From 2211feca593b6f34896e2ad2089cbc07c41c7e1d Mon Sep 17 00:00:00 2001 From: Wojciech Matyjewicz Date: Mon, 11 Feb 2008 11:03:14 +0000 Subject: Fix PR1798 - an error in the evaluation of SCEVAddRecExpr at an arbitrary iteration. The patch: 1) changes SCEVSDivExpr into SCEVUDivExpr, 2) replaces PartialFact() function with BinomialCoefficient(); the computations (essentially, the division) in BinomialCoefficient() are performed with the apprioprate bitwidth necessary to avoid overflow; unsigned division is used instead of the signed one. Computations in BinomialCoefficient() require support from the code generator for APInts. Currently, we use a hack rounding up the neccessary bitwidth to the nearest power of 2. The hack is easy to turn off in future. One remaining issue: we assume the divisor of the binomial coefficient formula can be computed accurately using 16 bits. It means we can handle AddRecs of length up to 9. In future, we should use APInts to evaluate the divisor. Thanks to Nicholas for cooperation! git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@46955 91177308-0d34-0410-b5e6-96231b3b80d8 --- lib/Analysis/ScalarEvolution.cpp | 149 ++++++++++++++++++++++++++------------- 1 file changed, 100 insertions(+), 49 deletions(-) (limited to 'lib/Analysis') diff --git a/lib/Analysis/ScalarEvolution.cpp b/lib/Analysis/ScalarEvolution.cpp index 10f05bc..cbfc563 100644 --- a/lib/Analysis/ScalarEvolution.cpp +++ b/lib/Analysis/ScalarEvolution.cpp @@ -328,21 +328,21 @@ replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, } -// SCEVSDivs - Only allow the creation of one SCEVSDivExpr for any particular +// SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular // input. Don't use a SCEVHandle here, or else the object will never be // deleted! static ManagedStatic, - SCEVSDivExpr*> > SCEVSDivs; + SCEVUDivExpr*> > SCEVUDivs; -SCEVSDivExpr::~SCEVSDivExpr() { - SCEVSDivs->erase(std::make_pair(LHS, RHS)); +SCEVUDivExpr::~SCEVUDivExpr() { + SCEVUDivs->erase(std::make_pair(LHS, RHS)); } -void SCEVSDivExpr::print(std::ostream &OS) const { - OS << "(" << *LHS << " /s " << *RHS << ")"; +void SCEVUDivExpr::print(std::ostream &OS) const { + OS << "(" << *LHS << " /u " << *RHS << ")"; } -const Type *SCEVSDivExpr::getType() const { +const Type *SCEVUDivExpr::getType() const { return LHS->getType(); } @@ -532,57 +532,110 @@ SCEVHandle ScalarEvolution::getMinusSCEV(const SCEVHandle &LHS, } -/// PartialFact - Compute V!/(V-NumSteps)! -static SCEVHandle PartialFact(SCEVHandle V, unsigned NumSteps, - ScalarEvolution &SE) { +/// BinomialCoefficient - Compute BC(It, K). The result is of the same type as +/// It. Assume, K > 0. +static SCEVHandle BinomialCoefficient(SCEVHandle It, unsigned K, + ScalarEvolution &SE) { + // We are using the following formula for BC(It, K): + // + // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! + // + // Suppose, W is the bitwidth of It (and of the return value as well). We + // must be prepared for overflow. Hence, we must assure that the result of + // our computation is equal to the accurate one modulo 2^W. Unfortunately, + // division isn't safe in modular arithmetic. This means we must perform the + // whole computation accurately and then truncate the result to W bits. + // + // The dividend of the formula is a multiplication of K integers of bitwidth + // W. K*W bits suffice to compute it accurately. + // + // FIXME: We assume the divisor can be accurately computed using 16-bit + // unsigned integer type. It is true up to K = 8 (AddRecs of length 9). In + // future we may use APInt to use the minimum number of bits necessary to + // compute it accurately. + // + // It is safe to use unsigned division here: the dividend is nonnegative and + // the divisor is positive. + + // Handle the simplest case efficiently. + if (K == 1) + return It; + + assert(K < 9 && "We cannot handle such long AddRecs yet."); + + // FIXME: A temporary hack to remove in future. Arbitrary precision integers + // aren't supported by the code generator yet. For the dividend, the bitwidth + // we use is the smallest power of 2 greater or equal to K*W and less or equal + // to 64. Note that setting the upper bound for bitwidth may still lead to + // miscompilation in some cases. + unsigned DividendBits = 1U << Log2_32_Ceil(K * It->getBitWidth()); + if (DividendBits > 64) + DividendBits = 64; +#if 0 // Waiting for the APInt support in the code generator... + unsigned DividendBits = K * It->getBitWidth(); +#endif + + const IntegerType *DividendTy = IntegerType::get(DividendBits); + const SCEVHandle ExIt = SE.getZeroExtendExpr(It, DividendTy); + + // The final number of bits we need to perform the division is the maximum of + // dividend and divisor bitwidths. + const IntegerType *DivisionTy = + IntegerType::get(std::max(DividendBits, 16U)); + + // Compute K! We know K >= 2 here. + unsigned F = 2; + for (unsigned i = 3; i <= K; ++i) + F *= i; + APInt Divisor(DivisionTy->getBitWidth(), F); + // Handle this case efficiently, it is common to have constant