aboutsummaryrefslogtreecommitdiffstats
path: root/lib
diff options
context:
space:
mode:
Diffstat (limited to 'lib')
-rw-r--r--lib/Transforms/IPO/OldPoolAllocate.cpp786
1 files changed, 569 insertions, 217 deletions
diff --git a/lib/Transforms/IPO/OldPoolAllocate.cpp b/lib/Transforms/IPO/OldPoolAllocate.cpp
index 4b5c830..fc7bc5e 100644
--- a/lib/Transforms/IPO/OldPoolAllocate.cpp
+++ b/lib/Transforms/IPO/OldPoolAllocate.cpp
@@ -16,7 +16,9 @@
#include "llvm/BasicBlock.h"
#include "llvm/iMemory.h"
#include "llvm/iTerminators.h"
+#include "llvm/iPHINode.h"
#include "llvm/iOther.h"
+#include "llvm/DerivedTypes.h"
#include "llvm/ConstantVals.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Support/InstVisitor.h"
@@ -25,22 +27,65 @@
#include "Support/STLExtras.h"
#include <algorithm>
+// DEBUG_CREATE_POOLS - Enable this to turn on debug output for the pool
+// creation phase in the top level function of a transformed data structure.
+//
+#define DEBUG_CREATE_POOLS 1
+
+const Type *POINTERTYPE;
// FIXME: This is dependant on the sparc backend layout conventions!!
static TargetData TargetData("test");
namespace {
+ struct PoolInfo {
+ DSNode *Node; // The node this pool allocation represents
+ Value *Handle; // LLVM value of the pool in the current context
+ const Type *NewType; // The transformed type of the memory objects
+ const Type *PoolType; // The type of the pool
+
+ const Type *getOldType() const { return Node->getType(); }
+
+ PoolInfo() { // Define a default ctor for map::operator[]
+ cerr << "Map subscript used to get element that doesn't exist!\n";
+ abort(); // Invalid
+ }
+
+ PoolInfo(DSNode *N, Value *H, const Type *NT, const Type *PT)
+ : Node(N), Handle(H), NewType(NT), PoolType(PT) {
+ // Handle can be null...
+ assert(N && NT && PT && "Pool info null!");
+ }
+
+ PoolInfo(DSNode *N) : Node(N), Handle(0), NewType(0), PoolType(0) {
+ assert(N && "Invalid pool info!");
+
+ // The new type of the memory object is the same as the old type, except
+ // that all of the pointer values are replaced with POINTERTYPE values.
+ assert(isa<StructType>(getOldType()) && "Can only handle structs!");
+ StructType *OldTy = cast<StructType>(getOldType());
+ vector<const Type *> NewElTypes;
+ NewElTypes.reserve(OldTy->getElementTypes().size());
+ for (StructType::ElementTypes::const_iterator
+ I = OldTy->getElementTypes().begin(),
+ E = OldTy->getElementTypes().end(); I != E; ++I)
+ if (PointerType *PT = dyn_cast<PointerType>(I->get()))
+ NewElTypes.push_back(POINTERTYPE);
+ else
+ NewElTypes.push_back(*I);
+ NewType = StructType::get(NewElTypes);
+ }
+ };
+
// ScalarInfo - Information about an LLVM value that we know points to some
// datastructure we are processing.
//
struct ScalarInfo {
Value *Val; // Scalar value in Current Function
- DSNode *Node; // DataStructure node it points to
- Value *PoolHandle; // PoolTy* LLVM value
+ PoolInfo Pool; // The pool the scalar points into
- ScalarInfo(Value *V, DSNode *N, Value *PH)
- : Val(V), Node(N), PoolHandle(PH) {
- assert(V && N && PH && "Null value passed to ScalarInfo ctor!");
+ ScalarInfo(Value *V, const PoolInfo &PI) : Val(V), Pool(PI) {
+ assert(V && "Null value passed to ScalarInfo ctor!");
}
};
@@ -66,9 +111,8 @@ namespace {
//
struct TransformFunctionInfo {
// ArgInfo - Maintain information about the arguments that need to be
- // processed. Each pair corresponds to an argument (whose number is the
- // first element) that needs to have a pool pointer (the second element)
- // passed into the transformed function with it.
+ // processed. Each CallArgInfo corresponds to an argument that needs to
+ // have a pool pointer passed into the transformed function with it.
//
// As a special case, "argument" number -1 corresponds to the return value.
//
@@ -103,23 +147,27 @@ namespace {
// Define the pass class that we implement...
- class PoolAllocate : public Pass {
- // PoolTy - The type of a scalar value that contains a pool pointer.
- PointerType *PoolTy;
- public:
-
+ struct PoolAllocate : public Pass {
PoolAllocate() {
- // Initialize the PoolTy instance variable, since the type never changes.
- vector<const Type*> PoolElements;
- PoolElements.push_back(PointerType::get(Type::SByteTy));
- PoolElements.push_back(Type::UIntTy);
- PoolTy = PointerType::get(StructType::get(PoolElements));
- // PoolTy = { sbyte*, uint }*
+ POINTERTYPE = Type::UShortTy;
CurModule = 0; DS = 0;
PoolInit = PoolDestroy = PoolAlloc = PoolFree = 0;
}
+ // getPoolType - Get the type used by the backend for a pool of a particular
+ // type. This pool record is used to allocate nodes of type NodeType.
+ //
+ // Here, PoolTy = { NodeType*, sbyte*, uint }*
+ //
+ const StructType *getPoolType(const Type *NodeType) {
+ vector<const Type*> PoolElements;
+ PoolElements.push_back(PointerType::get(NodeType));
+ PoolElements.push_back(PointerType::get(Type::SByteTy));
+ PoolElements.push_back(Type::UIntTy);
+ return StructType::get(PoolElements);
+ }
+
bool run(Module *M);
// getAnalysisUsageInfo - This function requires data structure information
@@ -157,8 +205,9 @@ namespace {
}
- // addPoolPrototypes - Add prototypes for the pool methods to the specified
- // module and update the Pool* instance variables to point to them.
+ // addPoolPrototypes - Add prototypes for the pool functions to the
+ // specified module and update the Pool* instance variables to point to
+ // them.
//
void addPoolPrototypes(Module *M);
@@ -166,10 +215,10 @@ namespace {
// CreatePools - Insert instructions into the function we are processing to
// create all of the memory pool objects themselves. This also inserts
// destruction code. Add an alloca for each pool that is allocated to the
- // PoolDescriptors map.
+ // PoolDescs map.
//
void CreatePools(Function *F, const vector<AllocDSNode*> &Allocs,
- map<DSNode*, Value*> &PoolDescriptors);
+ map<DSNode*, PoolInfo> &PoolDescs);
// processFunction - Convert a function to use pool allocation where
// available.
