//===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// /// \file /// \brief This file implements a class to represent arbitrary precision /// integral constant values and operations on them. /// //===----------------------------------------------------------------------===// #ifndef LLVM_ADT_APINT_H #define LLVM_ADT_APINT_H #include "llvm/ADT/ArrayRef.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/MathExtras.h" #include #include #include #include namespace llvm { class Deserializer; class FoldingSetNodeID; class Serializer; class StringRef; class hash_code; class raw_ostream; template class SmallVectorImpl; // An unsigned host type used as a single part of a multi-part // bignum. typedef uint64_t integerPart; const unsigned int host_char_bit = 8; const unsigned int integerPartWidth = host_char_bit * static_cast(sizeof(integerPart)); //===----------------------------------------------------------------------===// // APInt Class //===----------------------------------------------------------------------===// /// \brief Class for arbitrary precision integers. /// /// APInt is a functional replacement for common case unsigned integer type like /// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width /// integer sizes and large integer value types such as 3-bits, 15-bits, or more /// than 64-bits of precision. APInt provides a variety of arithmetic operators /// and methods to manipulate integer values of any bit-width. It supports both /// the typical integer arithmetic and comparison operations as well as bitwise /// manipulation. /// /// The class has several invariants worth noting: /// * All bit, byte, and word positions are zero-based. /// * Once the bit width is set, it doesn't change except by the Truncate, /// SignExtend, or ZeroExtend operations. /// * All binary operators must be on APInt instances of the same bit width. /// Attempting to use these operators on instances with different bit /// widths will yield an assertion. /// * The value is stored canonically as an unsigned value. For operations /// where it makes a difference, there are both signed and unsigned variants /// of the operation. For example, sdiv and udiv. However, because the bit /// widths must be the same, operations such as Mul and Add produce the same /// results regardless of whether the values are interpreted as signed or /// not. /// * In general, the class tries to follow the style of computation that LLVM /// uses in its IR. This simplifies its use for LLVM. /// class APInt { unsigned BitWidth; ///< The number of bits in this APInt. /// This union is used to store the integer value. When the /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal. union { uint64_t VAL; ///< Used to store the <= 64 bits integer value. uint64_t *pVal; ///< Used to store the >64 bits integer value. }; /// This enum is used to hold the constants we needed for APInt. enum { /// Bits in a word APINT_BITS_PER_WORD = static_cast(sizeof(uint64_t)) * CHAR_BIT, /// Byte size of a word APINT_WORD_SIZE = static_cast(sizeof(uint64_t)) }; /// \brief Fast internal constructor /// /// This constructor is used only internally for speed of construction of /// temporaries. It is unsafe for general use so it is not public. APInt(uint64_t *val, unsigned bits) : BitWidth(bits), pVal(val) {} /// \brief Determine if this APInt just has one word to store value. /// /// \returns true if the number of bits <= 64, false otherwise. bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; } /// \brief Determine which word a bit is in. /// /// \returns the word position for the specified bit position. static unsigned whichWord(unsigned bitPosition) { return bitPosition / APINT_BITS_PER_WORD; } /// \brief Determine which bit in a word a bit is in. /// /// \returns the bit position in a word for the specified bit position /// in the APInt. static unsigned whichBit(unsigned bitPosition) { return bitPosition % APINT_BITS_PER_WORD; } /// \brief Get a single bit mask. /// /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set /// This method generates and returns a uint64_t (word) mask for a single /// bit at a specific bit position. This is used to mask the bit in the /// corresponding word. static uint64_t maskBit(unsigned bitPosition) { return 1ULL << whichBit(bitPosition); } /// \brief Clear unused high order bits /// /// This method is used internally to clear the to "N" bits in the high order /// word that are not used by the APInt. This is needed after the most /// significant word is assigned a value to ensure that those bits are /// zero'd out. APInt &clearUnusedBits() { // Compute how many bits are used in the final word unsigned wordBits = BitWidth % APINT_BITS_PER_WORD; if (wordBits == 0) // If all bits are used, we want to leave the value alone. This also // avoids the undefined behavior of >> when the shift is the same size as // the word size (64). return *this; // Mask out the high bits. uint64_t mask = ~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - wordBits); if (isSingleWord()) VAL &= mask; else pVal[getNumWords() - 1] &= mask; return *this; } /// \brief Get the word corresponding to a bit position /// \returns the corresponding word for the specified bit position. uint64_t getWord(unsigned bitPosition) const { return isSingleWord() ? VAL : pVal[whichWord(bitPosition)]; } /// \brief Convert a char array into an APInt /// /// \param radix 2, 8, 10, 16, or 36 /// Converts a string into a number. The string must be non-empty /// and well-formed as a number of the given base. The bit-width /// must be sufficient to hold the result. /// /// This is used by the constructors that take string arguments. /// /// StringRef::getAsInteger is superficially similar but (1) does /// not assume that the string is well-formed and (2) grows the /// result to hold the input. void fromString(unsigned numBits, StringRef str, uint8_t radix); /// \brief An internal division function for dividing APInts. /// /// This is used by the toString method to divide by the radix. It simply /// provides a more convenient form of divide for internal use since KnuthDiv /// has specific constraints on its inputs. If those constraints are not met /// then it provides a simpler form of divide. static void divide(const APInt LHS, unsigned lhsWords, const APInt &RHS, unsigned rhsWords, APInt *Quotient, APInt *Remainder); /// out-of-line slow case for inline constructor void initSlowCase(unsigned numBits, uint64_t val, bool isSigned); /// shared code between two array constructors void initFromArray(ArrayRef array); /// out-of-line slow case for inline copy constructor void initSlowCase(const APInt &that); /// out-of-line slow case for shl APInt shlSlowCase(unsigned shiftAmt) const; /// out-of-line slow case for operator& APInt AndSlowCase(const APInt &RHS) const; /// out-of-line slow case for operator| APInt OrSlowCase(const APInt &RHS) const; /// out-of-line slow case for operator^ APInt XorSlowCase(const APInt &RHS) const; /// out-of-line slow case for operator= APInt &AssignSlowCase(const APInt &RHS); /// out-of-line slow case for operator== bool EqualSlowCase(const APInt &RHS) const; /// out-of-line slow case for operator== bool EqualSlowCase(uint64_t Val) const; /// out-of-line slow case for countLeadingZeros unsigned countLeadingZerosSlowCase() const; /// out-of-line slow case for countTrailingOnes unsigned countTrailingOnesSlowCase() const; /// out-of-line slow case for countPopulation unsigned countPopulationSlowCase() const; public: /// \name Constructors /// @{ /// \brief Create a new APInt of numBits width, initialized as val. /// /// If isSigned is true then val is treated as if it were a signed value /// (i.e. as an int64_t) and the appropriate sign extension to the bit width /// will be done. Otherwise, no sign extension occurs (high order bits beyond /// the range of val are zero filled). /// /// \param numBits the bit width of the constructed APInt /// \param val the initial value of the APInt /// \param isSigned how to treat signedness of val APInt(unsigned numBits, uint64_t val, bool isSigned = false) : BitWidth(numBits), VAL(0) { assert(BitWidth && "bitwidth too small"); if (isSingleWord()) VAL = val; else initSlowCase(numBits, val, isSigned); clearUnusedBits(); } /// \brief Construct an APInt of numBits width, initialized as bigVal[]. /// /// Note that bigVal.size() can be smaller or larger than the corresponding /// bit width but any extraneous bits will be dropped. /// /// \param numBits the bit width of the constructed APInt /// \param bigVal a sequence of words to form the initial value of the APInt APInt(unsigned numBits, ArrayRef bigVal); /// Equivalent to APInt(numBits, ArrayRef(bigVal, numWords)), but /// deprecated because this constructor is prone to ambiguity with the /// APInt(unsigned, uint64_t, bool) constructor. /// /// If this overload is ever deleted, care should be taken to prevent calls /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool) /// constructor. APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]); /// \brief Construct an APInt from a string representation. /// /// This constructor interprets the string \p str in the given radix. The /// interpretation stops when the first character that is not suitable for the /// radix is encountered, or the end of the string. Acceptable radix values /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the /// string to require more bits than numBits. /// /// \param numBits the bit width of the constructed APInt /// \param str the string to be interpreted /// \param radix the radix to use for the conversion APInt(unsigned numBits, StringRef str, uint8_t radix); /// Simply makes *this a copy of that. /// @brief Copy Constructor. APInt(const APInt &that) : BitWidth(that.BitWidth), VAL(0) { assert(BitWidth && "bitwidth too small"); if (isSingleWord()) VAL = that.VAL; else initSlowCase(that); } #if LLVM_HAS_RVALUE_REFERENCES /// \brief Move Constructor. APInt(APInt &&that) : BitWidth(that.BitWidth), VAL(that.VAL) { that.BitWidth = 0; } #endif /// \brief Destructor. ~APInt() { if (!isSingleWord()) delete[] pVal; } /// \brief Default constructor that creates an uninitialized APInt. /// /// This is useful for object deserialization (pair this with the static /// method Read). explicit APInt() : BitWidth(1) {} /// Used to insert APInt objects, or objects that contain APInt objects, into /// FoldingSets. void Profile(FoldingSetNodeID &id) const; /// @} /// \name Value Tests /// @{ /// \brief Determine sign of this APInt. /// /// This tests the high bit of this APInt to determine if it is set. /// /// \returns true if this APInt is negative, false otherwise bool isNegative() const { return (*this)[BitWidth - 1]; } /// \brief Determine if this APInt Value is non-negative (>= 0) /// /// This tests the high bit of the APInt to determine if it is unset. bool isNonNegative() const { return !isNegative(); } /// \brief Determine if this APInt Value is positive. /// /// This tests if the value of this APInt is positive (> 0). Note /// that 0 is not a positive value. /// /// \returns true if this APInt is positive. bool isStrictlyPositive() const { return isNonNegative() && !!*this; } /// \brief Determine if all bits are set /// /// This checks to see if the value has all bits of the APInt are set or not. bool isAllOnesValue() const { return countPopulation() == BitWidth; } /// \brief Determine if this is the largest unsigned value. /// /// This checks to see if the value of this APInt is the maximum unsigned /// value for the APInt's bit width. bool isMaxValue() const { return countPopulation() == BitWidth; } /// \brief Determine if this is the largest signed value. /// /// This checks to see if the value of this APInt is the maximum signed /// value for the APInt's bit width. bool isMaxSignedValue() const { return BitWidth == 1 ? VAL == 0 : !isNegative() && countPopulation() == BitWidth - 1; } /// \brief Determine if this is the smallest unsigned value. /// /// This checks to see if the value of this APInt is the minimum unsigned /// value for the APInt's bit width. bool isMinValue() const { return !*this; } /// \brief Determine if this is the smallest signed value. /// /// This checks to see if the value of this APInt is the minimum signed /// value for the APInt's bit width. bool isMinSignedValue() const { return BitWidth == 1 ? VAL == 1 : isNegative() && isPowerOf2(); } /// \brief Check if this APInt has an N-bits unsigned integer value. bool isIntN(unsigned N) const { assert(N && "N == 0 ???"); return getActiveBits() <= N; } /// \brief Check if this APInt has an N-bits signed integer value. bool isSignedIntN(unsigned N) const { assert(N && "N == 0 ???"); return getMinSignedBits() <= N; } /// \brief Check if this APInt's value is a power of two greater than zero. /// /// \returns true if the argument APInt value is a power of two > 0. bool isPowerOf2() const { if (isSingleWord()) return isPowerOf2_64(VAL); return countPopulationSlowCase() == 1; } /// \brief Check if the APInt's value is returned by getSignBit. /// /// \returns true if this is the value returned by getSignBit. bool isSignBit() const { return isMinSignedValue(); } /// \brief Convert APInt to a boolean value. /// /// This converts the APInt to a boolean value as a test against zero. bool getBoolValue() const { return !!*this; } /// If this value is smaller than the specified limit, return it, otherwise /// return the limit value. This causes the value to saturate to the limit. uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const { return (getActiveBits() > 64 || getZExtValue() > Limit) ? Limit : getZExtValue(); } /// @} /// \name Value Generators /// @{ /// \brief Gets maximum unsigned value of APInt for specific bit width. static APInt getMaxValue(unsigned numBits) { return getAllOnesValue(numBits); } /// \brief Gets maximum signed value of APInt for a specific bit width. static APInt getSignedMaxValue(unsigned numBits) { APInt API = getAllOnesValue(numBits); API.clearBit(numBits - 1); return API; } /// \brief Gets minimum unsigned value of APInt for a specific bit width. static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); } /// \brief Gets minimum signed value of APInt for a specific bit width. static APInt getSignedMinValue(unsigned numBits) { APInt API(numBits, 0); API.setBit(numBits - 1); return API; } /// \brief Get the SignBit for a specific bit width. /// /// This is just a wrapper function of getSignedMinValue(), and it helps code /// readability when we want to get a SignBit. static APInt getSignBit(unsigned BitWidth) { return getSignedMinValue(BitWidth); } /// \brief Get the all-ones value. /// /// \returns the all-ones value for an APInt of the specified bit-width. static APInt getAllOnesValue(unsigned numBits) { return APInt(numBits, UINT64_MAX, true); } /// \brief Get the '0' value. /// /// \returns the '0' value for an APInt of the specified bit-width. static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); } /// \brief