//===- BitstreamReader.h - Low-level bitstream reader interface -*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This header defines the BitstreamReader class. This class can be used to // read an arbitrary bitstream, regardless of its contents. // //===----------------------------------------------------------------------===// #ifndef BITSTREAM_READER_H #define BITSTREAM_READER_H #include "llvm/ADT/OwningPtr.h" #include "llvm/Bitcode/BitCodes.h" #include "llvm/Support/Endian.h" #include "llvm/Support/StreamableMemoryObject.h" #include #include #include namespace llvm { class Deserializer; class BitstreamReader { public: /// BlockInfo - This contains information emitted to BLOCKINFO_BLOCK blocks. /// These describe abbreviations that all blocks of the specified ID inherit. struct BlockInfo { unsigned BlockID; std::vector Abbrevs; std::string Name; std::vector > RecordNames; }; private: OwningPtr BitcodeBytes; std::vector BlockInfoRecords; /// IgnoreBlockInfoNames - This is set to true if we don't care about the /// block/record name information in the BlockInfo block. Only llvm-bcanalyzer /// uses this. bool IgnoreBlockInfoNames; BitstreamReader(const BitstreamReader&); // DO NOT IMPLEMENT void operator=(const BitstreamReader&); // DO NOT IMPLEMENT public: BitstreamReader() : IgnoreBlockInfoNames(true) { } BitstreamReader(const unsigned char *Start, const unsigned char *End) { IgnoreBlockInfoNames = true; init(Start, End); } BitstreamReader(StreamableMemoryObject *bytes) { BitcodeBytes.reset(bytes); } void init(const unsigned char *Start, const unsigned char *End) { assert(((End-Start) & 3) == 0 &&"Bitcode stream not a multiple of 4 bytes"); BitcodeBytes.reset(getNonStreamedMemoryObject(Start, End)); } StreamableMemoryObject &getBitcodeBytes() { return *BitcodeBytes; } ~BitstreamReader() { // Free the BlockInfoRecords. while (!BlockInfoRecords.empty()) { BlockInfo &Info = BlockInfoRecords.back(); // Free blockinfo abbrev info. for (unsigned i = 0, e = static_cast(Info.Abbrevs.size()); i != e; ++i) Info.Abbrevs[i]->dropRef(); BlockInfoRecords.pop_back(); } } /// CollectBlockInfoNames - This is called by clients that want block/record /// name information. void CollectBlockInfoNames() { IgnoreBlockInfoNames = false; } bool isIgnoringBlockInfoNames() { return IgnoreBlockInfoNames; } //===--------------------------------------------------------------------===// // Block Manipulation //===--------------------------------------------------------------------===// /// hasBlockInfoRecords - Return true if we've already read and processed the /// block info block for this Bitstream. We only process it for the first /// cursor that walks over it. bool hasBlockInfoRecords() const { return !BlockInfoRecords.empty(); } /// getBlockInfo - If there is block info for the specified ID, return it, /// otherwise return null. const BlockInfo *getBlockInfo(unsigned BlockID) const { // Common case, the most recent entry matches BlockID. if (!BlockInfoRecords.empty() && BlockInfoRecords.back().BlockID == BlockID) return &BlockInfoRecords.back(); for (unsigned i = 0, e = static_cast(BlockInfoRecords.size()); i != e; ++i) if (BlockInfoRecords[i].BlockID == BlockID) return &BlockInfoRecords[i]; return 0; } BlockInfo &getOrCreateBlockInfo(unsigned BlockID) { if (const BlockInfo *BI = getBlockInfo(BlockID)) return *const_cast(BI); // Otherwise, add a new record. BlockInfoRecords.push_back(BlockInfo()); BlockInfoRecords.back().BlockID = BlockID; return BlockInfoRecords.back(); } }; class BitstreamCursor { friend class Deserializer; BitstreamReader *BitStream; size_t NextChar; /// CurWord - This is the current data we have pulled from the stream but have /// not returned to the client. uint32_t CurWord; /// BitsInCurWord - This is the number of bits in CurWord that are valid. This /// is always from [0...31] inclusive. unsigned BitsInCurWord; // CurCodeSize - This is the declared size of code values used for the current // block, in bits. unsigned CurCodeSize; /// CurAbbrevs - Abbrevs installed at in this block. std::vector CurAbbrevs; struct Block { unsigned PrevCodeSize; std::vector PrevAbbrevs; explicit Block(unsigned PCS) : PrevCodeSize(PCS) {} }; /// BlockScope - This tracks the codesize of parent blocks. SmallVector BlockScope; public: BitstreamCursor() : BitStream(0), NextChar(0) { } BitstreamCursor(const BitstreamCursor &RHS) : BitStream(0), NextChar(0) { operator=(RHS); } explicit BitstreamCursor(BitstreamReader &R) : BitStream(&R) { NextChar = 0; CurWord = 0; BitsInCurWord = 0; CurCodeSize = 2; } void init(BitstreamReader &R) { freeState(); BitStream = &R; NextChar = 0; CurWord = 0; BitsInCurWord = 0; CurCodeSize = 2; } ~BitstreamCursor() { freeState(); } void operator=(const BitstreamCursor &RHS) { freeState(); BitStream = RHS.BitStream; NextChar = RHS.NextChar; CurWord = RHS.CurWord; BitsInCurWord = RHS.BitsInCurWord; CurCodeSize = RHS.CurCodeSize; // Copy abbreviations, and bump ref counts. CurAbbrevs = RHS.CurAbbrevs; for (unsigned i = 0, e = static_cast(CurAbbrevs.size()); i != e; ++i) CurAbbrevs[i]->addRef(); // Copy block scope and bump ref counts. BlockScope = RHS.BlockScope; for (unsigned S = 0, e = static_cast(BlockScope.size()); S != e; ++S) { std::vector &Abbrevs = BlockScope[S].PrevAbbrevs; for (unsigned i = 0, e = static_cast(Abbrevs.size()); i != e; ++i) Abbrevs[i]->addRef(); } } void freeState() { // Free all the Abbrevs. for (unsigned i = 0, e = static_cast(CurAbbrevs.size()); i != e; ++i) CurAbbrevs[i]->dropRef(); CurAbbrevs.clear(); // Free all the Abbrevs in the block scope. for (unsigned S = 0, e = static_cast(BlockScope.size()); S != e; ++S) { std::vector &Abbrevs = BlockScope[S].PrevAbbrevs; for (unsigned i = 0, e = static_cast(Abbrevs.size()); i != e; ++i) Abbrevs[i]->dropRef(); } BlockScope.clear(); } /// GetAbbrevIDWidth - Return the number of bits used to encode an abbrev #. unsigned GetAbbrevIDWidth() const { return CurCodeSize; } bool isEndPos(size_t pos) { return BitStream->getBitcodeBytes().isObjectEnd(static_cast(pos)); } bool canSkipToPos(size_t pos) const { // pos can be skipped to if it is a valid address or one byte past the end. return pos == 0 || BitStream->getBitcodeBytes().isValidAddress( static_cast(pos - 1)); } unsigned char getByte(size_t pos) { uint8_t byte = -1; BitStream->getBitcodeBytes().readByte(pos, &byte); return byte; } uint32_t getWord(size_t pos) { uint8_t buf[sizeof(uint32_t)]; memset(buf, 0xFF, sizeof(buf)); BitStream->getBitcodeBytes().readBytes(pos, sizeof(buf), buf, NULL); return *reinterpret_cast(buf); } bool AtEndOfStream() { return isEndPos(NextChar) && BitsInCurWord == 0; } /// GetCurrentBitNo - Return the bit # of the bit we are reading. uint64_t GetCurrentBitNo() const { return NextChar*CHAR_BIT - BitsInCurWord; } BitstreamReader *getBitStreamReader() { return BitStream; } const BitstreamReader *getBitStreamReader() const { return BitStream; } /// JumpToBit - Reset the stream to the specified bit number. void JumpToBit(uint64_t BitNo) { uintptr_t ByteNo = uintptr_t(BitNo/8) & ~3; uintptr_t WordBitNo = uintptr_t(BitNo) & 31; assert(canSkipToPos(ByteNo) && "Invalid location"); // Move the cursor to the right word. NextChar = ByteNo; BitsInCurWord = 0; CurWord = 0; // Skip over any bits that are already consumed. if (WordBitNo) Read(static_cast(WordBitNo)); } uint32_t Read(unsigned NumBits) { assert(NumBits <= 32 && "Cannot return more than 32 bits!"); // If the field is fully contained by CurWord, return it quickly. if (BitsInCurWord >= NumBits) { uint32_t R = CurWord & ((1U << NumBits)-1); CurWord >>= NumBits; BitsInCurWord -= NumBits; return R; } // If we run out of data, stop at the end of the stream. if (isEndPos(NextChar)) { CurWord = 0; BitsInCurWord = 0; return 0; } unsigned R = CurWord; // Read the next word from the stream. CurWord = getWord(NextChar); NextChar += 4; // Extract NumBits-BitsInCurWord from what we just read. unsigned BitsLeft = NumBits-BitsInCurWord; // Be careful here, BitsLeft is in the range [1..32] inclusive. R |= (CurWord & (~0U >> (32-BitsLeft))) << BitsInCurWord; // BitsLeft bits have just been used up from CurWord. if (BitsLeft != 32) CurWord >>= BitsLeft; else CurWord = 0; BitsInCurWord = 32-BitsLeft; return R; } uint64_t Read64(unsigned NumBits) { if (NumBits <= 32) return Read(NumBits); uint64_t V = Read(32); return V | (uint64_t)Read(NumBits-32) << 32; } uint32_t ReadVBR(unsigned NumBits) { uint32_t Piece = Read(NumBits); if ((Piece & (1U << (NumBits-1))) == 0) return Piece; uint32_t Result = 0; unsigned NextBit = 0; while (1) { Result |= (Piece & ((1U << (NumBits-1))-1)) << NextBit; if ((Piece & (1U << (NumBits-1))) == 0) return Result; NextBit += NumBits-1; Piece = Read(NumBits); } } // ReadVBR64 - Read a VBR that may have a value up to 64-bits in size. The // chunk size of the VBR must still be <= 32 bits though. uint64_t ReadVBR64(unsigned NumBits) { uint32_t Piece = Read(NumBits); if ((Piece & (1U << (NumBits-1))) == 0) return uint64_t(Piece); uint64_t Result = 0; unsigned NextBit = 0; while (1) { Result |= uint64_t(Piece & ((1U << (NumBits-1))-1)) << NextBit; if ((Piece & (1U << (NumBits-1))) == 0) return Result; NextBit += NumBits-1; Piece = Read(NumBits); } } void SkipToWord() { BitsInCurWord = 0; CurWord = 0; } unsigned ReadCode() { return Read(CurCodeSize); } // Block header: // [ENTER_SUBBLOCK, blockid, newcodelen, , blocklen] /// ReadSubBlockID - Having read the ENTER_SUBBLOCK code, read the BlockID for /// the block. unsigned ReadSubBlockID() { return ReadVBR(bitc::BlockIDWidth); } /// SkipBlock - Having read the ENTER_SUBBLOCK abbrevid and a BlockID, skip /// over the body of this block. If the block record is malformed, return /// true. bool SkipBlock() { // Read and ignore the codelen value. Since we are skipping this block, we // don't care what code widths are used inside of it. ReadVBR(bitc::CodeLenWidth); SkipToWord(); unsigned NumWords = Read(bitc::BlockSizeWidth); // Check that the block wasn't partially defined, and that the offset isn't // bogus. size_t SkipTo = NextChar + NumWords*4; if (AtEndOfStream() || !canSkipToPos(SkipTo)) return true; NextChar = SkipTo; return false; } /// EnterSubBlock - Having read the ENTER_SUBBLOCK abbrevid, enter /// the block, and return true if the block is valid. bool EnterSubBlock(unsigned BlockID, unsigned *NumWordsP = 0) { // Save the current block's state on BlockScope. BlockScope.push_back(Block(CurCodeSize)); BlockScope.back().PrevAbbrevs.swap(CurAbbrevs); // Add the abbrevs specific to this block to the CurAbbrevs list. if (const BitstreamReader::BlockInfo *Info = BitStream->getBlockInfo(BlockID)) { for (unsigned i = 0, e = static_cast(Info->Abbrevs.size()); i != e; ++i) { CurAbbrevs.push_back(Info->Abbrevs[i]); CurAbbrevs.back()->addRef(); } } // Get the codesize of this block. CurCodeSize = ReadVBR(bitc::CodeLenWidth); SkipToWord(); unsigned NumWords = Read(bitc::BlockSizeWidth); if (NumWordsP) *NumWordsP = NumWords; // Validate that this block is sane. if (CurCodeSize == 0 || AtEndOfStream()) return true; return false; } bool ReadBlockEnd() { if (BlockScope.empty()) return true; // Block tail: // [END_BLOCK, ] SkipToWord(); PopBlockScope(); return false; } private: void PopBlockScope() { CurCodeSize = BlockScope.back().PrevCodeSize; // Delete abbrevs from popped scope. for (unsigned i = 0, e = static_cast(CurAbbrevs.size()); i != e; ++i) CurAbbrevs[i]->dropRef(); BlockScope.back().PrevAbbrevs.swap(CurAbbrevs); BlockScope.pop_back(); } //===--------------------------------------------------------------------===// // Record Processing //===--------------------------------------------------------------------===// private: void ReadAbbreviatedLiteral(const BitCodeAbbrevOp &Op, SmallVectorImpl &Vals) { assert(Op.isLiteral() && "Not a literal"); // If the abbrev specifies the literal value to use, use it. Vals.push_back(Op.getLiteralValue()); } void ReadAbbreviatedField(const BitCodeAbbrevOp &Op, SmallVectorImpl &Vals) { assert(!Op.isLiteral() && "Use ReadAbbreviatedLiteral for literals!"); // Decode the value as we are commanded. switch (Op.getEncoding()) { default: llvm_unreachable("Unknown encoding!"); case BitCodeAbbrevOp::Fixed: Vals.push_back(Read((unsigned)Op.getEncodingData())); break; case BitCodeAbbrevOp::VBR: Vals.push_back(ReadVBR64((unsigned)Op.getEncodingData())); break; case BitCodeAbbrevOp::Char6: Vals.push_back(BitCodeAbbrevOp::DecodeChar6(Read(6))); break; } } public: /// getAbbrev - Return the abbreviation for the specified AbbrevId. const BitCodeAbbrev *getAbbrev(unsigned AbbrevID) { unsigned AbbrevNo = AbbrevID-bitc::FIRST_APPLICATION_ABBREV; assert(AbbrevNo < CurAbbrevs.size() && "Invalid abbrev #!"); return CurAbbrevs[AbbrevNo]; } unsigned ReadRecord(unsigned AbbrevID, SmallVectorImpl &Vals, const char **BlobStart = 0, unsigned *BlobLen = 0) { if (AbbrevID == bitc::UNABBREV_RECORD) { unsigned Code = ReadVBR(6); unsigned NumElts = ReadVBR(6); for (unsigned i = 0; i != NumElts; ++i) Vals.push_back(ReadVBR64(6)); return Code; } const BitCodeAbbrev *Abbv = getAbbrev(AbbrevID); for (unsigned i = 0, e = Abbv->getNumOperandInfos(); i != e; ++i) { const BitCodeAbbrevOp &Op = Abbv->getOperandInfo(i); if (Op.isLiteral()) { ReadAbbreviatedLiteral(Op, Vals); } else if (Op.getEncoding() == BitCodeAbbrevOp::Array) { // Array case. Read the number of elements as a vbr6. unsigned NumElts = ReadVBR(6); // Get the element encoding. assert(i+2 == e && "array op not second to last?"); const BitCodeAbbrevOp &EltEnc = Abbv->getOperandInfo(++i); // Read all the elements. for (; NumElts; --NumElts) ReadAbbreviatedField(EltEnc, Vals); } else if (Op.getEncoding() == BitCodeAbbrevOp::Blob) { // Blob case. Read the number of bytes as a vbr6. unsigned NumElts = ReadVBR(6); SkipToWord(); // 