@@ -177,26 +226,25 @@ namespace {
bool processFunction(Function *F);
// transformFunctionBody - This transforms the instruction in 'F' to use the
- // pools specified in PoolDescriptors when modifying data structure nodes
- // specified in the PoolDescriptors map. IPFGraph is the closed data
- // structure graph for F, of which the PoolDescriptor nodes come from.
+ // pools specified in PoolDescs when modifying data structure nodes
+ // specified in the PoolDescs map. IPFGraph is the closed data structure
+ // graph for F, of which the PoolDescriptor nodes come from.
//
void transformFunctionBody(Function *F, FunctionDSGraph &IPFGraph,
- map<DSNode*, Value*> &PoolDescriptors);
+ map<DSNode*, PoolInfo> &PoolDescs);
// transformFunction - Transform the specified function the specified way.
// It we have already transformed that function that way, don't do anything.
// The nodes in the TransformFunctionInfo come out of callers data structure
- // graph.
+ // graph, and the PoolDescs passed in are the caller's.
//
void transformFunction(TransformFunctionInfo &TFI,
- FunctionDSGraph &CallerIPGraph);
+ FunctionDSGraph &CallerIPGraph,
+ map<DSNode*, PoolInfo> &PoolDescs);
};
}
-
-
// isNotPoolableAlloc - This is a predicate that returns true if the specified
// allocation node in a data structure graph is eligable for pool allocation.
//
@@ -239,108 +287,218 @@ bool PoolAllocate::processFunction(Function *F) {
// Insert instructions into the function we are processing to create all of
// the memory pool objects themselves. This also inserts destruction code.
- // This fills in the PoolDescriptors map to associate the alloc node with the
+ // This fills in the PoolDescs map to associate the alloc node with the
// allocation of the memory pool corresponding to it.
//
- map<DSNode*, Value*> PoolDescriptors;
- CreatePools(F, Allocs, PoolDescriptors);
+ map<DSNode*, PoolInfo> PoolDescs;
+ CreatePools(F, Allocs, PoolDescs);
- // Now we need to figure out what called methods we need to transform, and
+ cerr << "Transformed Entry Function: \n" << F;
+
+ // Now we need to figure out what called functions we need to transform, and
// how. To do this, we look at all of the scalars, seeing which functions are
// either used as a scalar value (so they return a data structure), or are
// passed one of our scalar values.
//
- transformFunctionBody(F, IPGraph, PoolDescriptors);
+ transformFunctionBody(F, IPGraph, PoolDescs);
return true;
}
-class FunctionBodyTransformer : public InstVisitor<FunctionBodyTransformer> {
+//===----------------------------------------------------------------------===//
+//
+// NewInstructionCreator - This class is used to traverse the function being
+// modified, changing each instruction visit'ed to use and provide pointer
+// indexes instead of real pointers. This is what changes the body of a
+// function to use pool allocation.
+//
+class NewInstructionCreator : public InstVisitor<NewInstructionCreator> {
PoolAllocate &PoolAllocator;
vector<ScalarInfo> &Scalars;
map<CallInst*, TransformFunctionInfo> &CallMap;
+ map<Value*, Value*> &XFormMap; // Map old pointers to new indexes
+
+ struct RefToUpdate {
+ Instruction *I; // Instruction to update
+ unsigned OpNum; // Operand number to update
+ Value *OldVal; // The old value it had
- const ScalarInfo &getScalar(const Value *V) {
+ RefToUpdate(Instruction *i, unsigned o, Value *ov)
+ : I(i), OpNum(o), OldVal(ov) {}
+ };
+ vector<RefToUpdate> ReferencesToUpdate;
+
+ const ScalarInfo &getScalarRef(const Value *V) {
for (unsigned i = 0, e = Scalars.size(); i != e; ++i)
if (Scalars[i].Val == V) return Scalars[i];
assert(0 && "Scalar not found in getScalar!");
abort();
return Scalars[0];
}
-
- // updateScalars - Map the scalars array entries that look like 'From' to look
- // like 'To'.
- //
- void updateScalars(Value *From, Value *To) {
+
+ const ScalarInfo *getScalar(const Value *V) {
for (unsigned i = 0, e = Scalars.size(); i != e; ++i)
- if (Scalars[i].Val == From) Scalars[i].Val = To;
+ if (Scalars[i].Val == V) return &Scalars[i];
+ return 0;
}
-public:
- FunctionBodyTransformer(PoolAllocate &PA, vector<ScalarInfo> &S,
- map<CallInst*, TransformFunctionInfo> &C)
- : PoolAllocator(PA), Scalars(S), CallMap(C) {}
+ BasicBlock::iterator ReplaceInstWith(Instruction *I, Instruction *New) {
+ BasicBlock *BB = I->getParent();
+ BasicBlock::iterator RI = find(BB->begin(), BB->end(), I);
+ BB->getInstList().replaceWith(RI, New);
+ XFormMap[I] = New;
+ return RI;
+ }
- void visitMemAccessInst(MemAccessInst *MAI) {
- // Don't do anything to load, store, or GEP yet...
+ LoadInst *createPoolBaseInstruction(Value *PtrVal) {
+ const ScalarInfo &SC = getScalarRef(PtrVal);
+ vector<Value*> Args(3);
+ Args[0] = ConstantUInt::get(Type::UIntTy, 0); // No pointer offset
+ Args[1] = ConstantUInt::get(Type::UByteTy, 0); // Field #0 of pool descriptr
+ Args[2] = ConstantUInt::get(Type::UByteTy, 0); // Field #0 of poolalloc val
+ return new LoadInst(SC.Pool.Handle, Args, PtrVal->getName()+".poolbase");
}
- // Convert a malloc instruction into a call to poolalloc
- void visitMallocInst(MallocInst *I) {
- const ScalarInfo &SC = getScalar(I);
- BasicBlock *BB = I->getParent();
- BasicBlock::iterator MI = find(BB->begin(), BB->end(), I);
- BB->getInstList().remove(MI); // Remove the Malloc instruction from the BB
- // Create a new call to poolalloc before the malloc instruction
- vector<Value*> Args;
- Args.push_back(SC.PoolHandle);
- CallInst *Call = new CallInst(PoolAllocator.PoolAlloc, Args, I->getName());
- MI = BB->getInstList().insert(MI, Call)+1;
-
- // If the type desired is not void*, cast it now...
