATMEntryIt) {
+ ++TmpIt;
+ if (TmpIt == Map.end() || TmpIt->first.first != Ty)
+ --TmpIt; // No entry afterwards with the same type
+ }
+
+ // If there is another entry in the map of the same abstract type,
+ // update the AbstractTypeMap entry now.
+ if (TmpIt != ATMEntryIt) {
+ ATMEntryIt = TmpIt;
+ } else {
+ // Otherwise, we are removing the last instance of this type
+ // from the table. Remove from the ATM, and from user list.
+ cast<DerivedType>(Ty)->removeAbstractTypeUser(this);
+ AbstractTypeMap.erase(Ty);
+ }
+ }
+ }
+
+ Map.erase(I);
+ }
+
+
+ /// MoveConstantToNewSlot - If we are about to change C to be the element
+ /// specified by I, update our internal data structures to reflect this
+ /// fact.
+ /// NOTE: This function is not locked. It is the responsibility of the
+ /// caller to enforce proper synchronization if using this method.
+ void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) {
+ // First, remove the old location of the specified constant in the map.
+ typename MapTy::iterator OldI = FindExistingElement(C);
+ assert(OldI != Map.end() && "Constant not found in constant table!");
+ assert(OldI->second == C && "Didn't find correct element?");
+
+ // If this constant is the representative element for its abstract type,
+ // update the AbstractTypeMap so that the representative element is I.
+ if (C->getType()->isAbstract()) {
+ typename AbstractTypeMapTy::iterator ATI =
+ AbstractTypeMap.find(C->getType());
+ assert(ATI != AbstractTypeMap.end() &&
+ "Abstract type not in AbstractTypeMap?");
+ if (ATI->second == OldI)
+ ATI->second = I;
+ }
+
+ // Remove the old entry from the map.
+ Map.erase(OldI);
+
+ // Update the inverse map so that we know that this constant is now
+ // located at descriptor I.
+ if (HasLargeKey) {
+ assert(I->second == C && "Bad inversemap entry!");
+ InverseMap[C] = I;
+ }
+ }
+
+ void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) {
+ sys::SmartScopedLock<true> Lock(ValueMapLock);
+ typename AbstractTypeMapTy::iterator I =
+ AbstractTypeMap.find(cast<Type>(OldTy));
+
+ assert(I != AbstractTypeMap.end() &&
+ "Abstract type not in AbstractTypeMap?");
+
+ // Convert a constant at a time until the last one is gone. The last one
+ // leaving will remove() itself, causing the AbstractTypeMapEntry to be
+ // eliminated eventually.
+ do {
+ ConvertConstantType<ConstantClass,
+ TypeClass>::convert(
+ static_cast<ConstantClass *>(I->second->second),
+ cast<TypeClass>(NewTy));
+
+ I = AbstractTypeMap.find(cast<Type>(OldTy));
+ } while (I != AbstractTypeMap.end());
+ }
+
+ // If the type became concrete without being refined to any other existing
+ // type, we just remove ourselves from the ATU list.
+ void typeBecameConcrete(const DerivedType *AbsTy) {
+ AbsTy->removeAbstractTypeUser(this);
+ }
+
+ void dump() const {
+ DOUT << "Constant.cpp: ValueMap\n";
+ }
+};
+
+
class ConstantInt;
class ConstantFP;
class MDString;
@@ -112,19 +435,19 @@ class LLVMContextImpl {
FoldingSet<MDNode> MDNodeSet;
- ValueMap<char, Type, ConstantAggregateZero> *AggZeroConstants;
+ ValueMap<char, Type, ConstantAggregateZero> AggZeroConstants;
typedef ValueMap<std::vector<Constant*>, ArrayType,
ConstantArray, true /*largekey*/> ArrayConstantsTy;
- ArrayConstantsTy *ArrayConstants;
+ ArrayConstantsTy ArrayConstants;
typedef ValueMap<std::vector<Constant*>, StructType,
ConstantStruct, true /*largekey*/> StructConstantsTy;
- StructConstantsTy *StructConstants;
+ StructConstantsTy StructConstants;
typedef ValueMap<std::vector<Constant*>, VectorType,
ConstantVector> VectorConstantsTy;
- VectorConstantsTy *VectorConstants;
+ VectorConstantsTy VectorConstants;
LLVMContext &Context;
ConstantInt *TheTrueVal;
@@ -132,13 +455,10 @@ class LLVMContextImpl {
LLVMContextImpl();
LLVMContextImpl(const LLVMContextImpl&);
+
+ friend class ConstantInt;
public:
LLVMContextImpl(LLVMContext &C);
- ~LLVMContextImpl();
-
- /// Return a ConstantInt with the specified value and an implied Type. The
- /// type is the integer type that corresponds to the bit width of the value.
- ConstantInt *getConstantInt(const APInt &V);
ConstantFP *getConstantFP(const APFloat &V);
@@ -161,14 +481,14 @@ public:
if (TheTrueVal)
return TheTrueVal;
else
- return (TheTrueVal = Context.getConstantInt(IntegerType::get(1), 1));
+ return (TheTrueVal = ConstantInt::get(IntegerType::get(1), 1));
}
ConstantInt *getFalse() {
if (TheFalseVal)
return TheFalseVal;
else
- return (TheFalseVal = Context.getConstantInt(IntegerType::get(1), 0));
+ return (TheFalseVal = ConstantInt::get(IntegerType::get(1), 0));
}
void erase(MDString *M);