Compute an APInt containing numBits highbits from this APInt. /// /// Get an APInt with the same BitWidth as this APInt, just zero mask /// the low bits and right shift to the least significant bit. /// /// \returns the high "numBits" bits of this APInt. APInt getHiBits(unsigned numBits) const; /// \brief Compute an APInt containing numBits lowbits from this APInt. /// /// Get an APInt with the same BitWidth as this APInt, just zero mask /// the high bits. /// /// \returns the low "numBits" bits of this APInt. APInt getLoBits(unsigned numBits) const; /// \brief Return an APInt with exactly one bit set in the result. static APInt getOneBitSet(unsigned numBits, unsigned BitNo) { APInt Res(numBits, 0); Res.setBit(BitNo); return Res; } /// \brief Get a value with a block of bits set. /// /// Constructs an APInt value that has a contiguous range of bits set. The /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other /// bits will be zero. For example, with parameters(32, 0, 16) you would get /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For /// example, with parameters (32, 28, 4), you would get 0xF000000F. /// /// \param numBits the intended bit width of the result /// \param loBit the index of the lowest bit set. /// \param hiBit the index of the highest bit set. /// /// \returns An APInt value with the requested bits set. static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) { assert(hiBit <= numBits && "hiBit out of range"); assert(loBit < numBits && "loBit out of range"); if (hiBit < loBit) return getLowBitsSet(numBits, hiBit) | getHighBitsSet(numBits, numBits - loBit); return getLowBitsSet(numBits, hiBit - loBit).shl(loBit); } /// \brief Get a value with high bits set /// /// Constructs an APInt value that has the top hiBitsSet bits set. /// /// \param numBits the bitwidth of the result /// \param hiBitsSet the number of high-order bits set in the result. static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) { assert(hiBitsSet <= numBits && "Too many bits to set!"); // Handle a degenerate case, to avoid shifting by word size if (hiBitsSet == 0) return APInt(numBits, 0); unsigned shiftAmt = numBits - hiBitsSet; // For small values, return quickly if (numBits <= APINT_BITS_PER_WORD) return APInt(numBits, ~0ULL << shiftAmt); return getAllOnesValue(numBits).shl(shiftAmt); } /// \brief Get a value with low bits set /// /// Constructs an APInt value that has the bottom loBitsSet bits set. /// /// \param numBits the bitwidth of the result /// \param loBitsSet the number of low-order bits set in the result. static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) { assert(loBitsSet <= numBits && "Too many bits to set!"); // Handle a degenerate case, to avoid shifting by word size if (loBitsSet == 0) return APInt(numBits, 0); if (loBitsSet == APINT_BITS_PER_WORD) return APInt(numBits, UINT64_MAX); // For small values, return quickly. if (loBitsSet <= APINT_BITS_PER_WORD) return APInt(numBits, UINT64_MAX >> (APINT_BITS_PER_WORD - loBitsSet)); return getAllOnesValue(numBits).lshr(numBits - loBitsSet); } /// \brief Return a value containing V broadcasted over NewLen bits. static APInt getSplat(unsigned NewLen, const APInt &V) { assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!"); APInt Val = V.zextOrSelf(NewLen); for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1) Val |= Val << I; return Val; } /// \brief Determine if two APInts have the same value, after zero-extending /// one of them (if needed!) to ensure that the bit-widths match. static bool isSameValue(const APInt &I1, const APInt &I2) { if (I1.getBitWidth() == I2.getBitWidth()) return I1 == I2; if (I1.getBitWidth() > I2.getBitWidth()) return I1 == I2.zext(I1.getBitWidth()); return I1.zext(I2.getBitWidth()) == I2; } /// \brief Overload to compute a hash_code for an APInt value. friend hash_code hash_value(const APInt &Arg); /// This function returns a pointer to the internal storage of the APInt. /// This is useful for writing out the APInt in binary form without any /// conversions. const uint64_t *getRawData() const { if (isSingleWord()) return &VAL; return &pVal[0]; } /// @} /// \name Unary Operators /// @{ /// \brief Postfix increment operator. /// /// \returns a new APInt value representing *this incremented by one const APInt operator++(int) { APInt API(*this); ++(*this); return API; } /// \brief Prefix increment operator. /// /// \returns *this incremented by one APInt &operator++(); /// \brief Postfix decrement operator. /// /// \returns a new APInt representing *this decremented by one. const APInt operator--(int) { APInt API(*this); --(*this); return API; } /// \brief Prefix decrement operator. /// /// \returns *this decremented by one. APInt &operator--(); /// \brief Unary bitwise complement operator. /// /// Performs a bitwise complement operation on this APInt. /// /// \returns an APInt that is the bitwise complement of *this APInt operator~() const { APInt Result(*this); Result.flipAllBits(); return Result; } /// \brief Unary negation operator /// /// Negates *this using two's complement logic. /// /// \returns An APInt value representing the negation of *this. APInt operator-() const { return APInt(BitWidth, 0) - (*this); } /// \brief Logical negation operator. /// /// Performs logical negation operation on this APInt. /// /// \returns true if *this is zero, false otherwise. bool operator!() const { if (isSingleWord()) return !VAL; for (unsigned i = 0; i != getNumWords(); ++i) if (pVal[i]) return false; return true; } /// @} /// \name Assignment Operators /// @{ /// \brief Copy assignment operator. /// /// \returns *this after assignment of RHS. APInt &operator=(const APInt &RHS) { // If the bitwidths are the same, we can avoid mucking with memory if (isSingleWord() && RHS.isSingleWord()) { VAL = RHS.VAL; BitWidth = RHS.BitWidth; return clearUnusedBits(); } return AssignSlowCase(RHS); } #if LLVM_HAS_RVALUE_REFERENCES /// @brief Move assignment operator. APInt &operator=(APInt &&that) { if (!isSingleWord()) delete[] pVal; BitWidth = that.BitWidth; VAL = that.VAL; that.BitWidth = 0; return *this; } #endif /// \brief Assignment operator. /// /// The RHS value is assigned to *this. If the significant bits in RHS exceed /// the bit width, the excess bits are truncated. If the bit width is larger /// than 64, the value is zero filled in the unspecified high order bits. /// /// \returns *this after assignment of RHS value. APInt &operator=(uint64_t RHS); /// \brief Bitwise AND assignment operator. /// /// Performs a bitwise AND operation on this APInt and RHS. The result is /// assigned to *this. /// /// \returns *this after ANDing with RHS. APInt &operator&=(const APInt &RHS); /// \brief Bitwise OR assignment operator. /// /// Performs a bitwise OR operation on this APInt and RHS. The result is /// assigned *this; /// /// \returns *this after ORing with RHS. APInt &operator|=(const APInt &RHS); /// \brief Bitwise OR assignment operator. /// /// Performs a bitwise OR operation on this APInt and RHS. RHS is /// logically zero-extended or truncated to match the bit-width of /// the LHS. APInt &operator|=(uint64_t RHS) { if (isSingleWord()) { VAL |= RHS; clearUnusedBits(); } else { pVal[0] |= RHS; } return *this; } /// \brief Bitwise XOR assignment operator. /// /// Performs a bitwise XOR operation on this APInt and RHS. The result is /// assigned to *this. /// /// \returns *this after XORing with RHS. APInt &operator^=(const APInt &RHS); /// \brief Multiplication assignment operator. /// /// Multiplies this APInt by RHS and assigns the result to *this. /// /// \returns *this APInt &operator*=(const APInt &RHS); /// \brief Addition assignment operator. /// /// Adds RHS to *this and assigns the result to *this. /// /// \returns *this APInt &operator+=(const APInt &RHS); /// \brief Subtraction assignment operator. /// /// Subtracts RHS from *this and assigns the result to *this. /// /// \returns *this APInt &operator-=(const APInt &RHS); /// \brief Left-shift assignment function. /// /// Shifts *this left by shiftAmt and assigns the result to *this. /// /// \returns *this after shifting left by shiftAmt APInt &operator<<=(unsigned shiftAmt) { *this = shl(shiftAmt); return *this; } /// @} /// \name Binary Operators /// @{ /// \brief Bitwise AND operator. /// /// Performs a bitwise AND operation on *this and RHS. /// /// \returns An APInt value representing the bitwise AND of *this and RHS. APInt operator&(const APInt &RHS) const { assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); if (isSingleWord()) return APInt(getBitWidth(), VAL & RHS.VAL); return AndSlowCase(RHS); } APInt And(const APInt &RHS) const { return this->operator&(RHS); } /// \brief Bitwise OR operator. /// /// Performs a bitwise OR operation on *this and RHS. /// /// \returns An APInt value representing the bitwise OR of *this and RHS. APInt operator|(const APInt &RHS) const { assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); if (isSingleWord()) return APInt(getBitWidth(), VAL | RHS.VAL); return OrSlowCase(RHS); } /// \brief Bitwise OR function. /// /// Performs a bitwise or on *this and RHS. This is implemented bny simply /// calling operator|. /// /// \returns An APInt value representing the bitwise OR of *this and RHS. APInt Or(const APInt &RHS) const { return this->operator|(RHS); } /// \brief Bitwise XOR operator. /// /// Performs a bitwise XOR operation on *this and RHS. /// /// \returns An APInt value representing the bitwise XOR of *this and RHS. APInt operator^(const APInt &RHS) const { assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); if (isSingleWord()) return APInt(BitWidth, VAL ^ RHS.VAL); return XorSlowCase(RHS); } /// \brief Bitwise XOR function. /// /// Performs a bitwise XOR operation on *this and RHS. This is implemented /// through the usage of operator^. /// /// \returns An APInt value representing the bitwise XOR of *this and RHS. APInt Xor(const APInt &RHS) const { return this->operator^(RHS); } /// \brief Multiplication operator. /// /// Multiplies this APInt by RHS and returns the result. APInt operator*(const APInt &RHS) const; /// \brief Addition operator. /// /// Adds RHS to this APInt and returns the result. APInt operator+(const APInt &RHS) const; APInt operator+(uint64_t RHS) const { return (*this) + APInt(BitWidth, RHS); } /// \brief Subtraction operator. /// /// Subtracts RHS from this APInt and returns the result. APInt operator-(const APInt &RHS) const; APInt operator-(uint64_t RHS) const { return (*this) - APInt(BitWidth, RHS); } /// \brief Left logical shift operator. /// /// Shifts this APInt left by \p Bits and returns the result. APInt operator<<(unsigned Bits) const { return shl(Bits); } /// \brief Left logical shift operator. /// /// Shifts this APInt left by \p Bits and returns the result. APInt operator<<(const APInt &Bits) const { return shl(Bits); } /// \brief Arithmetic right-shift function. /// /// Arithmetic right-shift this APInt by shiftAmt. APInt ashr(unsigned shiftAmt) const; /// \brief Logical right-shift function. /// /// Logical right-shift this APInt by shiftAmt. APInt lshr(unsigned shiftAmt) const; /// \brief Left-shift function. /// /// Left-shift this APInt by shiftAmt. APInt shl(unsigned shiftAmt) const { assert(shiftAmt <= BitWidth && "Invalid shift amount"); if (isSingleWord()) { if (shiftAmt >= BitWidth) return APInt(BitWidth, 0); // avoid undefined shift results return APInt(BitWidth, VAL << shiftAmt); } return shlSlowCase(shiftAmt); } /// \brief Rotate left by rotateAmt. APInt rotl(unsigned rotateAmt) const; /// \brief Rotate right by rotateAmt. APInt rotr(unsigned rotateAmt) const; /// \brief Arithmetic right-shift function. /// /// Arithmetic right-shift this APInt by shiftAmt. APInt ashr(const APInt &shiftAmt) const; /// \brief Logical right-shift function. /// /// Logical right-shift this APInt by shiftAmt. APInt lshr(const APInt &shiftAmt) const; /// \brief Left-shift function. /// /// Left-shift this APInt by shiftAmt. APInt shl(const APInt &shiftAmt) const; /// \brief Rotate left by rotateAmt. APInt rotl(const APInt &rotateAmt) const; /// \brief Rotate right by rotateAmt. APInt rotr(const APInt &rotateAmt) const; /// \brief Unsigned division operation. /// /// Perform an unsigned divide operation on this APInt by RHS. Both this and /// RHS are treated as unsigned quantities for purposes of this division. /// /// \returns a new APInt value containing the division result APInt udiv(const APInt &RHS) const; /// \brief Signed division function for APInt. /// /// Signed divide this APInt by APInt RHS. APInt sdiv(const APInt &RHS) const; /// \brief Unsigned remainder operation. /// /// Perform an unsigned remainder operation on this APInt with RHS being the /// divisor. Both this and RHS are treated as unsigned quantities for purposes /// of this operation. Note that this is a true remainder operation and not a /// modulo operation because the sign follows the sign of the dividend which /// is *this. /// /// \returns a new APInt value containing the remainder result APInt urem(const APInt &RHS) const; /// \brief Function for signed remainder operation. /// /// Signed remainder operation on APInt. APInt srem(const APInt &RHS) const; /// \brief Dual division/remainder interface. /// /// Sometimes it is convenient to divide two APInt values and obtain both the /// quotient and remainder. This function does both operations in the same /// computation making it a little more efficient. The pair of input arguments /// may overlap with the pair of output arguments. It is safe to call /// udivrem(X, Y, X, Y), for example. static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, APInt &Remainder); static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, APInt &Remainder); // Operations that return overflow indicators. APInt sadd_ov(const APInt &RHS, bool &Overflow) const; APInt uadd_ov(const APInt &RHS, bool &Overflow) const; APInt ssub_ov(const APInt &RHS, bool &Overflow) const; APInt usub_ov(const APInt &RHS, bool &Overflow) const; APInt sdiv_ov(const APInt &RHS, bool &Overflow) const; APInt smul_ov(const APInt &RHS, bool &Overflow) const; APInt umul_ov(const APInt &RHS, bool &Overflow) const; APInt sshl_ov(unsigned Amt, bool &Overflow) const; /// \brief Array-indexing support. /// /// \returns the bit value at bitPosition bool operator[](unsigned bitPosition) const { assert(bitPosition < getBitWidth() && "Bit position out of bounds!"); return (maskBit(bitPosition) & (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) != 0; } /// @} /// \name Comparison Operators /// @{ /// \brief Equality operator. /// /// Compares this APInt with RHS for the validity of the equality /// relationship. bool operator==(const APInt &RHS) const { assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths"); if (isSingleWord()) return VAL == RHS.VAL; return EqualSlowCase(RHS); } /// \brief Equality operator. /// /// Compares this APInt with a uint64_t for the validity of the equality /// relationship. /// /// \returns true if *this == Val bool operator==(uint64_t Val) const { if (isSingleWord()) return VAL == Val; return EqualSlowCase(Val); } /// \brief Equality comparison. /// /// Compares this APInt with RHS for the validity of the equality /// relationship. /// /// \returns true if *this == Val bool eq(const APInt &RHS) const { return (*this) == RHS; } /// \brief Inequality operator. /// /// Compares this APInt with RHS for the validity of the inequality /// relationship. /// /// \returns true if *this != Val bool operator!