- Value *Ptr = Call;
- if (Call->getType() != I->getType()) {
- CastInst *CI = new CastInst(Ptr, I->getType(), I->getName());
- BB->getInstList().insert(MI, CI);
- Ptr = CI;
+public:
+ NewInstructionCreator(PoolAllocate &PA, vector<ScalarInfo> &S,
+ map<CallInst*, TransformFunctionInfo> &C,
+ map<Value*, Value*> &X)
+ : PoolAllocator(PA), Scalars(S), CallMap(C), XFormMap(X) {}
+
+
+ // updateReferences - The NewInstructionCreator is responsible for creating
+ // new instructions to replace the old ones in the function, and then link up
+ // references to values to their new values. For it to do this, however, it
+ // keeps track of information about the value mapping of old values to new
+ // values that need to be patched up. Given this value map and a set of
+ // instruction operands to patch, updateReferences performs the updates.
+ //
+ void updateReferences() {
+ for (unsigned i = 0, e = ReferencesToUpdate.size(); i != e; ++i) {
+ RefToUpdate &Ref = ReferencesToUpdate[i];
+ Value *NewVal = XFormMap[Ref.OldVal];
+
+ if (NewVal == 0) {
+ if (isa<Constant>(Ref.OldVal) && // Refering to a null ptr?
+ cast<Constant>(Ref.OldVal)->isNullValue()) {
+ // Transform the null pointer into a null index... caching in XFormMap
+ XFormMap[Ref.OldVal] = NewVal =Constant::getNullConstant(POINTERTYPE);
+ //} else if (isa<Argument>(Ref.OldVal)) {
+ } else {
+ cerr << "Unknown reference to: " << Ref.OldVal << "\n";
+ assert(XFormMap[Ref.OldVal] &&
+ "Reference to value that was not updated found!");
+ }
+ }
+
+ Ref.I->setOperand(Ref.OpNum, NewVal);
}
+ ReferencesToUpdate.clear();
+ }
+
+ //===--------------------------------------------------------------------===//
+ // Transformation methods:
+ // These methods specify how each type of instruction is transformed by the
+ // NewInstructionCreator instance...
+ //===--------------------------------------------------------------------===//
+
+ void visitGetElementPtrInst(GetElementPtrInst *I) {
+ assert(0 && "Cannot transform get element ptr instructions yet!");
+ }
+
+ // Replace the load instruction with a new one.
+ void visitLoadInst(LoadInst *I) {
+ Instruction *PoolBase = createPoolBaseInstruction(I->getOperand(0));
+
+ // Cast our index to be a UIntTy so we can use it to index into the pool...
+ CastInst *Index = new CastInst(Constant::getNullConstant(POINTERTYPE),
+ Type::UIntTy, I->getOperand(0)->getName());
+
+ ReferencesToUpdate.push_back(RefToUpdate(Index, 0, I->getOperand(0)));
+
+ vector<Value*> Indices(I->idx_begin(), I->idx_end());
+ assert(Indices[0] == ConstantUInt::get(Type::UIntTy, 0) &&
+ "Cannot handle array indexing yet!");
+ Indices[0] = Index;
+ Instruction *NewLoad = new LoadInst(PoolBase, Indices, I->getName());
- // Change everything that used the malloc to now use the pool alloc...
- I->replaceAllUsesWith(Ptr);
+ // Replace the load instruction with the new load instruction...
+ BasicBlock::iterator II = ReplaceInstWith(I, NewLoad);
- // Update the scalars array...
- updateScalars(I, Ptr);
+ // Add the pool base calculator instruction before the load...
+ II = NewLoad->getParent()->getInstList().insert(II, PoolBase) + 1;
- // Delete the instruction now.
- delete I;
+ // Add the cast before the load instruction...
+ NewLoad->getParent()->getInstList().insert(II, Index);
+
+ // If not yielding a pool allocated pointer, use the new load value as the
+ // value in the program instead of the old load value...
+ //
+ if (!getScalar(I))
+ I->replaceAllUsesWith(NewLoad);
}
- // Convert the free instruction into a call to poolfree
- void visitFreeInst(FreeInst *I) {
- Value *Ptr = I->getOperand(0);
- const ScalarInfo &SC = getScalar(Ptr);
- BasicBlock *BB = I->getParent();
- BasicBlock::iterator FI = find(BB->begin(), BB->end(), I);
-
- // If the value is not an sbyte*, convert it now!
- if (Ptr->getType() != PointerType::get(Type::SByteTy)) {
- CastInst *CI = new CastInst(Ptr, PointerType::get(Type::SByteTy),
- Ptr->getName());
- FI = BB->getInstList().insert(FI, CI)+1;
- Ptr = CI;
- }
+ // Replace the store instruction with a new one. In the store instruction,
+ // the value stored could be a pointer type, meaning that the new store may
+ // have to change one or both of it's operands.
+ //
+ void visitStoreInst(StoreInst *I) {
+ assert(getScalar(I->getOperand(1)) &&
+ "Store inst found only storing pool allocated pointer. "
+ "Not imp yet!");
- // Create a new call to poolfree before the free instruction
+ Value *Val = I->getOperand(0); // The value to store...
+ // Check to see if the value we are storing is a data structure pointer...
+ if (const ScalarInfo *ValScalar = getScalar(I->getOperand(0)))
+ Val = Constant::getNullConstant(POINTERTYPE); // Yes, store a dummy
+
+ Instruction *PoolBase = createPoolBaseInstruction(I->getOperand(1));
+
+ // Cast our index to be a UIntTy so we can use it to index into the pool...
+ CastInst *Index = new CastInst(Constant::getNullConstant(POINTERTYPE),
+ Type::UIntTy, I->getOperand(1)->getName());
+ ReferencesToUpdate.push_back(RefToUpdate(Index, 0, I->getOperand(1)));
+
+ vector<Value*> Indices(I->idx_begin(), I->idx_end());
+ assert(Indices[0] == ConstantUInt::get(Type::UIntTy, 0) &&
+ "Cannot handle array indexing yet!");
+ Indices[0] = Index;
+ Instruction *NewStore = new StoreInst(Val, PoolBase, Indices);
+
+ if (Val != I->getOperand(0)) // Value stored was a pointer?
+ ReferencesToUpdate.push_back(RefToUpdate(NewStore, 0, I->getOperand(0)));
+
+
+ // Replace the store instruction with the cast instruction...
+ BasicBlock::iterator II = ReplaceInstWith(I, Index);
+
+ // Add the pool base calculator instruction before the index...
+ II = Index->getParent()->getInstList().insert(II, PoolBase) + 2;
+
+ // Add the store after the cast instruction...
+ Index->getParent()->getInstList().insert(II, NewStore);
+ }
+
+
+ // Create call to poolalloc for every malloc instruction
+ void visitMallocInst(MallocInst *I) {
vector<Value*> Args;
- Args.push_back(SC.PoolHandle);
- Args.push_back(Ptr);
- CallInst *Call = new CallInst(PoolAllocator.PoolFree, Args);
- FI = BB->getInstList().insert(FI, Call)+1;
+ Args.push_back(getScalarRef(I).Pool.Handle);
+ CallInst *Call = new CallInst(PoolAllocator.PoolAlloc, Args, I->getName());
+ ReplaceInstWith(I, Call);
+ }
- // Remove the old free instruction...
