//===-- llvm/CodeGen/MachineRegisterInfo.h ----------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the MachineRegisterInfo class. // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_MACHINEREGISTERINFO_H #define LLVM_CODEGEN_MACHINEREGISTERINFO_H #include "llvm/ADT/BitVector.h" #include "llvm/ADT/IndexedMap.h" #include "llvm/CodeGen/MachineInstrBundle.h" #include "llvm/Target/TargetRegisterInfo.h" #include namespace llvm { /// MachineRegisterInfo - Keep track of information for virtual and physical /// registers, including vreg register classes, use/def chains for registers, /// etc. class MachineRegisterInfo { const TargetRegisterInfo *const TRI; /// IsSSA - True when the machine function is in SSA form and virtual /// registers have a single def. bool IsSSA; /// TracksLiveness - True while register liveness is being tracked accurately. /// Basic block live-in lists, kill flags, and implicit defs may not be /// accurate when after this flag is cleared. bool TracksLiveness; /// VRegInfo - Information we keep for each virtual register. /// /// Each element in this list contains the register class of the vreg and the /// start of the use/def list for the register. IndexedMap, VirtReg2IndexFunctor> VRegInfo; /// RegAllocHints - This vector records register allocation hints for virtual /// registers. For each virtual register, it keeps a register and hint type /// pair making up the allocation hint. Hint type is target specific except /// for the value 0 which means the second value of the pair is the preferred /// register for allocation. For example, if the hint is <0, 1024>, it means /// the allocator should prefer the physical register allocated to the virtual /// register of the hint. IndexedMap, VirtReg2IndexFunctor> RegAllocHints; /// PhysRegUseDefLists - This is an array of the head of the use/def list for /// physical registers. MachineOperand **PhysRegUseDefLists; /// getRegUseDefListHead - Return the head pointer for the register use/def /// list for the specified virtual or physical register. MachineOperand *&getRegUseDefListHead(unsigned RegNo) { if (TargetRegisterInfo::isVirtualRegister(RegNo)) return VRegInfo[RegNo].second; return PhysRegUseDefLists[RegNo]; } MachineOperand *getRegUseDefListHead(unsigned RegNo) const { if (TargetRegisterInfo::isVirtualRegister(RegNo)) return VRegInfo[RegNo].second; return PhysRegUseDefLists[RegNo]; } /// Get the next element in the use-def chain. static MachineOperand *getNextOperandForReg(const MachineOperand *MO) { assert(MO && MO->isReg() && "This is not a register operand!"); return MO->Contents.Reg.Next; } /// UsedRegUnits - This is a bit vector that is computed and set by the /// register allocator, and must be kept up to date by passes that run after /// register allocation (though most don't modify this). This is used /// so that the code generator knows which callee save registers to save and /// for other target specific uses. /// This vector has bits set for register units that are modified in the /// current function. It doesn't include registers clobbered by function /// calls with register mask operands. BitVector UsedRegUnits; /// UsedPhysRegMask - Additional used physregs including aliases. /// This bit vector represents all the registers clobbered by function calls. /// It can model things that UsedRegUnits can't, such as function calls that /// clobber ymm7 but preserve the low half in xmm7. BitVector UsedPhysRegMask; /// ReservedRegs - This is a bit vector of reserved registers. The target /// may change its mind about which registers should be reserved. This /// vector is the frozen set of reserved registers when register allocation /// started. BitVector ReservedRegs; /// Keep track of the physical registers that are live in to the function. /// Live in values are typically arguments in registers. LiveIn values are /// allowed to have virtual registers associated with them, stored in the /// second element. std::vector > LiveIns; MachineRegisterInfo(const MachineRegisterInfo&) LLVM_DELETED_FUNCTION; void operator=(const MachineRegisterInfo&) LLVM_DELETED_FUNCTION; public: explicit MachineRegisterInfo(const TargetRegisterInfo &TRI); ~MachineRegisterInfo(); //===--------------------------------------------------------------------===// // Function State //===--------------------------------------------------------------------===// // isSSA - Returns true when the machine function is in SSA form. Early // passes require the machine function to be in SSA form where every virtual // register has a single defining instruction. // // The TwoAddressInstructionPass and PHIElimination passes take the machine // function out of SSA form when they introduce multiple defs per virtual // register. bool isSSA() const { return IsSSA; } // leaveSSA - Indicates that the machine function is no longer in SSA form. void leaveSSA() { IsSSA = false; } /// tracksLiveness - Returns true when tracking register liveness accurately. /// /// While this flag is true, register liveness information in basic block /// live-in lists and machine instruction operands is accurate. This means it /// can be used to change the code in ways that affect the values in /// registers, for example by the register scavenger. /// /// When this flag is false, liveness is no longer reliable. bool tracksLiveness() const { return TracksLiveness; } /// invalidateLiveness - Indicates that register liveness is no longer being /// tracked accurately. /// /// This should be called by late passes that invalidate the liveness /// information. void invalidateLiveness() { TracksLiveness = false; } //===--------------------------------------------------------------------===// // Register Info //===--------------------------------------------------------------------===// // Strictly for use by MachineInstr.cpp. void addRegOperandToUseList(MachineOperand *MO); // Strictly for use by MachineInstr.cpp. void removeRegOperandFromUseList(MachineOperand *MO); // Strictly for use by MachineInstr.cpp. void moveOperands(MachineOperand *Dst, MachineOperand *Src, unsigned NumOps); /// reg_begin/reg_end - Provide iteration support to walk over all definitions /// and uses of a register within the MachineFunction that corresponds to this /// MachineRegisterInfo object. template class defusechain_iterator; // Make it a friend so it can access getNextOperandForReg(). template friend class defusechain_iterator; /// reg_iterator/reg_begin/reg_end - Walk all defs and uses of the specified /// register. typedef defusechain_iterator reg_iterator; reg_iterator reg_begin(unsigned RegNo) const { return reg_iterator(getRegUseDefListHead(RegNo)); } static reg_iterator reg_end() { return reg_iterator(0); } /// reg_empty - Return true if there are no instructions using or defining the /// specified register (it may be live-in). bool reg_empty(unsigned RegNo) const { return reg_begin(RegNo) == reg_end(); } /// reg_nodbg_iterator/reg_nodbg_begin/reg_nodbg_end - Walk all defs and uses /// of the specified register, skipping those marked as Debug. typedef defusechain_iterator reg_nodbg_iterator; reg_nodbg_iterator reg_nodbg_begin(unsigned RegNo) const { return reg_nodbg_iterator(getRegUseDefListHead(RegNo)); } static reg_nodbg_iterator reg_nodbg_end() { return reg_nodbg_iterator(0); } /// reg_nodbg_empty - Return true if the only instructions using or defining /// Reg are Debug instructions. bool reg_nodbg_empty(unsigned RegNo) const { return reg_nodbg_begin(RegNo) == reg_nodbg_end(); } /// def_iterator/def_begin/def_end - Walk all defs of the specified register. typedef defusechain_iterator def_iterator; def_iterator def_begin(unsigned RegNo) const { return def_iterator(getRegUseDefListHead(RegNo)); } static def_iterator def_end() { return def_iterator(0); } /// def_empty - Return true if there are no instructions defining the /// specified register (it may be live-in). bool def_empty(unsigned RegNo) const { return def_begin(RegNo) == def_end(); } /// hasOneDef - Return true if there is exactly one instruction defining the /// specified register. bool hasOneDef(unsigned RegNo) const { def_iterator DI = def_begin(RegNo); if (DI == def_end()) return false; return ++DI == def_end(); } /// use_iterator/use_begin/use_end - Walk all uses of the specified register. typedef defusechain_iterator use_iterator; use_iterator use_begin(unsigned RegNo) const { return use_iterator(getRegUseDefListHead(RegNo)); } static