//===-- LiveIntervalAnalysis.h - Live Interval Analysis ---------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the LiveInterval analysis pass. Given some numbering of // each the machine instructions (in this implemention depth-first order) an // interval [i, j) is said to be a live interval for register v if there is no // instruction with number j' > j such that v is live at j' and there is no // instruction with number i' < i such that v is live at i'. In this // implementation intervals can have holes, i.e. an interval might look like // [1,20), [50,65), [1000,1001). // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_LIVEINTERVAL_ANALYSIS_H #define LLVM_CODEGEN_LIVEINTERVAL_ANALYSIS_H #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/LiveInterval.h" #include "llvm/CodeGen/SlotIndexes.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/IndexedMap.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Support/Allocator.h" #include #include namespace llvm { class AliasAnalysis; class LiveRangeCalc; class LiveVariables; class MachineDominatorTree; class MachineLoopInfo; class TargetRegisterInfo; class MachineRegisterInfo; class TargetInstrInfo; class TargetRegisterClass; class VirtRegMap; class LiveIntervals : public MachineFunctionPass { MachineFunction* MF; MachineRegisterInfo* MRI; const TargetMachine* TM; const TargetRegisterInfo* TRI; const TargetInstrInfo* TII; AliasAnalysis *AA; LiveVariables* LV; SlotIndexes* Indexes; MachineDominatorTree *DomTree; LiveRangeCalc *LRCalc; /// Special pool allocator for VNInfo's (LiveInterval val#). /// VNInfo::Allocator VNInfoAllocator; /// Live interval pointers for all the virtual registers. IndexedMap VirtRegIntervals; /// AllocatableRegs - A bit vector of allocatable registers. BitVector AllocatableRegs; /// ReservedRegs - A bit vector of reserved registers. BitVector ReservedRegs; /// RegMaskSlots - Sorted list of instructions with register mask operands. /// Always use the 'r' slot, RegMasks are normal clobbers, not early /// clobbers. SmallVector RegMaskSlots; /// RegMaskBits - This vector is parallel to RegMaskSlots, it holds a /// pointer to the corresponding register mask. This pointer can be /// recomputed as: /// /// MI = Indexes->getInstructionFromIndex(RegMaskSlot[N]); /// unsigned OpNum = findRegMaskOperand(MI); /// RegMaskBits[N] = MI->getOperand(OpNum).getRegMask(); /// /// This is kept in a separate vector partly because some standard /// libraries don't support lower_bound() with mixed objects, partly to /// improve locality when searching in RegMaskSlots. /// Also see the comment in LiveInterval::find(). SmallVector RegMaskBits; /// For each basic block number, keep (begin, size) pairs indexing into the /// RegMaskSlots and RegMaskBits arrays. /// Note that basic block numbers may not be layout contiguous, that's why /// we can't just keep track of the first register mask in each basic /// block. SmallVector, 8> RegMaskBlocks; /// RegUnitIntervals - Keep a live interval for each register unit as a way /// of tracking fixed physreg interference. SmallVector RegUnitIntervals; public: static char ID; // Pass identification, replacement for typeid LiveIntervals(); virtual ~LiveIntervals(); // Calculate the spill weight to assign to a single instruction. static float getSpillWeight(bool isDef, bool isUse, unsigned loopDepth); LiveInterval &getInterval(unsigned Reg) { LiveInterval *LI = VirtRegIntervals[Reg]; assert(LI && "Interval does not exist for virtual register"); return *LI; } const LiveInterval &getInterval(unsigned Reg) const { return const_cast(this)->getInterval(Reg); } bool hasInterval(unsigned Reg) const { return VirtRegIntervals.inBounds(Reg) && VirtRegIntervals[Reg]; } /// isAllocatable - is the physical register reg allocatable in the current /// function? bool isAllocatable(unsigned reg) const { return AllocatableRegs.test(reg); } /// isReserved - is the physical register reg reserved in the current /// function bool isReserved(unsigned reg) const { return ReservedRegs.test(reg); } // Interval creation. LiveInterval &getOrCreateInterval(unsigned Reg) { if (!hasInterval(Reg)) { VirtRegIntervals.grow(Reg); VirtRegIntervals[Reg] = createInterval(Reg); } return getInterval(Reg); } // Interval removal. void removeInterval(unsigned Reg) { delete VirtRegIntervals[Reg]; VirtRegIntervals[Reg] = 0; } /// addLiveRangeToEndOfBlock - Given a register