- delete BB->getInstList().remove(FI);
+ // Convert a call to poolfree for every free instruction...
+ void visitFreeInst(FreeInst *I) {
+ // Create a new call to poolfree before the free instruction
+ vector<Value*> Args;
+ Args.push_back(Constant::getNullConstant(POINTERTYPE));
+ Args.push_back(getScalarRef(I->getOperand(0)).Pool.Handle);
+ Instruction *NewCall = new CallInst(PoolAllocator.PoolFree, Args);
+ ReplaceInstWith(I, NewCall);
+ ReferencesToUpdate.push_back(RefToUpdate(NewCall, 0, I->getOperand(0)));
}
// visitCallInst - Create a new call instruction with the extra arguments for
@@ -348,56 +506,89 @@ public:
//
void visitCallInst(CallInst *I) {
TransformFunctionInfo &TI = CallMap[I];
- BasicBlock *BB = I->getParent();
- BasicBlock::iterator CI = find(BB->begin(), BB->end(), I);
- BB->getInstList().remove(CI); // Remove the old call instruction
// Start with all of the old arguments...
vector<Value*> Args(I->op_begin()+1, I->op_end());
- // Add all of the pool arguments...
- for (unsigned i = 0, e = TI.ArgInfo.size(); i != e; ++i)
+ for (unsigned i = 0, e = TI.ArgInfo.size(); i != e; ++i) {
+ // Replace all of the pointer arguments with our new pointer typed values.
+ if (TI.ArgInfo[i].ArgNo != -1)
+ Args[TI.ArgInfo[i].ArgNo] = Constant::getNullConstant(POINTERTYPE);
+
+ // Add all of the pool arguments...
Args.push_back(TI.ArgInfo[i].PoolHandle);
+ }
Function *NF = PoolAllocator.getTransformedFunction(TI);
- CallInst *NewCall = new CallInst(NF, Args, I->getName());
- BB->getInstList().insert(CI, NewCall);
-
- // Change everything that used the malloc to now use the pool alloc...
- if (I->getType() != Type::VoidTy) {
- I->replaceAllUsesWith(NewCall);
-
- // Update the scalars array...
- updateScalars(I, NewCall);
- }
+ Instruction *NewCall = new CallInst(NF, Args, I->getName());
+ ReplaceInstWith(I, NewCall);
- delete I; // Delete the old call instruction now...
+ // Keep track of the mapping of operands so that we can resolve them to real
+ // values later.
+ Value *RetVal = NewCall;
+ for (unsigned i = 0, e = TI.ArgInfo.size(); i != e; ++i)
+ if (TI.ArgInfo[i].ArgNo != -1)
+ ReferencesToUpdate.push_back(RefToUpdate(NewCall, TI.ArgInfo[i].ArgNo+1,
+ I->getOperand(TI.ArgInfo[i].ArgNo+1)));
+ else
+ RetVal = 0; // If returning a pointer, don't change retval...
+
+ // If not returning a pointer, use the new call as the value in the program
+ // instead of the old call...
+ //
+ if (RetVal)
+ I->replaceAllUsesWith(RetVal);
}
+ // visitPHINode - Create a new PHI node of POINTERTYPE for all of the old Phi
+ // nodes...
+ //
void visitPHINode(PHINode *PN) {
- // Handle PHI Node
+ Value *DummyVal = Constant::getNullConstant(POINTERTYPE);
+ PHINode *NewPhi = new PHINode(POINTERTYPE, PN->getName());
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+ NewPhi->addIncoming(DummyVal, PN->getIncomingBlock(i));
+ ReferencesToUpdate.push_back(RefToUpdate(NewPhi, i*2,
+ PN->getIncomingValue(i)));
+ }
+
+ ReplaceInstWith(PN, NewPhi);
}
+ // visitReturnInst - Replace ret instruction with a new return...
void visitReturnInst(ReturnInst *I) {
- // Nothing of interest
+ Instruction *Ret = new ReturnInst(Constant::getNullConstant(POINTERTYPE));
+ ReplaceInstWith(I, Ret);
+ ReferencesToUpdate.push_back(RefToUpdate(Ret, 0, I->getOperand(0)));
}
+ // visitSetCondInst - Replace a conditional test instruction with a new one
void visitSetCondInst(SetCondInst *SCI) {
- // hrm, notice a pattern?
+ BinaryOperator *I = (BinaryOperator*)SCI;
+ Value *DummyVal = Constant::getNullConstant(POINTERTYPE);
+ BinaryOperator *New = BinaryOperator::create(I->getOpcode(), DummyVal,
+ DummyVal, I->getName());
+ ReplaceInstWith(I, New);
+
+ ReferencesToUpdate.push_back(RefToUpdate(New, 0, I->getOperand(0)));
+ ReferencesToUpdate.push_back(RefToUpdate(New, 1, I->getOperand(1)));
+
+ // Make sure branches refer to the new condition...
+ I->replaceAllUsesWith(New);
}
void visitInstruction(Instruction *I) {
- cerr << "Unknown instruction to FunctionBodyTransformer:\n";
- I->dump();
+ cerr << "Unknown instruction to FunctionBodyTransformer:\n" << I;
}
-
};
+
+
static void addCallInfo(DataStructure *DS,
TransformFunctionInfo &TFI, CallInst *CI, int Arg,
DSNode *GraphNode,
- map<DSNode*, Value*> &PoolDescriptors) {
+ map<DSNode*, PoolInfo> &PoolDescs) {
assert(CI->getCalledFunction() && "Cannot handle indirect calls yet!");
assert(TFI.Func == 0 || TFI.Func == CI->getCalledFunction() &&
"Function call record should always call the same function!");
@@ -413,20 +604,19 @@ static void addCallInfo(DataStructure *DS,
// are providing.
//
for (df_iterator<DSNode*> I = df_begin(GraphNode), E = df_end(GraphNode);
- I != E; ++I) {
- TFI.ArgInfo.push_back(CallArgInfo(Arg, *I, PoolDescriptors[*I]));
- }
+ I != E; ++I)
+ TFI.ArgInfo.push_back(CallArgInfo(Arg, *I, PoolDescs[*I].Handle));
}
// transformFunctionBody - This transforms the instruction in 'F' to use the
-// pools specified in PoolDescriptors when modifying data structure nodes
-// specified in the PoolDescriptors map. Specifically, scalar values specified
-// in the Scalars vector must be remapped. IPFGraph is the closed data
-// structure graph for F, of which the PoolDescriptor nodes come from.