use_iterator use_end() { return use_iterator(0); } /// use_empty - Return true if there are no instructions using the specified /// register. bool use_empty(unsigned RegNo) const { return use_begin(RegNo) == use_end(); } /// hasOneUse - Return true if there is exactly one instruction using the /// specified register. bool hasOneUse(unsigned RegNo) const { use_iterator UI = use_begin(RegNo); if (UI == use_end()) return false; return ++UI == use_end(); } /// use_nodbg_iterator/use_nodbg_begin/use_nodbg_end - Walk all uses of the /// specified register, skipping those marked as Debug. typedef defusechain_iterator use_nodbg_iterator; use_nodbg_iterator use_nodbg_begin(unsigned RegNo) const { return use_nodbg_iterator(getRegUseDefListHead(RegNo)); } static use_nodbg_iterator use_nodbg_end() { return use_nodbg_iterator(0); } /// use_nodbg_empty - Return true if there are no non-Debug instructions /// using the specified register. bool use_nodbg_empty(unsigned RegNo) const { return use_nodbg_begin(RegNo) == use_nodbg_end(); } /// hasOneNonDBGUse - Return true if there is exactly one non-Debug /// instruction using the specified register. bool hasOneNonDBGUse(unsigned RegNo) const; /// replaceRegWith - Replace all instances of FromReg with ToReg in the /// machine function. This is like llvm-level X->replaceAllUsesWith(Y), /// except that it also changes any definitions of the register as well. /// /// Note that it is usually necessary to first constrain ToReg's register /// class to match the FromReg constraints using: /// /// constrainRegClass(ToReg, getRegClass(FromReg)) /// /// That function will return NULL if the virtual registers have incompatible /// constraints. void replaceRegWith(unsigned FromReg, unsigned ToReg); /// getVRegDef - Return the machine instr that defines the specified virtual /// register or null if none is found. This assumes that the code is in SSA /// form, so there should only be one definition. MachineInstr *getVRegDef(unsigned Reg) const; /// getUniqueVRegDef - Return the unique machine instr that defines the /// specified virtual register or null if none is found. If there are /// multiple definitions or no definition, return null. MachineInstr *getUniqueVRegDef(unsigned Reg) const; /// clearKillFlags - Iterate over all the uses of the given register and /// clear the kill flag from the MachineOperand. This function is used by /// optimization passes which extend register lifetimes and need only /// preserve conservative kill flag information. void clearKillFlags(unsigned Reg) const; #ifndef NDEBUG void dumpUses(unsigned RegNo) const; #endif /// isConstantPhysReg - Returns true if PhysReg is unallocatable and constant /// throughout the function. It is safe to move instructions that read such /// a physreg. bool isConstantPhysReg(unsigned PhysReg, const MachineFunction &MF) const; //===--------------------------------------------------------------------===// // Virtual Register Info //===--------------------------------------------------------------------===// /// getRegClass - Return the register class of the specified virtual register. /// const TargetRegisterClass *getRegClass(unsigned Reg) const { return VRegInfo[Reg].first; } /// setRegClass - Set the register class of the specified virtual register. /// void setRegClass(unsigned Reg, const TargetRegisterClass *RC); /// constrainRegClass - Constrain the register class of the specified virtual /// register to be a common subclass of RC and the current register class, /// but only if the new class has at least MinNumRegs registers. Return the /// new register class, or NULL if no such class exists. /// This should only be used when the constraint is known to be trivial, like /// GR32 -> GR32_NOSP. Beware of increasing register pressure. /// const TargetRegisterClass *constrainRegClass(unsigned Reg, const TargetRegisterClass *RC, unsigned MinNumRegs = 0); /// recomputeRegClass - Try to find a legal super-class of Reg's register /// class that still satisfies the constraints from the instructions using /// Reg. Returns true if Reg was upgraded. /// /// This method can be used after constraints have been removed from a /// virtual register, for example after removing instructions