//===- llvm/ADT/DepthFirstIterator.h - Depth First iterator -----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file builds on the ADT/GraphTraits.h file to build generic depth // first graph iterator. This file exposes the following functions/types: // // df_begin/df_end/df_iterator // * Normal depth-first iteration - visit a node and then all of its children. // // idf_begin/idf_end/idf_iterator // * Depth-first iteration on the 'inverse' graph. // // df_ext_begin/df_ext_end/df_ext_iterator // * Normal depth-first iteration - visit a node and then all of its children. // This iterator stores the 'visited' set in an external set, which allows // it to be more efficient, and allows external clients to use the set for // other purposes. // // idf_ext_begin/idf_ext_end/idf_ext_iterator // * Depth-first iteration on the 'inverse' graph. // This iterator stores the 'visited' set in an external set, which allows // it to be more efficient, and allows external clients to use the set for // other purposes. // //===----------------------------------------------------------------------===// #ifndef LLVM_ADT_DEPTHFIRSTITERATOR_H #define LLVM_ADT_DEPTHFIRSTITERATOR_H #include "llvm/ADT/GraphTraits.h" #include "llvm/ADT/PointerIntPair.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/iterator_range.h" #include #include namespace llvm { // df_iterator_storage - A private class which is used to figure out where to // store the visited set. template // Non-external set class df_iterator_storage { public: SetType Visited; }; template class df_iterator_storage { public: df_iterator_storage(SetType &VSet) : Visited(VSet) {} df_iterator_storage(const df_iterator_storage &S) : Visited(S.Visited) {} SetType &Visited; }; // Generic Depth First Iterator template::NodeType*, 8>, bool ExtStorage = false, class GT = GraphTraits > class df_iterator : public std::iterator, public df_iterator_storage { typedef std::iterator super; typedef typename GT::NodeType NodeType; typedef typename GT::ChildIteratorType ChildItTy; typedef PointerIntPair PointerIntTy; // VisitStack - Used to maintain the ordering. Top = current block // First element is node pointer, second is the 'next child' to visit // if the int in PointerIntTy is 0, the 'next child' to visit is invalid std::vector > VisitStack; private: inline df_iterator(NodeType *Node) { this->Visited.insert(Node); VisitStack.push_back(std::make_pair(PointerIntTy(Node, 0), GT::child_begin(Node))); } inline df_iterator() { // End is when stack is empty } inline df_iterator(NodeType *Node, SetType &S) : df_iterator_storage(S) { if (!S.count(Node)) { VisitStack.push_back(std::make_pair(PointerIntTy(Node, 0), GT::child_begin(Node))); this->Visited.insert(Node); } } inline df_iterator(SetType &S) : df_iterator_storage(S) { // End is when stack is empty } inline void toNext() { do { std::pair &Top = VisitStack.back(); NodeType *Node = Top.first.getPointer(); ChildItTy &It = Top.second; if (!Top.first.getInt()) { // now retrieve the real begin of the children before we dive in It = GT::child_begin(Node); Top.first.setInt(1); } while (It != GT::child_end(Node)) { NodeType *Next = *It++; // Has our next sibling been visited? if (Next && this->Visited.insert(Next).second) { // No, do it now. VisitStack.push_back(std::make_pair(PointerIntTy(Next, 0), GT::child_begin(Next))); return; } } // Oops, ran out of successors... go up a level on the stack. VisitStack.pop_back(); } while (!VisitStack.empty()); } public: typedef typename super::pointer pointer; // Provide static begin and end methods as our public "constructors" static df_iterator begin(const GraphT &G) { return df_iterator(GT::getEntryNode(G)); } static df_iterator end(const GraphT &G) { return df_iterator(); } // Static begin and end methods as our public ctors for external iterators static df_iterator begin(const GraphT &G, SetType &S) { return df_iterator(GT::getEntryNode(G), S); } static df_iterator end(const GraphT &G, SetType &S) { return df_iterator(S); } bool operator==(const df_iterator &x) const { return VisitStack == x.VisitStack; } bool operator!=(const df_iterator &x) const { return !(*this == x); } pointer operator*() const { return VisitStack.back().first.getPointer(); } // This is a nonstandard operator-> that dereferences the pointer an extra // time... so that you can actually call methods ON the Node, because // the contained type is a pointer. This allows BBIt->getTerminator() f.e. // NodeType *operator->() const { return **this; } df_iterator &operator++() { // Preincrement toNext(); return *this; } // skips all children of the current node and traverses to next node // df_iterator &skipChildren() { VisitStack.pop_back(); if (!VisitStack.empty()) toNext(); return *this; } df_iterator operator++(int) { // Postincrement df_iterator tmp = *this; ++*this; return tmp; } // nodeVisited - return true if this iterator has already visited the // specified node. This is public, and will probably be used to iterate over // nodes that a depth first iteration did not find: ie unreachable nodes. // bool nodeVisited(NodeType *Node) const { return this->Visited.count(Node) != 0; } /// getPathLength - Return the length of the path from the entry node to the /// current node, counting both nodes. unsigned getPathLength() const { return VisitStack.size(); } /// getPath - Return the n'th node in the path from the entry node to the /// current node. NodeType *getPath(unsigned n) const { return VisitStack[n].first.getPointer(); } }; // Provide global constructors that automatically figure out correct types... // template df_iterator df_begin(const T& G) { return df_iterator::begin(G); } template df_iterator df_end(const T& G) { return df_iterator::end(G); } // Provide an accessor method to use them in range-based patterns. template iterator_range> depth_first(const T& G) { return iterator_range>(df_begin(G), df_end(G)); } // Provide global definitions of external depth first iterators... template ::NodeType*> > struct df_ext_iterator : public df_iterator { df_ext_iterator(const df_iterator &V) : df_iterator(V) {} }; template df_ext_iterator df_ext_begin(const T& G, SetTy &S) { return df_ext_iterator::begin(G, S); } template df_ext_iterator df_ext_end(const T& G, SetTy &S) { return df_ext_iterator::end(G, S); } template iterator_range> depth_first_ext(const T& G, SetTy &S) { return iterator_range>(df_ext_begin(G, S), df_ext_end(G, S)); } // Provide global definitions of inverse depth first iterators... template ::NodeType*, 8>, bool External = false> struct idf_iterator : public df_iterator, SetTy, External> { idf_iterator(const df_iterator, SetTy, External> &V) : df_iterator, SetTy, External>(V) {} }; template idf_iterator idf_begin(const T& G) { return idf_iterator::begin(Inverse(G)); } template idf_iterator idf_end(const T& G){ return idf_iterator::end(Inverse(G)); } // Provide an accessor method to use them in range-based patterns. template iterator_range> inverse_depth_first(const T& G) { return iterator_range>(idf_begin(G), idf_end(G)); } // Provide global definitions of external inverse depth first iterators... template ::NodeType*> > struct idf_ext_iterator : public idf_iterator { idf_ext_iterator(const idf_iterator &V) : idf_iterator(V) {} idf_ext_iterator(const df_iterator, SetTy, true> &V) : idf_iterator(V) {} }; template idf_ext_iterator idf_ext_begin(const T& G, SetTy &S) { return idf_ext_iterator::begin(Inverse(G), S); } template idf_ext_iterator idf_ext_end(const T& G, SetTy &S) { return idf_ext_iterator::end(Inverse(G), S); } template iterator_range> inverse_depth_first_ext(const T& G, SetTy &S) { return iterator_range>(idf_ext_begin(G, S), idf_ext_end(G, S)); } } // End llvm namespace #endif