+// pools specified in PoolDescs when modifying data structure nodes specified in
+// the PoolDescs map. Specifically, scalar values specified in the Scalars
+// vector must be remapped. IPFGraph is the closed data structure graph for F,
+// of which the PoolDescriptor nodes come from.
//
void PoolAllocate::transformFunctionBody(Function *F, FunctionDSGraph &IPFGraph,
- map<DSNode*, Value*> &PoolDescriptors) {
+ map<DSNode*, PoolInfo> &PoolDescs) {
// Loop through the value map looking for scalars that refer to nonescaping
// allocations. Add them to the Scalars vector. Note that we may have
@@ -442,17 +632,17 @@ void PoolAllocate::transformFunctionBody(Function *F, FunctionDSGraph &IPFGraph,
E = ValMap.end(); I != E; ++I) {
const PointerValSet &PVS = I->second; // Set of things pointed to by scalar
- cerr << "Scalar Mapping from:"; I->first->dump();
- cerr << "\nScalar Mapping to: "; PVS.print(cerr);
-
// Check to see if the scalar points to a data structure node...
for (unsigned i = 0, e = PVS.size(); i != e; ++i) {
assert(PVS[i].Index == 0 && "Nonzero not handled yet!");
// If the allocation is in the nonescaping set...
- map<DSNode*, Value*>::iterator AI = PoolDescriptors.find(PVS[i].Node);
- if (AI != PoolDescriptors.end()) // Add it to the list of scalars
- Scalars.push_back(ScalarInfo(I->first, PVS[i].Node, AI->second));
+ map<DSNode*, PoolInfo>::iterator AI = PoolDescs.find(PVS[i].Node);
+ if (AI != PoolDescs.end()) { // Add it to the list of scalars
+ Scalars.push_back(ScalarInfo(I->first, AI->second));
+ cerr << "\nScalar Mapping from:" << I->first
+ << "Scalar Mapping to: "; PVS.print(cerr);
+ }
}
}
@@ -462,7 +652,8 @@ void PoolAllocate::transformFunctionBody(Function *F, FunctionDSGraph &IPFGraph,
<< "': Found the following values that point to poolable nodes:\n";
for (unsigned i = 0, e = Scalars.size(); i != e; ++i)
- Scalars[i].Val->dump();
+ cerr << Scalars[i].Val;
+ cerr << "\n";
// CallMap - Contain an entry for every call instruction that needs to be
// transformed. Each entry in the map contains information about what we need
@@ -470,7 +661,7 @@ void PoolAllocate::transformFunctionBody(Function *F, FunctionDSGraph &IPFGraph,
//
map<CallInst*, TransformFunctionInfo> CallMap;
- // Now we need to figure out what called methods we need to transform, and
+ // Now we need to figure out what called functions we need to transform, and
// how. To do this, we look at all of the scalars, seeing which functions are
// either used as a scalar value (so they return a data structure), or are
// passed one of our scalar values.
@@ -481,7 +672,7 @@ void PoolAllocate::transformFunctionBody(Function *F, FunctionDSGraph &IPFGraph,
// Check to see if the scalar _IS_ a call...
if (CallInst *CI = dyn_cast<CallInst>(ScalarVal))
// If so, add information about the pool it will be returning...
- addCallInfo(DS, CallMap[CI], CI, -1, Scalars[i].Node, PoolDescriptors);
+ addCallInfo(DS, CallMap[CI], CI, -1, Scalars[i].Pool.Node, PoolDescs);
// Check to see if the scalar is an operand to a call...
for (Value::use_iterator UI = ScalarVal->use_begin(),
@@ -496,8 +687,8 @@ void PoolAllocate::transformFunctionBody(Function *F, FunctionDSGraph &IPFGraph,
// than once! It will get multiple entries for the first pointer.
// Add the operand number and pool handle to the call table...
- addCallInfo(DS, CallMap[CI], CI, OI-CI->op_begin()-1, Scalars[i].Node,
- PoolDescriptors);
+ addCallInfo(DS, CallMap[CI], CI, OI-CI->op_begin()-1,
+ Scalars[i].Pool.Node, PoolDescs);
}
}
}
@@ -505,13 +696,12 @@ void PoolAllocate::transformFunctionBody(Function *F, FunctionDSGraph &IPFGraph,
// Print out call map...
for (map<CallInst*, TransformFunctionInfo>::iterator I = CallMap.begin();
I != CallMap.end(); ++I) {
- cerr << "\nFor call: ";
- I->first->dump();
+ cerr << "For call: " << I->first;
I->second.finalizeConstruction();
cerr << I->second.Func->getName() << " must pass pool pointer for args #";
for (unsigned i = 0; i < I->second.ArgInfo.size(); ++i)
cerr << I->second.ArgInfo[i].ArgNo << ", ";
- cerr << "\n";
+ cerr << "\n\n";
}
// Loop through all of the call nodes, recursively creating the new functions
@@ -525,11 +715,11 @@ void PoolAllocate::transformFunctionBody(Function *F, FunctionDSGraph &IPFGraph,
// Transform all of the functions we need, or at least ensure there is a
// cached version available.
- transformFunction(I->second, IPFGraph);
+ transformFunction(I->second, IPFGraph, PoolDescs);
}
// Now that all of the functions that we want to call are available, transform
- // the local method so that it uses the pools locally and passes them to the
+ // the local function so that it uses the pools locally and passes them to the
// functions that we just hacked up.
//
@@ -545,18 +735,66 @@ void PoolAllocate::transformFunctionBody(Function *F, FunctionDSGraph &IPFGraph,
// All all of the instructions that use the scalar as an operand...
for (Value::use_iterator UI = ScalarVal->use_begin(),
UE = ScalarVal->use_end(); UI != UE; ++UI)
- InstToFix.push_back(dyn_cast<Instruction>(*UI));
+ InstToFix.push_back(cast<Instruction>(*UI));
}
// Eliminate duplicates by sorting, then removing equal neighbors.
sort(InstToFix.begin(), InstToFix.end());
InstToFix.erase(unique(InstToFix.begin(), InstToFix.end()), InstToFix.end());
- // Use a FunctionBodyTransformer to transform all of the involved instructions
- FunctionBodyTransformer FBT(*this, Scalars, CallMap);
- for (unsigned i = 0, e = InstToFix.size(); i != e; ++i)
- FBT.visit(InstToFix[i]);
+ // Loop over all of the instructions to transform, creating the new
+ // replacement instructions for them. This also unlinks them from the
+ // function so they can be safely deleted later.
+ //
+ map<Value*, Value*> XFormMap;
+ NewInstructionCreator NIC(*this, Scalars, CallMap, XFormMap);
+
+ // Visit all instructions... creating the new instructions that we need and
+ // unlinking the old instructions from the function...