iteration // counts while computing loop exit values. - if (SCEVConstant *SC = dyn_cast(V)) { - const APInt& Val = SC->getValue()->getValue(); - APInt Result(Val.getBitWidth(), 1); - for (; NumSteps; --NumSteps) - Result *= Val-(NumSteps-1); - return SE.getConstant(Result); + if (SCEVConstant *SC = dyn_cast(ExIt)) { + const APInt& N = SC->getValue()->getValue(); + APInt Dividend(N.getBitWidth(), 1); + for (; K; --K) + Dividend *= N-(K-1); + if (DividendTy != DivisionTy) + Dividend = Dividend.zext(DivisionTy->getBitWidth()); + return SE.getConstant(Dividend.udiv(Divisor).trunc(It->getBitWidth())); } - - const Type *Ty = V->getType(); - if (NumSteps == 0) - return SE.getIntegerSCEV(1, Ty); - - SCEVHandle Result = V; - for (unsigned i = 1; i != NumSteps; ++i) - Result = SE.getMulExpr(Result, SE.getMinusSCEV(V, - SE.getIntegerSCEV(i, Ty))); - return Result; + + SCEVHandle Dividend = ExIt; + for (unsigned i = 1; i != K; ++i) + Dividend = + SE.getMulExpr(Dividend, + SE.getMinusSCEV(ExIt, SE.getIntegerSCEV(i, DividendTy))); + if (DividendTy != DivisionTy) + Dividend = SE.getZeroExtendExpr(Dividend, DivisionTy); + return + SE.getTruncateExpr(SE.getUDivExpr(Dividend, SE.getConstant(Divisor)), + It->getType()); } - /// evaluateAtIteration - Return the value of this chain of recurrences at /// the specified iteration number. We can evaluate this recurrence by /// multiplying each element in the chain by the binomial coefficient /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: /// -/// A*choose(It, 0) + B*choose(It, 1) + C*choose(It, 2) + D*choose(It, 3) +/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) /// -/// FIXME/VERIFY: I don't trust that this is correct in the face of overflow. -/// Is the binomial equation safe using modular arithmetic?? +/// where BC(It, k) stands for binomial coefficient. /// SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It, ScalarEvolution &SE) const { SCEVHandle Result = getStart(); - int Divisor = 1; - const Type *Ty = It->getType(); for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { - SCEVHandle BC = PartialFact(It, i, SE); - Divisor *= i; - SCEVHandle Val = SE.getSDivExpr(SE.getMulExpr(BC, getOperand(i)), - SE.getIntegerSCEV(Divisor,Ty)); + // The computation is correct in the face of overflow provided that the + // multiplication is performed _after_ the evaluation of the binomial + // coefficient. + SCEVHandle Val = SE.getMulExpr(getOperand(i), + BinomialCoefficient(It, i, SE)); Result = SE.getAddExpr(Result, Val); } return Result; } - //===----------------------------------------------------------------------===// // SCEV Expression folder implementations //===----------------------------------------------------------------------===// @@ -1039,24 +1092,22 @@ SCEVHandle ScalarEvolution::getMulExpr(std::vector &Ops) { return Result; } -SCEVHandle ScalarEvolution::getSDivExpr(const SCEVHandle &LHS, const SCEVHandle &RHS) { +SCEVHandle ScalarEvolution::getUDivExpr(const SCEVHandle &LHS, const SCEVHandle &RHS) { if (SCEVConstant *RHSC = dyn_cast(RHS)) { if (RHSC->getValue()->equalsInt(1)) - return LHS; // X sdiv 1 --> x - if (RHSC->getValue()->isAllOnesValue()) - return getNegativeSCEV(LHS); // X sdiv -1 --> -x + return LHS; // X udiv 1 --> x if (SCEVConstant *LHSC = dyn_cast(LHS)) { Constant *LHSCV = LHSC->getValue(); Constant *RHSCV = RHSC->getValue(); - return getUnknown(ConstantExpr::getSDiv(LHSCV, RHSCV)); + return getUnknown(ConstantExpr::getUDiv(LHSCV, RHSCV)); } } // FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow. - SCEVSDivExpr *&Result = (*SCEVSDivs)[std::make_pair(LHS, RHS)]; - if (Result == 0) Result = new SCEVSDivExpr(LHS, RHS); + SCEVUDivExpr *&Result = (*SCEVUDivs)[std::make_pair(LHS, RHS)]; + if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS); return Result; } @@ -1555,7 +1606,7 @@ static uint32_t GetMinTrailingZeros(SCEVHandle S) { return MinOpRes; } - // SCEVSDivExpr, SCEVUnknown + // SCEVUDivExpr, SCEVUnknown return 0; } @@ -1574,8 +1625,8 @@ SCEVHandle ScalarEvolutionsImpl::createSCEV(Value *V) { case Instruction::Mul: return SE.getMulExpr(getSCEV(I->getOperand(0)), getSCEV(I->getOperand(1))); - case Instruction::SDiv: - return SE.getSDivExpr(getSCEV(I->getOperand(0)), + case Instruction::UDiv: + return SE.getUDivExpr(getSCEV(I->getOperand(0)), getSCEV(I->getOperand(1))); case Instruction::Sub: return SE.getMinusSCEV(getSCEV(I->getOperand(0)), @@ -2264,14 +2315,14 @@ SCEVHandle ScalarEvolutionsImpl::getSCEVAtScope(SCEV *V, const Loop *L) { return Comm; } - if (SCEVSDivExpr *Div = dyn_cast(V)) { + if (SCEVUDivExpr *Div = dyn_cast(V)) { SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L); if (LHS == UnknownValue) return LHS; SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L); if (RHS == UnknownValue) return RHS; if (LHS == Div->getLHS() && RHS == Div->getRHS()) return Div; // must be loop invariant - return SE.getSDivExpr(LHS, RHS); + return SE.getUDivExpr(LHS, RHS); } // If this is a loop recurrence for a loop that does not contain L, then we -- cgit v1.1