32-bit alignment // Figure out where the end of this blob will be including tail padding. size_t NewEnd = NextChar+((NumElts+3)&~3); // If this would read off the end of the bitcode file, just set the // record to empty and return. if (!canSkipToPos(NewEnd)) { Vals.append(NumElts, 0); NextChar = BitStream->getBitcodeBytes().getExtent(); break; } // Otherwise, read the number of bytes. If we can return a reference to // the data, do so to avoid copying it. if (BlobStart) { *BlobStart = (const char*)BitStream->getBitcodeBytes().getPointer( NextChar, NumElts); *BlobLen = NumElts; } else { for (; NumElts; ++NextChar, --NumElts) Vals.push_back(getByte(NextChar)); } // Skip over tail padding. NextChar = NewEnd; } else { ReadAbbreviatedField(Op, Vals); } } unsigned Code = (unsigned)Vals[0]; Vals.erase(Vals.begin()); return Code; } unsigned ReadRecord(unsigned AbbrevID, SmallVectorImpl &Vals, const char *&BlobStart, unsigned &BlobLen) { return ReadRecord(AbbrevID, Vals, &BlobStart, &BlobLen); } //===--------------------------------------------------------------------===// // Abbrev Processing //===--------------------------------------------------------------------===// void ReadAbbrevRecord() { BitCodeAbbrev *Abbv = new BitCodeAbbrev(); unsigned NumOpInfo = ReadVBR(5); for (unsigned i = 0; i != NumOpInfo; ++i) { bool IsLiteral = Read(1) ? true : false; if (IsLiteral) { Abbv->Add(BitCodeAbbrevOp(ReadVBR64(8))); continue; } BitCodeAbbrevOp::Encoding E = (BitCodeAbbrevOp::Encoding)Read(3); if (BitCodeAbbrevOp::hasEncodingData(E)) Abbv->Add(BitCodeAbbrevOp(E, ReadVBR64(5))); else Abbv->Add(BitCodeAbbrevOp(E)); } CurAbbrevs.push_back(Abbv); } public: bool ReadBlockInfoBlock() { // If this is the second stream to get to the block info block, skip it. if (BitStream->hasBlockInfoRecords()) return SkipBlock(); if (EnterSubBlock(bitc::BLOCKINFO_BLOCK_ID)) return true; SmallVector Record; BitstreamReader::BlockInfo *CurBlockInfo = 0; // Read all the records for this module. while (1) { unsigned Code = ReadCode(); if (Code == bitc::END_BLOCK) return ReadBlockEnd(); if (Code == bitc::ENTER_SUBBLOCK) { ReadSubBlockID(); if (SkipBlock()) return true; continue; } // Read abbrev records, associate them with CurBID. if (Code == bitc::DEFINE_ABBREV) { if (!CurBlockInfo) return true; ReadAbbrevRecord(); // ReadAbbrevRecord installs the abbrev in CurAbbrevs. Move it to the // appropriate BlockInfo. BitCodeAbbrev *Abbv = CurAbbrevs.back(); CurAbbrevs.pop_back(); CurBlockInfo->Abbrevs.push_back(Abbv); continue; } // Read a record. Record.clear(); switch (ReadRecord(Code, Record)) { default: break; // Default behavior, ignore unknown content. case bitc::BLOCKINFO_CODE_SETBID: if (Record.size() < 1) return true; CurBlockInfo = &BitStream->getOrCreateBlockInfo((unsigned)Record[0]); break; case bitc::BLOCKINFO_CODE_BLOCKNAME: { if (!CurBlockInfo) return true; if (BitStream->isIgnoringBlockInfoNames()) break; // Ignore name. std::string Name; for (unsigned i = 0, e = Record.size(); i != e; ++i) Name += (char)Record[i]; CurBlockInfo->Name = Name; break; } case bitc::BLOCKINFO_CODE_SETRECORDNAME: { if (!CurBlockInfo) return true; if (BitStream->isIgnoringBlockInfoNames()) break; // Ignore name. std::string Name; for (unsigned i = 1, e = Record.size(); i != e; ++i) Name += (char)Record[i]; CurBlockInfo->RecordNames.push_back(std::make_pair((unsigned)Record[0], Name)); break; } } } } }; } // End llvm namespace #endif