//===- LexicalScopes.cpp - Collecting lexical scope info -*- C++ -*--------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements LexicalScopes analysis. // // This pass collects lexical scope information and maps machine instructions // to respective lexical scopes. // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_LEXICALSCOPES_H #define LLVM_CODEGEN_LEXICALSCOPES_H #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/STLExtras.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/ValueHandle.h" #include #include namespace llvm { class MachineInstr; class MachineBasicBlock; class MachineFunction; //===----------------------------------------------------------------------===// /// InsnRange - This is used to track range of instructions with identical /// lexical scope. /// typedef std::pair InsnRange; //===----------------------------------------------------------------------===// /// LexicalScope - This class is used to track scope information. /// class LexicalScope { public: LexicalScope(LexicalScope *P, const MDNode *D, const MDNode *I, bool A) : Parent(P), Desc(D), InlinedAtLocation(I), AbstractScope(A), LastInsn(nullptr), FirstInsn(nullptr), DFSIn(0), DFSOut(0) { if (Parent) Parent->addChild(this); } // Accessors. LexicalScope *getParent() const { return Parent; } const MDNode *getDesc() const { return Desc; } const MDNode *getInlinedAt() const { return InlinedAtLocation; } const MDNode *getScopeNode() const { return Desc; } bool isAbstractScope() const { return AbstractScope; } SmallVectorImpl &getChildren() { return Children; } SmallVectorImpl &getRanges() { return Ranges; } /// addChild - Add a child scope. void addChild(LexicalScope *S) { Children.push_back(S); } /// openInsnRange - This scope covers instruction range starting from MI. void openInsnRange(const MachineInstr *MI) { if (!FirstInsn) FirstInsn = MI; if (Parent) Parent->openInsnRange(MI); } /// extendInsnRange - Extend the current instruction range covered by /// this scope. void extendInsnRange(const MachineInstr *MI) { assert(FirstInsn && "MI Range is not open!"); LastInsn = MI; if (Parent) Parent->extendInsnRange(MI); } /// closeInsnRange - Create a range based on FirstInsn and LastInsn collected /// until now. This is used when a new scope is encountered while walking /// machine instructions. void closeInsnRange(LexicalScope *NewScope = nullptr) { assert(LastInsn && "Last insn missing!"); Ranges.push_back(InsnRange(FirstInsn, LastInsn)); FirstInsn = nullptr; LastInsn = nullptr; // If Parent dominates NewScope then do not close Parent's instruction // range. if (Parent && (!NewScope || !Parent->dominates(NewScope))) Parent->closeInsnRange(NewScope); } /// dominates - Return true if current scope dominates given lexical scope. bool dominates(const LexicalScope *S) const { if (S == this) return true; if (DFSIn < S->getDFSIn() && DFSOut > S->getDFSOut()) return true; return false; } // Depth First Search support to walk and manipulate LexicalScope hierarchy. unsigned getDFSOut() const { return DFSOut; } void setDFSOut(unsigned O) { DFSOut = O; } unsigned getDFSIn() const { return DFSIn; } void setDFSIn(unsigned I) { DFSIn = I; } /// dump - print lexical scope. void dump(unsigned Indent = 0) const; private: LexicalScope *Parent; // Parent to this scope. AssertingVH Desc; // Debug info descriptor. AssertingVH InlinedAtLocation; // Location at which this // scope is inlined. bool AbstractScope; // Abstract Scope SmallVector Children; // Scopes defined in scope. // Contents not owned. SmallVector Ranges; const MachineInstr *LastInsn; // Last instruction of this scope. const MachineInstr *FirstInsn; // First instruction of this scope. unsigned DFSIn, DFSOut; // In & Out Depth use to determine // scope nesting. }; //===----------------------------------------------------------------------===// /// LexicalScopes - This class provides interface to collect and use lexical /// scoping information from machine instruction. /// class LexicalScopes { public: LexicalScopes() : MF(nullptr), CurrentFnLexicalScope(nullptr) {} /// initialize - Scan machine function and constuct lexical scope nest, resets /// the instance if necessary. void initialize(const MachineFunction &); /// releaseMemory - release memory. void reset(); /// empty - Return true if there is any lexical scope information available. bool empty() { return CurrentFnLexicalScope == nullptr; } /// getCurrentFunctionScope - Return lexical scope for the current function. LexicalScope *getCurrentFunctionScope() const { return CurrentFnLexicalScope; } /// getMachineBasicBlocks - Populate given set using machine basic blocks /// which have machine instructions that belong to lexical scope identified by /// DebugLoc. void getMachineBasicBlocks(DebugLoc DL, SmallPtrSetImpl &MBBs); /// dominates - Return true if DebugLoc's lexical scope dominates at least one /// machine instruction's lexical scope in a given machine basic block. bool dominates(DebugLoc DL, MachineBasicBlock *MBB); /// findLexicalScope - Find lexical scope, either regular or inlined, for the /// given DebugLoc. Return NULL if not found. LexicalScope *findLexicalScope(DebugLoc DL); /// getAbstractScopesList - Return a reference to list of abstract scopes. ArrayRef getAbstractScopesList() const { return AbstractScopesList; } /// findAbstractScope - Find an abstract scope or return null. LexicalScope *findAbstractScope(const MDNode *N) { auto I = AbstractScopeMap.find(N); return I != AbstractScopeMap.end() ? &I->second : nullptr; } /// findInlinedScope - Find an inlined scope for the given DebugLoc or return /// NULL. LexicalScope *findInlinedScope(DebugLoc DL); /// findLexicalScope - Find regular lexical scope or return null. LexicalScope *findLexicalScope(const MDNode *N) { auto I = LexicalScopeMap.find(N); return I != LexicalScopeMap.end() ? &I->second : nullptr; } /// dump - Print data structures to dbgs(). void dump(); /// getOrCreateAbstractScope - Find or create an abstract lexical scope. LexicalScope *getOrCreateAbstractScope(const MDNode *N); private: /// getOrCreateLexicalScope - Find lexical scope for the given DebugLoc. If /// not available then create new lexical scope. LexicalScope *getOrCreateLexicalScope(DebugLoc DL); /// getOrCreateRegularScope - Find or create a regular lexical scope. LexicalScope *getOrCreateRegularScope(MDNode *Scope); /// getOrCreateInlinedScope - Find or create an inlined lexical scope. LexicalScope *getOrCreateInlinedScope(MDNode *Scope, MDNode *InlinedAt); /// extractLexicalScopes - Extract instruction ranges for each lexical scopes /// for the given machine function. void extractLexicalScopes(SmallVectorImpl &MIRanges, DenseMap &M); void constructScopeNest(LexicalScope *Scope); void assignInstructionRanges(SmallVectorImpl &MIRanges, DenseMap &M); private: const MachineFunction *MF; /// LexicalScopeMap - Tracks the scopes in the current function. // Use an unordered_map to ensure value pointer validity over insertion. std::unordered_map LexicalScopeMap; /// InlinedLexicalScopeMap - Tracks inlined function scopes in current /// function. std::unordered_map, LexicalScope, pair_hash> InlinedLexicalScopeMap; /// AbstractScopeMap - These scopes are not included LexicalScopeMap. // Use an unordered_map to ensure value pointer validity over insertion. std::unordered_map AbstractScopeMap; /// AbstractScopesList - Tracks abstract scopes constructed while processing /// a function. SmallVector AbstractScopesList; /// CurrentFnLexicalScope - Top level scope for the current function. /// LexicalScope *CurrentFnLexicalScope; }; } // end llvm namespace #endif