and an instruction, /// adds a live range from that instruction to the end of its MBB. LiveRange addLiveRangeToEndOfBlock(unsigned reg, MachineInstr* startInst); /// shrinkToUses - After removing some uses of a register, shrink its live /// range to just the remaining uses. This method does not compute reaching /// defs for new uses, and it doesn't remove dead defs. /// Dead PHIDef values are marked as unused. /// New dead machine instructions are added to the dead vector. /// Return true if the interval may have been separated into multiple /// connected components. bool shrinkToUses(LiveInterval *li, SmallVectorImpl *dead = 0); /// extendToIndices - Extend the live range of LI to reach all points in /// Indices. The points in the Indices array must be jointly dominated by /// existing defs in LI. PHI-defs are added as needed to maintain SSA form. /// /// If a SlotIndex in Indices is the end index of a basic block, LI will be /// extended to be live out of the basic block. /// /// See also LiveRangeCalc::extend(). void extendToIndices(LiveInterval *LI, ArrayRef Indices); /// pruneValue - If an LI value is live at Kill, prune its live range by /// removing any liveness reachable from Kill. Add live range end points to /// EndPoints such that extendToIndices(LI, EndPoints) will reconstruct the /// value's live range. /// /// Calling pruneValue() and extendToIndices() can be used to reconstruct /// SSA form after adding defs to a virtual register. void pruneValue(LiveInterval *LI, SlotIndex Kill, SmallVectorImpl *EndPoints); SlotIndexes *getSlotIndexes() const { return Indexes; } AliasAnalysis *getAliasAnalysis() const { return AA; } /// isNotInMIMap - returns true if the specified machine instr has been /// removed or was never entered in the map. bool isNotInMIMap(const MachineInstr* Instr) const { return !Indexes->hasIndex(Instr); } /// Returns the base index of the given instruction. SlotIndex getInstructionIndex(const MachineInstr *instr) const { return Indexes->getInstructionIndex(instr); } /// Returns the instruction associated with the given index. MachineInstr* getInstructionFromIndex(SlotIndex index) const { return Indexes->getInstructionFromIndex(index); } /// Return the first index in the given basic block. SlotIndex getMBBStartIdx(const MachineBasicBlock *mbb) const { return Indexes->getMBBStartIdx(mbb); } /// Return the last index in the given basic block. SlotIndex getMBBEndIdx(const MachineBasicBlock *mbb) const { return Indexes->getMBBEndIdx(mbb); } bool isLiveInToMBB(const LiveInterval &li, const MachineBasicBlock *mbb) const { return li.liveAt(getMBBStartIdx(mbb)); } bool isLiveOutOfMBB(const LiveInterval &li, const MachineBasicBlock *mbb) const { return li.liveAt(getMBBEndIdx(mbb).getPrevSlot()); } MachineBasicBlock* getMBBFromIndex(SlotIndex index) const { return Indexes->getMBBFromIndex(index); } SlotIndex InsertMachineInstrInMaps(MachineInstr *MI) { return Indexes->insertMachineInstrInMaps(MI); } void RemoveMachineInstrFromMaps(MachineInstr *MI) { Indexes->removeMachineInstrFromMaps(MI); } void ReplaceMachineInstrInMaps(MachineInstr *MI, MachineInstr *NewMI) { Indexes->replaceMachineInstrInMaps(MI, NewMI); } bool findLiveInMBBs(SlotIndex Start, SlotIndex End, SmallVectorImpl &MBBs) const { return Indexes->findLiveInMBBs(Start, End, MBBs); } VNInfo::Allocator& getVNInfoAllocator() { return VNInfoAllocator; } virtual void getAnalysisUsage(AnalysisUsage &AU) const; virtual void releaseMemory(); /// runOnMachineFunction - pass entry point virtual bool runOnMachineFunction(MachineFunction&); /// print - Implement the dump method. virtual void print(raw_ostream &O, const Module* = 0) const; /// intervalIsInOneMBB - If LI is confined to a single basic block, return /// a pointer to that block. If LI is live in to or out of any block, /// return NULL. MachineBasicBlock *intervalIsInOneMBB(const LiveInterval &LI) const; /// Returns true if VNI is killed by any PHI-def values in LI. /// This may conservatively return true to avoid expensive computations. bool hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const; /// addKillFlags - Add kill flags to any instruction that kills a virtual /// register. void addKillFlags(const VirtRegMap*); /// handleMove - call this method to notify LiveIntervals that /// instruction 'mi' has been moved within a basic block. This will update /// the live intervals for all operands