//===-- LiveIntervalAnalysis.h - Live Interval Analysis ---------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the LiveInterval analysis pass. Given some numbering of // each the machine instructions (in this implemention depth-first order) an // interval [i, j) is said to be a live interval for register v if there is no // instruction with number j' > j such that v is live at j' and there is no // instruction with number i' < i such that v is live at i'. In this // implementation intervals can have holes, i.e. an interval might look like // [1,20), [50,65), [1000,1001). // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_LIVEINTERVAL_ANALYSIS_H #define LLVM_CODEGEN_LIVEINTERVAL_ANALYSIS_H #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/LiveInterval.h" #include "llvm/CodeGen/SlotIndexes.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Support/Allocator.h" #include #include namespace llvm { class AliasAnalysis; class LiveVariables; class MachineLoopInfo; class TargetRegisterInfo; class MachineRegisterInfo; class TargetInstrInfo; class TargetRegisterClass; class VirtRegMap; class LiveIntervals : public MachineFunctionPass { MachineFunction* mf_; MachineRegisterInfo* mri_; const TargetMachine* tm_; const TargetRegisterInfo* tri_; const TargetInstrInfo* tii_; AliasAnalysis *aa_; LiveVariables* lv_; SlotIndexes* indexes_; /// Special pool allocator for VNInfo's (LiveInterval val#). /// VNInfo::Allocator VNInfoAllocator; typedef DenseMap Reg2IntervalMap; Reg2IntervalMap r2iMap_; /// allocatableRegs_ - A bit vector of allocatable registers. BitVector allocatableRegs_; /// reservedRegs_ - A bit vector of reserved registers. BitVector reservedRegs_; /// RegMaskSlots - Sorted list of instructions with register mask operands. /// Always use the 'r' slot, RegMasks are normal clobbers, not early /// clobbers. SmallVector RegMaskSlots; /// RegMaskBits - This vector is parallel to RegMaskSlots, it holds a /// pointer to the corresponding register mask. This pointer can be /// recomputed as: /// /// MI = Indexes->getInstructionFromIndex(RegMaskSlot[N]); /// unsigned OpNum = findRegMaskOperand(MI); /// RegMaskBits[N] = MI->getOperand(OpNum).getRegMask(); /// /// This is kept in a separate vector partly because some standard /// libraries don't support lower_bound() with mixed objects, partly to /// improve locality when searching in RegMaskSlots. /// Also see the comment in LiveInterval::find(). SmallVector RegMaskBits; /// For each basic block number, keep (begin, size) pairs indexing into the /// RegMaskSlots and RegMaskBits arrays. /// Note that basic block numbers may not be layout contiguous, that's why /// we can't just keep track of the first register mask in each basic /// block. SmallVector, 8> RegMaskBlocks; public: static char ID; // Pass identification, replacement for typeid LiveIntervals() : MachineFunctionPass(ID) { initializeLiveIntervalsPass(*PassRegistry::getPassRegistry()); } // Calculate the spill weight to assign to a single instruction. static float getSpillWeight(bool isDef, bool isUse, unsigned loopDepth); typedef Reg2IntervalMap::iterator iterator; typedef Reg2IntervalMap::const_iterator const_iterator; const_iterator begin() const { return r2iMap_.begin(); } const_iterator end() const { return r2iMap_.end(); } iterator begin() { return r2iMap_.begin(); } iterator end() { return r2iMap_.end(); } unsigned getNumIntervals() const { return (unsigned)r2iMap_.size(); } LiveInterval &getInterval(unsigned reg) { Reg2IntervalMap::iterator I = r2iMap_.find(reg); assert(I != r2iMap_.end() && "Interval does not exist for register"); return *I->second; } const LiveInterval &getInterval(unsigned reg) const { Reg2IntervalMap::const_iterator I = r2iMap_.find(reg); assert(I != r2iMap_.end() && "Interval does not exist for register"); return *I->second; } bool hasInterval(unsigned reg) const { return r2iMap_.count(reg); } /// isAllocatable - is the physical register reg allocatable in the current /// function? bool isAllocatable(unsigned reg) const { return allocatableRegs_.test(reg); } /// isReserved - is the physical register reg reserved in the current /// function bool isReserved(unsigned reg) const { return reservedRegs_.test(reg); } /// getScaledIntervalSize - get the size of an interval in "units," /// where every function is composed of one thousand units. This /// measure scales properly with empty index slots in the function. double getScaledIntervalSize(LiveInterval& I) { return (1000.0 * I.getSize()) / indexes_->getIndexesLength(); } /// getFuncInstructionCount - Return the number of instructions in the /// current function. unsigned getFuncInstructionCount() { return indexes_->getFunctionSize(); } /// getApproximateInstructionCount - computes an estimate of the number /// of instructions in a given LiveInterval. unsigned getApproximateInstructionCount(LiveInterval& I) { double IntervalPercentage = getScaledIntervalSize(I) / 1000.0; return (unsigned)(IntervalPercentage * indexes_->getFunctionSize()); } // Interval creation LiveInterval &getOrCreateInterval(unsigned reg) { Reg2IntervalMap::iterator I = r2iMap_.find(reg); if (I == r2iMap_.end()) I = r2iMap_.insert(std::make_pair(reg, createInterval(reg))).first; return *I->second; } /// dupInterval - Duplicate a live interval. The caller is responsible for /// managing the allocated memory. LiveInterval *dupInterval(LiveInterval *li); /// addLiveRangeToEndOfBlock - Given a register and an instruction, /// adds a live range from that instruction to the end of its MBB. LiveRange addLiveRangeToEndOfBlock(unsigned reg, MachineInstr* startInst); /// shrinkToUses - After removing some uses of a register, shrink its live /// range to just the remaining uses. This method does not compute reaching /// defs for new uses, and it doesn't remove dead defs. /// Dead PHIDef values are marked as unused. /// New dead machine instructions are added to the dead vector. /// Return true if the interval may have been separated into multiple /// connected components. bool shrinkToUses(LiveInterval *li, SmallVectorImpl *dead = 0); // Interval removal void removeInterval(unsigned Reg) { DenseMap::iterator I = r2iMap_.find(Reg); delete I->second; r2iMap_.erase(I); } SlotIndexes *getSlotIndexes() const { return indexes_; } /// isNotInMIMap - returns true if the specified machine instr has been /// removed or was never entered in the map. bool isNotInMIMap(const MachineInstr* Instr) const { return !indexes_->hasIndex(Instr); } /// Returns the base index of the given instruction. SlotIndex getInstructionIndex(const MachineInstr *instr) const { return indexes_->getInstructionIndex(instr); } /// Returns the instruction associated with the given index. MachineInstr* getInstructionFromIndex(SlotIndex index) const { return indexes_->getInstructionFromIndex(index); } /// Return the first index in the given basic block. SlotIndex getMBBStartIdx(const MachineBasicBlock *mbb) const { return indexes_->getMBBStartIdx(mbb); } /// Return the last index in the given basic block. SlotIndex getMBBEndIdx(const MachineBasicBlock *mbb) const { return indexes_->getMBBEndIdx(mbb); } bool isLiveInToMBB(const LiveInterval &li, const MachineBasicBlock *mbb) const { return li.liveAt(getMBBStartIdx(mbb)); } bool isLiveOutOfMBB(const LiveInterval &li, const MachineBasicBlock *mbb) const { return li.liveAt(getMBBEndIdx(mbb).getPrevSlot()); } MachineBasicBlock* getMBBFromIndex(SlotIndex index) const { return indexes_->getMBBFromIndex(index); } SlotIndex InsertMachineInstrInMaps(MachineInstr *MI) { return indexes_->insertMachineInstrInMaps(MI); } void RemoveMachineInstrFromMaps(MachineInstr *MI) { indexes_->removeMachineInstrFromMaps(MI); } void ReplaceMachineInstrInMaps(MachineInstr *MI, MachineInstr *NewMI) { indexes_->replaceMachineInstrInMaps(MI, NewMI); } bool findLiveInMBBs(SlotIndex Start, SlotIndex End, SmallVectorImpl &MBBs) const { return indexes_->findLiveInMBBs(Start, End, MBBs); } VNInfo::Allocator& getVNInfoAllocator() { return VNInfoAllocator; } virtual void getAnalysisUsage(AnalysisUsage &AU) const; virtual void releaseMemory(); /// runOnMachineFunction - pass entry point virtual bool runOnMachineFunction(MachineFunction&); /// print - Implement the dump method. virtual void print(raw_ostream &O, const Module* = 0) const; /// isReMaterializable - Returns true if every definition of MI of every /// val# of the specified interval is re-materializable. Also returns true /// by reference if all of the defs are load instructions. bool isReMaterializable(const LiveInterval &li, const SmallVectorImpl *SpillIs, bool &isLoad); /// intervalIsInOneMBB - If LI is confined to a single basic block, return /// a pointer to that block. If LI is live in to or out of any block, /// return NULL. MachineBasicBlock *intervalIsInOneMBB(const LiveInterval &LI) const; /// addKillFlags - Add kill flags to any instruction that kills a virtual /// register. void addKillFlags(); /// handleMove - call this method to notify LiveIntervals that /// instruction 'mi' has been moved