+ //
+ for (unsigned i = 0, e = InstToFix.size(); i != e; ++i) {
+ cerr << "Fixing: " << InstToFix[i];
+ NIC.visit(InstToFix[i]);
+ }
+ //NIC.visit(InstToFix.begin(), InstToFix.end());
+
+ // Make all instructions we will delete "let go" of their operands... so that
+ // we can safely delete Arguments whose types have changed...
+ //
+ for_each(InstToFix.begin(), InstToFix.end(),
+ mem_fun(&Instruction::dropAllReferences));
+
+ // Loop through all of the pointer arguments coming into the function,
+ // replacing them with arguments of POINTERTYPE to match the function type of
+ // the function.
+ //
+ FunctionType::ParamTypes::const_iterator TI =
+ F->getFunctionType()->getParamTypes().begin();
+ for (Function::ArgumentListType::iterator I = F->getArgumentList().begin(),
+ E = F->getArgumentList().end(); I != E; ++I, ++TI) {
+ Argument *Arg = *I;
+ if (Arg->getType() != *TI) {
+ assert(isa<PointerType>(Arg->getType()) && *TI == POINTERTYPE);
+ Argument *NewArg = new Argument(*TI, Arg->getName());
+ XFormMap[Arg] = NewArg; // Map old arg into new arg...
+
+
+ // Replace the old argument and then delete it...
+ delete F->getArgumentList().replaceWith(I, NewArg);
+ }
+ }
+
+ // Now that all of the new instructions have been created, we can update all
+ // of the references to dummy values to be references to the actual values
+ // that are computed.
+ //
+ NIC.updateReferences();
+
+ cerr << "TRANSFORMED FUNCTION:\n" << F;
+
+ // Delete all of the "instructions to fix"
+ for_each(InstToFix.begin(), InstToFix.end(), deleter<Instruction>);
// Since we have liberally hacked the function to pieces, we want to inform
// the datastructure pass that its internal representation is out of date.
@@ -635,41 +873,54 @@ static void CalculateNodeMapping(Function *F, TransformFunctionInfo &TFI,
// nodes in the TransformFunctionInfo come out of callers data structure graph.
//
void PoolAllocate::transformFunction(TransformFunctionInfo &TFI,
- FunctionDSGraph &CallerIPGraph) {
+ FunctionDSGraph &CallerIPGraph,
+ map<DSNode*, PoolInfo> &CallerPoolDesc) {
if (getTransformedFunction(TFI)) return; // Function xformation already done?
- cerr << "**********\nEntering transformFunction for "
+ cerr << "********** Entering transformFunction for "
<< TFI.Func->getName() << ":\n";
for (unsigned i = 0, e = TFI.ArgInfo.size(); i != e; ++i)
cerr << " ArgInfo[" << i << "] = " << TFI.ArgInfo[i].ArgNo << "\n";
cerr << "\n";
-
const FunctionType *OldFuncType = TFI.Func->getFunctionType();
assert(!OldFuncType->isVarArg() && "Vararg functions not handled yet!");
// Build the type for the new function that we are transforming
vector<const Type*> ArgTys;
+ ArgTys.reserve(OldFuncType->getNumParams()+TFI.ArgInfo.size());
for (unsigned i = 0, e = OldFuncType->getNumParams(); i != e; ++i)
ArgTys.push_back(OldFuncType->getParamType(i));
+ const Type *RetType = OldFuncType->getReturnType();
+
// Add one pool pointer for every argument that needs to be supplemented.
- ArgTys.insert(ArgTys.end(), TFI.ArgInfo.size(), PoolTy);
+ for (unsigned i = 0, e = TFI.ArgInfo.size(); i != e; ++i) {
+ if (TFI.ArgInfo[i].ArgNo == -1)
+ RetType = POINTERTYPE; // Return a pointer
+ else
+ ArgTys[TFI.ArgInfo[i].ArgNo] = POINTERTYPE; // Pass a pointer
+ ArgTys.push_back(PointerType::get(CallerPoolDesc.find(TFI.ArgInfo[i].Node)
+ ->second.PoolType));
+ }
// Build the new function type...
- const // FIXME when types are not const
- FunctionType *NewFuncType = FunctionType::get(OldFuncType->getReturnType(),
- ArgTys,OldFuncType->isVarArg());
+ const FunctionType *NewFuncType = FunctionType::get(RetType, ArgTys,
+ OldFuncType->isVarArg());
// The new function is internal, because we know that only we can call it.
// This also helps subsequent IP transformations to eliminate duplicated pool
- // pointers. [in the future when they are implemented].
+ // pointers (which look like the same value is always passed into a parameter,
+ // allowing it to be easily eliminated).
//
Function *NewFunc = new Function(NewFuncType, true,
TFI.Func->getName()+".poolxform");
CurModule->getFunctionList().push_back(NewFunc);
+
+ cerr << "Created function prototype: " << NewFunc << "\n";
+
// Add the newly formed function to the TransformedFunctions table so that
// infinite recursion does not occur!
//
@@ -686,12 +937,14 @@ void PoolAllocate::transformFunction(TransformFunctionInfo &TFI,
// Now add all of the arguments corresponding to pools passed in...
for (unsigned i = 0, e = TFI.ArgInfo.size(); i != e; ++i) {
+ CallArgInfo &AI = TFI.ArgInfo[i];
string Name;
- if (TFI.ArgInfo[i].ArgNo == -1)
- Name = "retpool";
+ if (AI.ArgNo == -1)
+ Name = "ret";
else
- Name = ArgMap[TFI.ArgInfo[i].ArgNo]->getName(); // Get the arg name
- Argument *NFA = new Argument(PoolTy, Name+".pool");
+ Name = ArgMap[AI.ArgNo]->getName(); // Get the arg name
+ const Type *Ty = PointerType::get(CallerPoolDesc[AI.Node].PoolType);
+ Argument *NFA = new Argument(Ty, Name+".pool");
NewFunc->getArgumentList().push_back(NFA);
}
@@ -705,7 +958,13 @@ void PoolAllocate::transformFunction(TransformFunctionInfo &TFI,
//
FunctionDSGraph &DSGraph = DS->getClosedDSGraph(NewFunc);
- // NodeMapping - Multimap from callers graph to called graph.
+ // NodeMapping - Multimap from callers graph to called graph. We are
+ // guaranteed that the called function graph has more nodes than the caller,
+ // or exactly the same number of nodes. This is because the called function
+ // might not know that two nodes are merged when considering the callers
+ // context, but the caller obviously does. Because of this, a single node in
+ // the calling function's data structure graph can map to multiple nodes in
+ // the called functions graph.
//
map<DSNode*, PointerValSet> NodeMapping;
@@ -725,42 +984,56 @@ void PoolAllocate::transformFunction(TransformFunctionInfo &TFI,
// it can determine which value holds the pool descriptor for each data
// structure node that it accesses.