of mi. Moves between basic blocks /// are not supported. void handleMove(MachineInstr* MI); /// moveIntoBundle - Update intervals for operands of MI so that they /// begin/end on the SlotIndex for BundleStart. /// /// Requires MI and BundleStart to have SlotIndexes, and assumes /// existing liveness is accurate. BundleStart should be the first /// instruction in the Bundle. void handleMoveIntoBundle(MachineInstr* MI, MachineInstr* BundleStart); // Register mask functions. // // Machine instructions may use a register mask operand to indicate that a // large number of registers are clobbered by the instruction. This is // typically used for calls. // // For compile time performance reasons, these clobbers are not recorded in // the live intervals for individual physical registers. Instead, // LiveIntervalAnalysis maintains a sorted list of instructions with // register mask operands. /// getRegMaskSlots - Returns a sorted array of slot indices of all /// instructions with register mask operands. ArrayRef getRegMaskSlots() const { return RegMaskSlots; } /// getRegMaskSlotsInBlock - Returns a sorted array of slot indices of all /// instructions with register mask operands in the basic block numbered /// MBBNum. ArrayRef getRegMaskSlotsInBlock(unsigned MBBNum) const { std::pair P = RegMaskBlocks[MBBNum]; return getRegMaskSlots().slice(P.first, P.second); } /// getRegMaskBits() - Returns an array of register mask pointers /// corresponding to getRegMaskSlots(). ArrayRef getRegMaskBits() const { return RegMaskBits; } /// getRegMaskBitsInBlock - Returns an array of mask pointers corresponding /// to getRegMaskSlotsInBlock(MBBNum). ArrayRef getRegMaskBitsInBlock(unsigned MBBNum) const { std::pair P = RegMaskBlocks[MBBNum]; return getRegMaskBits().slice(P.first, P.second); } /// checkRegMaskInterference - Test if LI is live across any register mask /// instructions, and compute a bit mask of physical registers that are not /// clobbered by any of them. /// /// Returns false if LI doesn't cross any register mask instructions. In /// that case, the bit vector is not filled in. bool checkRegMaskInterference(LiveInterval &LI, BitVector &UsableRegs); // Register unit functions. // // Fixed interference occurs when MachineInstrs use physregs directly // instead of virtual registers. This typically happens when passing // arguments to a function call, or when instructions require operands in // fixed registers. // // Each physreg has one or more register units, see MCRegisterInfo. We // track liveness per register unit to handle aliasing registers more // efficiently. /// getRegUnit - Return the live range for Unit. /// It will be computed if it doesn't exist. LiveInterval &getRegUnit(unsigned Unit) { LiveInterval *LI = RegUnitIntervals[Unit]; if (!LI) { // Compute missing ranges on demand. RegUnitIntervals[Unit] = LI = new LiveInterval(Unit, HUGE_VALF); computeRegUnitInterval(LI); } return *LI; } /// getCachedRegUnit - Return the live range for Unit if it has already /// been computed, or NULL if it hasn't been computed yet. LiveInterval *getCachedRegUnit(unsigned Unit) { return RegUnitIntervals[Unit]; } private: /// computeIntervals - Compute live intervals. void computeIntervals(); /// Compute live intervals for all virtual registers. void computeVirtRegs(); /// Compute RegMaskSlots and RegMaskBits. void computeRegMasks(); /// handleRegisterDef - update intervals for a register def /// (calls handleVirtualRegisterDef) void handleRegisterDef(MachineBasicBlock *MBB, MachineBasicBlock::iterator MI, SlotIndex MIIdx, MachineOperand& MO, unsigned MOIdx); /// isPartialRedef - Return true if the specified def at the specific index /// is partially re-defining the specified live interval. A common case of /// this is a definition of the sub-register. bool isPartialRedef(SlotIndex MIIdx, MachineOperand &MO, LiveInterval &interval); /// handleVirtualRegisterDef - update intervals for a virtual /// register def void handleVirtualRegisterDef(MachineBasicBlock *MBB, MachineBasicBlock::iterator MI, SlotIndex MIIdx, MachineOperand& MO, unsigned MOIdx, LiveInterval& interval); static LiveInterval* createInterval(unsigned Reg); void printInstrs(raw_ostream &O) const; void dumpInstrs() const; void computeLiveInRegUnits(); void computeRegUnitInterval(LiveInterval*); void computeVirtRegInterval(LiveInterval*); class HMEditor; }; } // End llvm namespace #endif