=(const APInt &RHS) const { return !((*this) == RHS); } /// \brief Inequality operator. /// /// Compares this APInt with a uint64_t for the validity of the inequality /// relationship. /// /// \returns true if *this != Val bool operator!=(uint64_t Val) const { return !((*this) == Val); } /// \brief Inequality comparison /// /// Compares this APInt with RHS for the validity of the inequality /// relationship. /// /// \returns true if *this != Val bool ne(const APInt &RHS) const { return !((*this) == RHS); } /// \brief Unsigned less than comparison /// /// Regards both *this and RHS as unsigned quantities and compares them for /// the validity of the less-than relationship. /// /// \returns true if *this < RHS when both are considered unsigned. bool ult(const APInt &RHS) const; /// \brief Unsigned less than comparison /// /// Regards both *this as an unsigned quantity and compares it with RHS for /// the validity of the less-than relationship. /// /// \returns true if *this < RHS when considered unsigned. bool ult(uint64_t RHS) const { return ult(APInt(getBitWidth(), RHS)); } /// \brief Signed less than comparison /// /// Regards both *this and RHS as signed quantities and compares them for /// validity of the less-than relationship. /// /// \returns true if *this < RHS when both are considered signed. bool slt(const APInt &RHS) const; /// \brief Signed less than comparison /// /// Regards both *this as a signed quantity and compares it with RHS for /// the validity of the less-than relationship. /// /// \returns true if *this < RHS when considered signed. bool slt(uint64_t RHS) const { return slt(APInt(getBitWidth(), RHS)); } /// \brief Unsigned less or equal comparison /// /// Regards both *this and RHS as unsigned quantities and compares them for /// validity of the less-or-equal relationship. /// /// \returns true if *this <= RHS when both are considered unsigned. bool ule(const APInt &RHS) const { return ult(RHS) || eq(RHS); } /// \brief Unsigned less or equal comparison /// /// Regards both *this as an unsigned quantity and compares it with RHS for /// the validity of the less-or-equal relationship. /// /// \returns true if *this <= RHS when considered unsigned. bool ule(uint64_t RHS) const { return ule(APInt(getBitWidth(), RHS)); } /// \brief Signed less or equal comparison /// /// Regards both *this and RHS as signed quantities and compares them for /// validity of the less-or-equal relationship. /// /// \returns true if *this <= RHS when both are considered signed. bool sle(const APInt &RHS) const { return slt(RHS) || eq(RHS); } /// \brief Signed less or equal comparison /// /// Regards both *this as a signed quantity and compares it with RHS for the /// validity of the less-or-equal relationship. /// /// \returns true if *this <= RHS when considered signed. bool sle(uint64_t RHS) const { return sle(APInt(getBitWidth(), RHS)); } /// \brief Unsigned greather than comparison /// /// Regards both *this and RHS as unsigned quantities and compares them for /// the validity of the greater-than relationship. /// /// \returns true if *this > RHS when both are considered unsigned. bool ugt(const APInt &RHS) const { return !ult(RHS) && !eq(RHS); } /// \brief Unsigned greater than comparison /// /// Regards both *this as an unsigned quantity and compares it with RHS for /// the validity of the greater-than relationship. /// /// \returns true if *this > RHS when considered unsigned. bool ugt(uint64_t RHS) const { return ugt(APInt(getBitWidth(), RHS)); } /// \brief Signed greather than comparison /// /// Regards both *this and RHS as signed quantities and compares them for the /// validity of the greater-than relationship. /// /// \returns true if *this > RHS when both are considered signed. bool sgt(const APInt &RHS) const { return !slt(RHS) && !eq(RHS); } /// \brief Signed greater than comparison /// /// Regards both *this as a signed quantity and compares it with RHS for /// the validity of the greater-than relationship. /// /// \returns true if *this > RHS when considered signed. bool sgt(uint64_t RHS) const { return sgt(APInt(getBitWidth(), RHS)); } /// \brief Unsigned greater or equal comparison /// /// Regards both *this and RHS as unsigned quantities and compares them for /// validity of the greater-or-equal relationship. /// /// \returns true if *this >= RHS when both are considered unsigned. bool uge(const APInt &RHS) const { return !ult(RHS); } /// \brief Unsigned greater or equal comparison /// /// Regards both *this as an unsigned quantity and compares it with RHS for /// the validity of the greater-or-equal relationship. /// /// \returns true if *this >= RHS when considered unsigned. bool uge(uint64_t RHS) const { return uge(APInt(getBitWidth(), RHS)); } /// \brief Signed greather or equal comparison /// /// Regards both *this and RHS as signed quantities and compares them for /// validity of the greater-or-equal relationship. /// /// \returns true if *this >= RHS when both are considered signed. bool sge(const APInt &RHS) const { return !slt(RHS); } /// \brief Signed greater or equal comparison /// /// Regards both *this as a signed quantity and compares it with RHS for /// the validity of the greater-or-equal relationship. /// /// \returns true if *this >= RHS when considered signed. bool sge(uint64_t RHS) const { return sge(APInt(getBitWidth(), RHS)); } /// This operation tests if there are any pairs of corresponding bits /// between this APInt and RHS that are both set. bool intersects(const APInt &RHS) const { return (*this & RHS) != 0; } /// @} /// \name Resizing Operators /// @{ /// \brief Truncate to new width. /// /// Truncate the APInt to a specified width. It is an error to specify a width /// that is greater than or equal to the current width. APInt trunc(unsigned width) const; /// \brief Sign extend to a new width. /// /// This operation sign extends the APInt to a new width. If the high order /// bit is set, the fill on the left will be done with 1 bits, otherwise zero. /// It is an error to specify a width that is less than or equal to the /// current width. APInt sext(unsigned width) const; /// \brief Zero extend to a new width. /// /// This operation zero extends the APInt to a new width. The high order bits /// are filled with 0 bits. It is an error to specify a width that is less /// than or equal to the current width. APInt zext(unsigned width) const; /// \brief Sign extend or truncate to width /// /// Make this APInt have the bit width given by \p width. The value is sign /// extended, truncated, or left alone to make it that width. APInt sextOrTrunc(unsigned width) const; /// \brief Zero extend or truncate to width /// /// Make this APInt have the bit width given by \p width. The value is zero /// extended, truncated, or left alone to make it that width. APInt zextOrTrunc(unsigned width) const; /// \brief Sign extend or truncate to width /// /// Make this