//
- map<DSNode*, Value*> PoolDescriptors;
+ map<DSNode*, PoolInfo> PoolDescs;
cerr << "\nCalculating the pool descriptor map:\n";
- // All of the pool descriptors must be passed in as arguments...
- for (unsigned i = 0, e = TFI.ArgInfo.size(); i != e; ++i) {
- DSNode *CallerNode = TFI.ArgInfo[i].Node;
- Value *CallerPool = TFI.ArgInfo[i].PoolHandle;
-
- cerr << "Mapped caller node: "; CallerNode->print(cerr);
- cerr << "Mapped caller pool: "; CallerPool->dump();
-
- // Calculate the argument number that the pool is to the function call...
- // The call instruction should not have the pool operands added yet.
- unsigned ArgNo = TFI.Call->getNumOperands()-1+i;
- cerr << "Should be argument #: " << ArgNo << "[i = " << i << "]\n";
- assert(ArgNo < NewFunc->getArgumentList().size() &&
- "Call already has pool arguments added??");
-
- // Map the pool argument into the called function...
- Value *CalleePool = NewFunc->getArgumentList()[ArgNo];
-
- // Map the DSNode into the callee's DSGraph
- const PointerValSet &CalleeNodes = NodeMapping[CallerNode];
- for (unsigned n = 0, ne = CalleeNodes.size(); n != ne; ++n) {
- assert(CalleeNodes[n].Index == 0 && "Indexed node not handled yet!");
- DSNode *CalleeNode = CalleeNodes[n].Node;
-
- cerr << "*** to callee node: "; CalleeNode->print(cerr);
- cerr << "*** to callee pool: "; CalleePool->dump();
- cerr << "\n";
-
- assert(CalleeNode && CalleePool && "Invalid nodes!");
- Value *&PV = PoolDescriptors[CalleeNode];
- //assert((PV == 0 || PV == CalleePool) && "Invalid node remapping!");
- PV = CalleePool; // Update the pool descriptor map!
+ // Calculate as much of the pool descriptor map as possible. Since we have
+ // the node mapping between the caller and callee functions, and we have the
+ // pool descriptor information of the caller, we can calculate a partical pool
+ // descriptor map for the called function.
+ //
+ // The nodes that we do not have complete information for are the ones that
+ // are accessed by loading pointers derived from arguments passed in, but that
+ // are not passed in directly. In this case, we have all of the information
+ // except a pool value. If the called function refers to this pool, the pool
+ // value will be loaded from the pool graph and added to the map as neccesary.
+ //
+ for (map<DSNode*, PointerValSet>::iterator I = NodeMapping.begin();
+ I != NodeMapping.end(); ++I) {
+ DSNode *CallerNode = I->first;
+ PoolInfo &CallerPI = CallerPoolDesc[CallerNode];
+
+ // Check to see if we have a node pointer passed in for this value...
+ Value *CalleeValue = 0;
+ for (unsigned a = 0, ae = TFI.ArgInfo.size(); a != ae; ++a)
+ if (TFI.ArgInfo[a].Node == CallerNode) {
+ // Calculate the argument number that the pool is to the function
+ // call... The call instruction should not have the pool operands added
+ // yet.
+ unsigned ArgNo = TFI.Call->getNumOperands()-1+a;
+ cerr << "Should be argument #: " << ArgNo << "[i = " << a << "]\n";
+ assert(ArgNo < NewFunc->getArgumentList().size() &&
+ "Call already has pool arguments added??");
+
+ // Map the pool argument into the called function...
+ CalleeValue = NewFunc->getArgumentList()[ArgNo];
+ break; // Found value, quit loop
+ }
+
+ // Loop over all of the data structure nodes that this incoming node maps to
+ // Creating a PoolInfo structure for them.
+ for (unsigned i = 0, e = I->second.size(); i != e; ++i) {
+ assert(I->second[i].Index == 0 && "Doesn't handle subindexing yet!");
+ DSNode *CalleeNode = I->second[i].Node;
+
+ // Add the descriptor. We already know everything about it by now, much
+ // of it is the same as the caller info.
+ //
+ PoolDescs.insert(make_pair(CalleeNode,
+ PoolInfo(CalleeNode, CalleeValue,
+ CallerPI.NewType,
+ CallerPI.PoolType)));
}
}
@@ -774,34 +1047,114 @@ void PoolAllocate::transformFunction(TransformFunctionInfo &TFI,
// Now that we know everything we need about the function, transform the body
// now!
//
- transformFunctionBody(NewFunc, DSGraph, PoolDescriptors);
-
- cerr << "Function after transformation:\n";
- NewFunc->dump();
+ transformFunctionBody(NewFunc, DSGraph, PoolDescs);
+
+ cerr << "Function after transformation:\n" << NewFunc;
}
// CreatePools - Insert instructions into the function we are processing to
// create all of the memory pool objects themselves. This also inserts
// destruction code. Add an alloca for each pool that is allocated to the
-// PoolDescriptors vector.
+// PoolDescs vector.
//
void PoolAllocate::CreatePools(Function *F, const vector<AllocDSNode*> &Allocs,
- map<DSNode*, Value*> &PoolDescriptors) {
- // FIXME: This should use an IP version of the UnifyAllExits pass!
+ map<DSNode*, PoolInfo> &PoolDescs) {
+ // Find all of the return nodes in the function...
vector<BasicBlock*> ReturnNodes;
for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I)
if (isa<ReturnInst>((*I)->getTerminator()))
ReturnNodes.push_back(*I);
+
+ map<DSNode*, PATypeHolder> AbsPoolTyMap;
+
+ // First pass over the allocations to process...
+ for (unsigned i = 0, e = Allocs.size(); i != e; ++i) {
+ // Create the pooldescriptor mapping... with null entries for everything
+ // except the node & NewType fields.
+ //
+ map<DSNode*, PoolInfo>::iterator PI =
+ PoolDescs.insert(make_pair(Allocs[i], PoolInfo(Allocs[i]))).first;
+
+ // Create the abstract pool types that will need to be resolved in a second
+ // pass once an abstract type is created for each pool.
+ //
+ // Can only handle limited shapes for now...
+ StructType *OldNodeTy = cast<StructType>(Allocs[i]->getType());
+ vector<const Type*> PoolTypes;
+
+ // Pool type is the first element of the pool descriptor type...
+ PoolTypes.push_back(getPoolType(PoolDescs[Allocs[i]].NewType));
+
+ for (unsigned j = 0, e = OldNodeTy->getElementTypes().size(); j != e; ++j) {
+ if (isa<PointerType>(OldNodeTy->getElementTypes()[j]))
+ PoolTypes.push_back(OpaqueType::get());
+ else
+ assert(OldNodeTy->getElementTypes()[j]->isPrimitiveType() &&
+ "Complex types not handled yet!");
+ }
+ assert(Allocs[i]->getNumLinks() == PoolTypes.size()-1 &&
+ "Node should have same number of pointers as pool!");
+
+ // Create the pool type, with opaque values for pointers...