within a basic block. This will update /// the live intervals for all operands of mi. Moves between basic blocks /// are not supported. void handleMove(MachineInstr* MI); /// moveIntoBundle - Update intervals for operands of MI so that they /// begin/end on the SlotIndex for BundleStart. /// /// Requires MI and BundleStart to have SlotIndexes, and assumes /// existing liveness is accurate. BundleStart should be the first /// instruction in the Bundle. void handleMoveIntoBundle(MachineInstr* MI, MachineInstr* BundleStart); // Register mask functions. // // Machine instructions may use a register mask operand to indicate that a // large number of registers are clobbered by the instruction. This is // typically used for calls. // // For compile time performance reasons, these clobbers are not recorded in // the live intervals for individual physical registers. Instead, // LiveIntervalAnalysis maintains a sorted list of instructions with // register mask operands. /// getRegMaskSlots - Returns a sorted array of slot indices of all /// instructions with register mask operands. ArrayRef getRegMaskSlots() const { return RegMaskSlots; } /// getRegMaskSlotsInBlock - Returns a sorted array of slot indices of all /// instructions with register mask operands in the basic block numbered /// MBBNum. ArrayRef getRegMaskSlotsInBlock(unsigned MBBNum) const { std::pair P = RegMaskBlocks[MBBNum]; return getRegMaskSlots().slice(P.first, P.second); } /// getRegMaskBits() - Returns an array of register mask pointers /// corresponding to getRegMaskSlots(). ArrayRef getRegMaskBits() const { return RegMaskBits; } /// getRegMaskBitsInBlock - Returns an array of mask pointers corresponding /// to getRegMaskSlotsInBlock(MBBNum). ArrayRef getRegMaskBitsInBlock(unsigned MBBNum) const { std::pair P = RegMaskBlocks[MBBNum]; return getRegMaskBits().slice(P.first, P.second); } /// checkRegMaskInterference - Test if LI is live across any register mask /// instructions, and compute a bit mask of physical registers that are not /// clobbered by any of them. /// /// Returns false if LI doesn't cross any register mask instructions. In /// that case, the bit vector is not filled in. bool checkRegMaskInterference(LiveInterval &LI, BitVector &UsableRegs); private: /// computeIntervals - Compute live intervals. void computeIntervals(); /// handleRegisterDef - update intervals for a register def /// (calls handlePhysicalRegisterDef and /// handleVirtualRegisterDef) void handleRegisterDef(MachineBasicBlock *MBB, MachineBasicBlock::iterator MI, SlotIndex MIIdx, MachineOperand& MO, unsigned MOIdx); /// isPartialRedef - Return true if the specified def at the specific index /// is partially re-defining the specified live interval. A common case of /// this is a definition of the sub-register. bool isPartialRedef(SlotIndex MIIdx, MachineOperand &MO, LiveInterval &interval); /// handleVirtualRegisterDef - update intervals for a virtual /// register def void handleVirtualRegisterDef(MachineBasicBlock *MBB, MachineBasicBlock::iterator MI, SlotIndex MIIdx, MachineOperand& MO, unsigned MOIdx, LiveInterval& interval); /// handlePhysicalRegisterDef - update intervals for a physical register /// def. void handlePhysicalRegisterDef(MachineBasicBlock* mbb, MachineBasicBlock::iterator mi, SlotIndex MIIdx, MachineOperand& MO, LiveInterval &interval); /// handleLiveInRegister - Create interval for a livein register. void handleLiveInRegister(MachineBasicBlock* mbb, SlotIndex MIIdx, LiveInterval &interval); /// getReMatImplicitUse - If the remat definition MI has one (for now, we /// only allow one) virtual register operand, then its uses are implicitly /// using the register. Returns the virtual register. unsigned getReMatImplicitUse(const LiveInterval &li, MachineInstr *MI) const; /// isValNoAvailableAt - Return true if the val# of the specified interval /// which reaches the given instruction also reaches the specified use /// index. bool isValNoAvailableAt(const LiveInterval &li, MachineInstr *MI, SlotIndex UseIdx) const; /// isReMaterializable - Returns true if the definition MI of the specified /// val# of the specified interval is re-materializable. Also returns true /// by reference if the def is a load. bool isReMaterializable(const LiveInterval &li, const VNInfo *ValNo, MachineInstr *MI, const SmallVectorImpl *SpillIs, bool &isLoad); static LiveInterval* createInterval(unsigned Reg); void printInstrs(raw_ostream &O) const; void dumpInstrs() const; class HMEditor; }; } // End llvm namespace #endif