APInt have the bit width given by \p width. The value is sign /// extended, or left alone to make it that width. APInt sextOrSelf(unsigned width) const; /// \brief Zero extend or truncate to width /// /// Make this APInt have the bit width given by \p width. The value is zero /// extended, or left alone to make it that width. APInt zextOrSelf(unsigned width) const; /// @} /// \name Bit Manipulation Operators /// @{ /// \brief Set every bit to 1. void setAllBits() { if (isSingleWord()) VAL = UINT64_MAX; else { // Set all the bits in all the words. for (unsigned i = 0; i < getNumWords(); ++i) pVal[i] = UINT64_MAX; } // Clear the unused ones clearUnusedBits(); } /// \brief Set a given bit to 1. /// /// Set the given bit to 1 whose position is given as "bitPosition". void setBit(unsigned bitPosition); /// \brief Set every bit to 0. void clearAllBits() { if (isSingleWord()) VAL = 0; else memset(pVal, 0, getNumWords() * APINT_WORD_SIZE); } /// \brief Set a given bit to 0. /// /// Set the given bit to 0 whose position is given as "bitPosition". void clearBit(unsigned bitPosition); /// \brief Toggle every bit to its opposite value. void flipAllBits() { if (isSingleWord()) VAL ^= UINT64_MAX; else { for (unsigned i = 0; i < getNumWords(); ++i) pVal[i] ^= UINT64_MAX; } clearUnusedBits(); } /// \brief Toggles a given bit to its opposite value. /// /// Toggle a given bit to its opposite value whose position is given /// as "bitPosition". void flipBit(unsigned bitPosition); /// @} /// \name Value Characterization Functions /// @{ /// \brief Return the number of bits in the APInt. unsigned getBitWidth() const { return BitWidth; } /// \brief Get the number of words. /// /// Here one word's bitwidth equals to that of uint64_t. /// /// \returns the number of words to hold the integer value of this APInt. unsigned getNumWords() const { return getNumWords(BitWidth); } /// \brief Get the number of words. /// /// *NOTE* Here one word's bitwidth equals to that of uint64_t. /// /// \returns the number of words to hold the integer value with a given bit /// width. static unsigned getNumWords(unsigned BitWidth) { return (BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD; } /// \brief Compute the number of active bits in the value /// /// This function returns the number of active bits which is defined as the /// bit width minus the number of leading zeros. This is used in several /// computations to see how "wide" the value is. unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); } /// \brief Compute the number of active words in the value of this APInt. /// /// This is used in conjunction with getActiveData to extract the raw value of /// the APInt. unsigned getActiveWords() const { unsigned numActiveBits = getActiveBits(); return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1; } /// \brief Get the minimum bit size for this signed APInt /// /// Computes the minimum bit width for this APInt while considering it to be a /// signed (and probably negative) value. If the value is not negative, this /// function returns the same value as getActiveBits()+1. Otherwise, it /// returns the smallest bit width that will retain the negative value. For /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so /// for -1, this function will always return 1. unsigned getMinSignedBits() const { if (isNegative()) return BitWidth - countLeadingOnes() + 1; return getActiveBits() + 1; } /// \brief Get zero extended value /// /// This method attempts to return the value of this APInt as a zero extended /// uint64_t. The bitwidth must be <= 64 or the value must fit within a /// uint64_t. Otherwise an assertion will result. uint64_t getZExtValue() const { if (isSingleWord()) return VAL; assert(getActiveBits() <= 64 && "Too many bits for uint64_t"); return pVal[0]; } /// \brief Get sign extended value /// /// This method attempts to return the value of this APInt as a sign extended /// int64_t. The bit width must be <= 64 or the value must fit within an /// int64_t. Otherwise an assertion will result. int64_t getSExtValue() const { if (isSingleWord()) return int64_t(VAL << (APINT_BITS_PER_WORD - BitWidth)) >> (APINT_BITS_PER_WORD - BitWidth); assert(getMinSignedBits() <= 64 && "Too many bits for int64_t"); return int64_t(pVal[0]); } /// \brief Get bits required for string value. /// /// This method determines how many bits are required to hold the APInt /// equivalent of the string given by \p str. static unsigned getBitsNeeded(StringRef str, uint8_t radix); /// \brief The APInt version of the countLeadingZeros functions in /// MathExtras.h. /// /// It counts the number of zeros from the most significant bit to the first /// one bit. /// /// \returns BitWidth if the value is zero, otherwise returns the number of /// zeros from the most significant bit to the first one bits. unsigned countLeadingZeros() const { if (isSingleWord()) { unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth; return llvm::countLeadingZeros(VAL) - unusedBits; } return countLeadingZerosSlowCase(); } /// \brief Count the number of leading one bits. /// /// This function is an APInt version of the countLeadingOnes_{32,64} /// functions in MathExtras.h. It counts the number of ones from the most /// significant bit to the first zero bit. /// /// \returns 0 if the high order bit is not set, otherwise returns the number /// of 1 bits from the most significant to the least unsigned countLeadingOnes() const; /// Computes the number of leading bits of this APInt that are equal to its /// sign bit. unsigned getNumSignBits() const { return isNegative() ? countLeadingOnes() : countLeadingZeros(); } /// \brief Count the number of trailing zero bits. /// /// This function is an APInt version of the countTrailingZeros_{32,64} /// functions in MathExtras.h. It counts the number of zeros from the least /// significant bit to the first set bit. /// /// \returns BitWidth if the value is zero, otherwise returns the number of /// zeros from the least significant bit to the first one bit. unsigned countTrailingZeros() const; /// \brief Count the number of trailing one bits. /// /// This function is an APInt version of the countTrailingOnes_{32,64} /// functions in MathExtras.h. It counts the number of ones from the least /// significant bit to the first zero bit. /// /// \returns BitWidth if the value is all ones, otherwise returns the number /// of ones from the least significant bit to the first zero bit. unsigned countTrailingOnes() const { if (isSingleWord()) return CountTrailingOnes_64(VAL); return countTrailingOnesSlowCase(); } /// \brief Count the number of bits set. /// /// This function is an APInt version of the countPopulation_{32,64} functions /// in MathExtras.h. It counts the number of 1 bits in the APInt value. /// /// \returns 0 if the value is zero, otherwise returns the number of set bits. unsigned countPopulation() const { if (isSingleWord()) return CountPopulation_64(VAL); return countPopulationSlowCase(); } /// @} /// \name Conversion Functions /// @{ void print(raw_ostream &OS, bool isSigned) const; /// Converts an APInt to a string and append it to Str. Str is commonly a /// SmallString. void toString(SmallVectorImpl &Str, unsigned Radix, bool Signed, bool formatAsCLiteral = false) const; /// Considers the APInt to be unsigned and converts it into a string in the /// radix given. The radix can be 2, 8, 10 16, or 36. void toStringUnsigned(SmallVectorImpl &Str, unsigned Radix = 10) const { toString(Str, Radix, false, false); } /// Considers the APInt to be signed and converts it into a string in the /// radix given. The radix can be 2, 8, 10, 16, or 36. void toStringSigned(SmallVectorImpl &Str, unsigned Radix = 10) const { toString(Str, Radix, true, false); } /// \brief Return the APInt as a std::string. /// /// Note that this is an inefficient method. It is better to pass in a /// SmallVector/SmallString to the methods above to avoid thrashing the heap /// for the string. std::string toString(unsigned Radix, bool Signed) const; /// \returns a byte-swapped representation of this APInt Value. APInt byteSwap() const; /// \brief Converts this APInt to a double value. double roundToDouble(bool isSigned) const; /// \brief Converts this unsigned APInt to a double value. double roundToDouble() const { return roundToDouble(false); } /// \brief Converts this signed APInt to a double value. double signedRoundToDouble() const { return roundToDouble(true); } /// \brief Converts APInt bits to a double /// /// The conversion does not do a translation from integer to double, it just /// re-interprets the bits as a double. Note that it is valid to do this on /// any bit width. Exactly 64 bits will be translated. double bitsToDouble() const { union { uint64_t I; double D; } T; T.I = (isSingleWord() ? VAL : pVal[0]); return T.D; } /// \brief Converts APInt bits to a double /// /// The conversion does not do a translation from integer to float, it just /// re-interprets the bits as a float. Note that it is valid to do this on /// any bit width. Exactly 32 bits will be translated. float bitsToFloat() const { union { unsigned I; float F; } T; T.I = unsigned((isSingleWord() ? VAL : pVal[0])); return T.F; } /// \brief Converts a double to APInt bits. /// /// The conversion does not do a translation from double to integer, it just /// re-interprets the bits of the double. static APInt doubleToBits(double V) { union { uint64_t I; double D; } T; T.D = V; return APInt(sizeof T * CHAR_BIT, T.I); } /// \brief Converts a float to APInt bits. /// /// The conversion does not do a translation from float to integer, it just /// re-interprets the bits of the float. static APInt floatToBits(float V) { union { unsigned I; float F; } T; T.F = V; return APInt(sizeof T * CHAR_BIT, T.I); } /// @} /// \name Mathematics Operations /// @{ /// \returns the floor log base 2 of this APInt. unsigned logBase2() const { return BitWidth - 1 - countLeadingZeros(); } /// \returns the ceil log base 2 of this APInt. unsigned ceilLogBase2() const { return BitWidth - (*this - 1).countLeadingZeros(); } /// \returns the log base 2 of this APInt if its an exact power of two, -1 /// otherwise int32_t exactLogBase2() const { if (!isPowerOf2()) return -1; return logBase2(); } /// \brief Compute the square root APInt sqrt() const; /// \brief Get the absolute value; /// /// If *this is < 0 then return -(*this), otherwise *this; APInt abs() const { if (isNegative()) return -(*this); return *this; } /// \returns the multiplicative inverse for a given modulo. APInt multiplicativeInverse(const APInt &modulo) const; /// @} /// \name Support for division by constant /// @{ /// Calculate the magic number for signed division by a constant. struct ms; ms magic() const; /// Calculate the magic number for unsigned division by a constant. struct mu; mu magicu(unsigned LeadingZeros = 0) const; /// @} /// \name Building-block Operations for APInt and APFloat /// @{ // These building block operations operate on a representation of arbitrary // precision, two's-complement, bignum integer values. They should be // sufficient to implement APInt and APFloat bignum requirements. Inputs are // generally a pointer to the base of an array of integer parts, representing // an unsigned bignum, and a count of how many parts there are. /// Sets the least significant part of a bignum to the input value, and zeroes /// out higher parts. static void tcSet(integerPart *, integerPart, unsigned int); /// Assign one bignum to another. static void tcAssign(integerPart *, const integerPart *, unsigned int); /// Returns true if a bignum is zero, false otherwise. static bool tcIsZero(const integerPart *, unsigned int); /// Extract the given bit of a bignum; returns 0 or 1. Zero-based. static int tcExtractBit(const integerPart *, unsigned int bit); /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least /// significant bit of DST. All high bits above srcBITS in DST are /// zero-filled. static void tcExtract(integerPart *, unsigned int dstCount, const integerPart *, unsigned int srcBits, unsigned int srcLSB); /// Set the given bit of a bignum. Zero-based. static void tcSetBit(integerPart *, unsigned int bit); /// Clear the given bit of a bignum. Zero-based. static void tcClearBit(integerPart *, unsigned int bit); /// Returns the bit number of the least or most significant set bit of a /// number. If the input number has no bits set -1U is returned. static unsigned int tcLSB(const integerPart *, unsigned int); static unsigned int tcMSB(const integerPart *parts, unsigned int n); /// Negate a bignum in-place. static void tcNegate(integerPart *, unsigned int); /// DST += RHS + CARRY where CARRY is zero or one. Returns the carry flag. static integerPart tcAdd(integerPart *, const integerPart *, integerPart carry, unsigned); /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag. static integerPart tcSubtract(integerPart *, const integerPart *, integerPart carry, unsigned); /// DST += SRC * MULTIPLIER + PART if add is true /// DST = SRC * MULTIPLIER + PART if add is false /// /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC they must /// start at the same point, i.e. DST == SRC. /// /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned. /// Otherwise DST is filled with the least significant DSTPARTS parts of the /// result, and if all of the omitted higher parts were zero return zero, /// otherwise overflow occurred and return one. static int tcMultiplyPart(integerPart *dst, const integerPart *src, integerPart multiplier, integerPart carry, unsigned int srcParts, unsigned int dstParts, bool add); /// DST = LHS * RHS, where DST has the same width as the operands and is /// filled with the least significant parts of the result. Returns one if /// overflow occurred, otherwise zero. DST must be disjoint from both /// operands. static int tcMultiply(integerPart *, const integerPart *, const integerPart *, unsigned); /// DST = LHS * RHS, where DST has width the sum of the widths of the /// operands. No overflow occurs. DST must be disjoint from both /// operands. Returns the number of parts required to hold the result. static unsigned int tcFullMultiply(integerPart *, const integerPart *, const integerPart *, unsigned, unsigned); /// If RHS is zero LHS and REMAINDER are left unchanged, return one. /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set /// REMAINDER to the remainder, return zero. i.e. /// /// OLD_LHS = RHS * LHS + REMAINDER /// /// SCRATCH is a bignum of the same size as the operands and result for use by /// the routine; its contents need not be initialized and are destroyed. LHS, /// REMAINDER and SCRATCH must be distinct. static int tcDivide(integerPart *lhs, const integerPart *rhs, integerPart *remainder, integerPart *scratch, unsigned int parts); /// Shift a bignum left COUNT bits. Shifted in bits are zero. There are no /// restrictions on COUNT. static void tcShiftLeft(integerPart *, unsigned int parts, unsigned int count); /// Shift a