+ AbsPoolTyMap.insert(make_pair(Allocs[i], StructType::get(PoolTypes)));
+#ifdef DEBUG_CREATE_POOLS
+ cerr << "POOL TY: " << AbsPoolTyMap.find(Allocs[i])->second.get() << "\n";
+#endif
+ }
+ // Now that we have types for all of the pool types, link them all together.
+ for (unsigned i = 0, e = Allocs.size(); i != e; ++i) {
+ PATypeHolder &PoolTyH = AbsPoolTyMap.find(Allocs[i])->second;
+
+ // Resolve all of the outgoing pointer types of this pool node...
+ for (unsigned p = 0, pe = Allocs[i]->getNumLinks(); p != pe; ++p) {
+ PointerValSet &PVS = Allocs[i]->getLink(p);
+ assert(!PVS.empty() && "Outgoing edge is empty, field unused, can"
+ " probably just leave the type opaque or something dumb.");
+ unsigned Out;
+ for (Out = 0; AbsPoolTyMap.count(PVS[Out].Node) == 0; ++Out)
+ assert(Out != PVS.size() && "No edge to an outgoing allocation node!?");
+
+ assert(PVS[Out].Index == 0 && "Subindexing not implemented yet!");
+
+ // The actual struct type could change each time through the loop, so it's
+ // NOT loop invariant.
+ StructType *PoolTy = cast<StructType>(PoolTyH.get());
+
+ // Get the opaque type...
+ DerivedType *ElTy =
+ cast<DerivedType>(PoolTy->getElementTypes()[p+1].get());
+
+#ifdef DEBUG_CREATE_POOLS
+ cerr << "Refining " << ElTy << " of " << PoolTy << " to "
+ << AbsPoolTyMap.find(PVS[Out].Node)->second.get() << "\n";
+#endif
+
+ const Type *RefPoolTy = AbsPoolTyMap.find(PVS[Out].Node)->second.get();
+ ElTy->refineAbstractTypeTo(PointerType::get(RefPoolTy));
- // Create the code that goes in the entry and exit nodes for the method...
+#ifdef DEBUG_CREATE_POOLS
+ cerr << "Result pool type is: " << PoolTyH.get() << "\n";
+#endif
+ }
+ }
+
+ // Create the code that goes in the entry and exit nodes for the function...
vector<Instruction*> EntryNodeInsts;
for (unsigned i = 0, e = Allocs.size(); i != e; ++i) {
+ PoolInfo &PI = PoolDescs[Allocs[i]];
+
+ // Fill in the pool type for this pool...
+ PI.PoolType = AbsPoolTyMap.find(Allocs[i])->second.get();
+ assert(!PI.PoolType->isAbstract() &&
+ "Pool type should not be abstract anymore!");
+
// Add an allocation and a free for each pool...
- AllocaInst *PoolAlloc = new AllocaInst(PoolTy, 0, "pool");
+ AllocaInst *PoolAlloc = new AllocaInst(PointerType::get(PI.PoolType),
+ 0, "pool");
+ PI.Handle = PoolAlloc;
EntryNodeInsts.push_back(PoolAlloc);
- PoolDescriptors[Allocs[i]] = PoolAlloc; // Keep track of pool allocas
AllocationInst *AI = Allocs[i]->getAllocation();
// Initialize the pool. We need to know how big each allocation is. For
@@ -812,13 +1165,15 @@ void PoolAllocate::CreatePools(Function *F, const vector<AllocDSNode*> &Allocs,
ElSize *= cast<ConstantUInt>(AI->getArraySize())->getValue();
vector<Value*> Args;
- Args.push_back(PoolAlloc); // Pool to initialize
Args.push_back(ConstantUInt::get(Type::UIntTy, ElSize));
+ Args.push_back(PoolAlloc); // Pool to initialize
EntryNodeInsts.push_back(new CallInst(PoolInit, Args));
- // Destroy the pool...
- Args.pop_back();
+ // FIXME: add code to initialize inter pool links
+ cerr << "TODO: add code to initialize inter pool links!\n";
+ // Add code to destroy the pool in all of the exit nodes of the function...
+ Args.pop_back();
for (unsigned EN = 0, ENE = ReturnNodes.size(); EN != ENE; ++EN) {
Instruction *Destroy = new CallInst(PoolDestroy, Args);
@@ -835,35 +1190,32 @@ void PoolAllocate::CreatePools(Function *F, const vector<AllocDSNode*> &Allocs,
}
-// addPoolPrototypes - Add prototypes for the pool methods to the specified
+// addPoolPrototypes - Add prototypes for the pool functions to the specified
// module and update the Pool* instance variables to point to them.
//
void PoolAllocate::addPoolPrototypes(Module *M) {
- // Get PoolInit function...
+ // Get poolinit function...
vector<const Type*> Args;
- Args.push_back(PoolTy); // Pool to initialize
Args.push_back(Type::UIntTy); // Num bytes per element
- FunctionType *PoolInitTy = FunctionType::get(Type::VoidTy, Args, false);
+ FunctionType *PoolInitTy = FunctionType::get(Type::VoidTy, Args, true);
PoolInit = M->getOrInsertFunction("poolinit", PoolInitTy);
// Get pooldestroy function...
Args.pop_back(); // Only takes a pool...
- FunctionType *PoolDestroyTy = FunctionType::get(Type::VoidTy, Args, false);
+ FunctionType *PoolDestroyTy = FunctionType::get(Type::VoidTy, Args, true);
PoolDestroy = M->getOrInsertFunction("pooldestroy", PoolDestroyTy);
- const Type *PtrVoid = PointerType::get(Type::SByteTy);
-
// Get the poolalloc function...
- FunctionType *PoolAllocTy = FunctionType::get(PtrVoid, Args, false);
+ FunctionType *PoolAllocTy = FunctionType::get(POINTERTYPE, Args, true);
PoolAlloc = M->getOrInsertFunction("poolalloc", PoolAllocTy);
// Get the poolfree function...
- Args.push_back(PtrVoid);
- FunctionType *PoolFreeTy = FunctionType::get(Type::VoidTy, Args, false);
+ Args.push_back(POINTERTYPE); // Pointer to free
+ FunctionType *PoolFreeTy = FunctionType::get(Type::VoidTy, Args, true);
PoolFree = M->getOrInsertFunction("poolfree", PoolFreeTy);
// Add the %PoolTy type to the symbol table of the module...
- M->addTypeName("PoolTy", PoolTy->getElementType());
+ //M->addTypeName("PoolTy", PoolTy->getElementType());
}