bignum right COUNT bits. Shifted in bits are zero. There are no /// restrictions on COUNT. static void tcShiftRight(integerPart *, unsigned int parts, unsigned int count); /// The obvious AND, OR and XOR and complement operations. static void tcAnd(integerPart *, const integerPart *, unsigned int); static void tcOr(integerPart *, const integerPart *, unsigned int); static void tcXor(integerPart *, const integerPart *, unsigned int); static void tcComplement(integerPart *, unsigned int); /// Comparison (unsigned) of two bignums. static int tcCompare(const integerPart *, const integerPart *, unsigned int); /// Increment a bignum in-place. Return the carry flag. static integerPart tcIncrement(integerPart *, unsigned int); /// Decrement a bignum in-place. Return the borrow flag. static integerPart tcDecrement(integerPart *, unsigned int); /// Set the least significant BITS and clear the rest. static void tcSetLeastSignificantBits(integerPart *, unsigned int, unsigned int bits); /// \brief debug method void dump() const; /// @} }; /// Magic data for optimising signed division by a constant. struct APInt::ms { APInt m; ///< magic number unsigned s; ///< shift amount }; /// Magic data for optimising unsigned division by a constant. struct APInt::mu { APInt m; ///< magic number bool a; ///< add indicator unsigned s; ///< shift amount }; inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; } inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; } inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) { I.print(OS, true); return OS; } namespace APIntOps { /// \brief Determine the smaller of two APInts considered to be signed. inline APInt smin(const APInt &A, const APInt &B) { return A.slt(B) ? A : B; } /// \brief Determine the larger of two APInts considered to be signed. inline APInt smax(const APInt &A, const APInt &B) { return A.sgt(B) ? A : B; } /// \brief Determine the smaller of two APInts considered to be signed. inline APInt umin(const APInt &A, const APInt &B) { return A.ult(B) ? A : B; } /// \brief Determine the larger of two APInts considered to be unsigned. inline APInt umax(const APInt &A, const APInt &B) { return A.ugt(B) ? A : B; } /// \brief Check if the specified APInt has a N-bits unsigned integer value. inline bool isIntN(unsigned N, const APInt &APIVal) { return APIVal.isIntN(N); } /// \brief Check if the specified APInt has a N-bits signed integer value. inline bool isSignedIntN(unsigned N, const APInt &APIVal) { return APIVal.isSignedIntN(N); } /// \returns true if the argument APInt value is a sequence of ones starting at /// the least significant bit with the remainder zero. inline bool isMask(unsigned numBits, const APInt &APIVal) { return numBits <= APIVal.getBitWidth() && APIVal == APInt::getLowBitsSet(APIVal.getBitWidth(), numBits); } /// \brief Return true if the argument APInt value contains a sequence of ones /// with the remainder zero. inline bool isShiftedMask(unsigned numBits, const APInt &APIVal) { return isMask(numBits, (APIVal - APInt(numBits, 1)) | APIVal); } /// \brief Returns a byte-swapped representation of the specified APInt Value. inline APInt byteSwap(const APInt &APIVal) { return APIVal.byteSwap(); } /// \brief Returns the floor log base 2 of the specified APInt value. inline unsigned logBase2(const APInt &APIVal) { return APIVal.logBase2(); } /// \brief Compute GCD of two APInt values. /// /// This function returns the greatest common divisor of the two APInt values /// using Euclid's algorithm. /// /// \returns the greatest common divisor of Val1 and Val2 APInt GreatestCommonDivisor(const APInt &Val1, const APInt &Val2); /// \brief Converts the given APInt to a double value. /// /// Treats the APInt as an unsigned value for conversion purposes. inline double RoundAPIntToDouble(const APInt &APIVal) { return APIVal.roundToDouble(); } /// \brief Converts the given APInt to a double value. /// /// Treats the APInt as a signed value for conversion purposes. inline double RoundSignedAPIntToDouble(const APInt &APIVal) { return APIVal.signedRoundToDouble(); } /// \brief Converts the given APInt to a float vlalue. inline float RoundAPIntToFloat(const APInt &APIVal) { return float(RoundAPIntToDouble(APIVal)); } /// \brief Converts the given APInt to a float value. /// /// Treast the APInt as a signed value for conversion purposes. inline float RoundSignedAPIntToFloat(const APInt &APIVal) { return float(APIVal.signedRoundToDouble()); } /// \brief Converts the given double value into a APInt. /// /// This function convert a double value to an APInt value. APInt RoundDoubleToAPInt(double Double, unsigned width); /// \brief Converts a float value into a APInt. /// /// Converts a float value into an APInt value. inline APInt RoundFloatToAPInt(float Float, unsigned width) { return RoundDoubleToAPInt(double(Float), width); } /// \brief Arithmetic right-shift function. /// /// Arithmetic right-shift the APInt by shiftAmt. inline APInt ashr(const APInt &LHS, unsigned shiftAmt) { return LHS.ashr(shiftAmt); } /// \brief Logical right-shift function. /// /// Logical right-shift the APInt by shiftAmt. inline APInt lshr(const APInt &LHS, unsigned shiftAmt) { return LHS.lshr(shiftAmt); } /// \brief Left-shift function. /// /// Left-shift the APInt by shiftAmt. inline APInt shl(const APInt &LHS, unsigned shiftAmt) { return LHS.shl(shiftAmt); } /// \brief Signed division function for APInt. /// /// Signed divide APInt LHS by APInt RHS. inline APInt sdiv(const APInt &LHS, const APInt &RHS) { return LHS.sdiv(RHS); } /// \brief Unsigned division function for APInt. /// /// Unsigned divide APInt LHS by APInt RHS. inline APInt udiv(const APInt &LHS, const APInt &RHS) { return LHS.udiv(RHS); } /// \brief Function for signed remainder operation. /// /// Signed remainder operation on APInt. inline APInt srem(const APInt &LHS, const APInt &RHS) { return LHS.srem(RHS); } /// \brief Function for unsigned remainder operation. /// /// Unsigned remainder operation on APInt. inline APInt urem(const APInt &LHS, const APInt &RHS) { return LHS.urem(RHS); } /// \brief Function for multiplication operation. /// /// Performs multiplication on APInt values. inline APInt mul(const APInt &LHS, const APInt &RHS) { return LHS * RHS; } /// \brief Function for addition operation. /// /// Performs addition on APInt values. inline APInt add(const APInt &LHS, const APInt &RHS) { return LHS + RHS; } /// \brief Function for subtraction operation. /// /// Performs subtraction on APInt values. inline APInt sub(const APInt &LHS, const APInt &RHS) { return LHS - RHS; } /// \brief Bitwise AND function for APInt. /// /// Performs bitwise AND operation on APInt LHS and /// APInt RHS. inline APInt And(const APInt &LHS, const APInt &RHS) { return LHS & RHS; } /// \brief Bitwise OR function for APInt. /// /// Performs bitwise OR operation on APInt LHS and APInt RHS. inline APInt Or(const APInt &LHS, const APInt &RHS) { return LHS | RHS; } /// \brief Bitwise XOR function for APInt. /// /// Performs bitwise XOR operation on APInt. inline APInt Xor(const APInt &LHS, const APInt &RHS) { return LHS ^ RHS; } /// \brief Bitwise complement function. /// /// Performs a bitwise complement operation on APInt. inline APInt Not(const APInt &APIVal) { return ~APIVal; } } // End of APIntOps namespace // See friend declaration above. This additional declaration is required in // order to compile LLVM with IBM xlC compiler. hash_code hash_value(const APInt &Arg); } // End of llvm namespace #endif