or splitting /// the live range. /// bool recomputeRegClass(unsigned Reg, const TargetMachine&); /// createVirtualRegister - Create and return a new virtual register in the /// function with the specified register class. /// unsigned createVirtualRegister(const TargetRegisterClass *RegClass); /// getNumVirtRegs - Return the number of virtual registers created. /// unsigned getNumVirtRegs() const { return VRegInfo.size(); } /// clearVirtRegs - Remove all virtual registers (after physreg assignment). void clearVirtRegs(); /// setRegAllocationHint - Specify a register allocation hint for the /// specified virtual register. void setRegAllocationHint(unsigned Reg, unsigned Type, unsigned PrefReg) { RegAllocHints[Reg].first = Type; RegAllocHints[Reg].second = PrefReg; } /// getRegAllocationHint - Return the register allocation hint for the /// specified virtual register. std::pair getRegAllocationHint(unsigned Reg) const { return RegAllocHints[Reg]; } /// getSimpleHint - Return the preferred register allocation hint, or 0 if a /// standard simple hint (Type == 0) is not set. unsigned getSimpleHint(unsigned Reg) const { std::pair Hint = getRegAllocationHint(Reg); return Hint.first ? 0 : Hint.second; } //===--------------------------------------------------------------------===// // Physical Register Use Info //===--------------------------------------------------------------------===// /// isPhysRegUsed - Return true if the specified register is used in this /// function. Also check for clobbered aliases and registers clobbered by /// function calls with register mask operands. /// /// This only works after register allocation. It is primarily used by /// PrologEpilogInserter to determine which callee-saved registers need /// spilling. bool isPhysRegUsed(unsigned Reg) const { if (UsedPhysRegMask.test(Reg)) return true; for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) if (UsedRegUnits.test(*Units)) return true; return false; } /// Mark the specified register unit as used in this function. /// This should only be called during and after register allocation. void setRegUnitUsed(unsigned RegUnit) { UsedRegUnits.set(RegUnit); } /// setPhysRegUsed - Mark the specified register used in this function. /// This should only be called during and after register allocation. void setPhysRegUsed(unsigned Reg) { for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) UsedRegUnits.set(*Units); } /// addPhysRegsUsedFromRegMask - Mark any registers not in RegMask as used. /// This corresponds to the bit mask attached to register mask operands. void addPhysRegsUsedFromRegMask(const uint32_t *RegMask) { UsedPhysRegMask.setBitsNotInMask(RegMask); } /// setPhysRegUnused - Mark the specified register unused in this function. /// This should only be called during and after register allocation. void setPhysRegUnused(unsigned Reg) { UsedPhysRegMask.reset(Reg); for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) UsedRegUnits.reset(*Units); } //===--------------------------------------------------------------------===// // Reserved Register Info //===--------------------------------------------------------------------===// // // The set of reserved registers must be invariant during register // allocation. For example, the target cannot suddenly decide it needs a // frame pointer when the register allocator has already used the frame // pointer register for something else. // // These methods can be used by target hooks like hasFP() to avoid changing // the reserved register set during register allocation. /// freezeReservedRegs - Called by the register allocator to freeze the set /// of reserved registers before allocation begins. void freezeReservedRegs(const MachineFunction&); /// reservedRegsFrozen - Returns true after freezeReservedRegs() was called /// to ensure the set of reserved registers stays constant. bool reservedRegsFrozen() const { return !ReservedRegs.empty(); } /// canReserveReg - Returns true if PhysReg can be used as a reserved /// register. Any register can be reserved before freezeReservedRegs() is /// called. bool canReserveReg(unsigned PhysReg) const { return !reservedRegsFrozen() || ReservedRegs.test(PhysReg); } /// getReservedRegs - Returns a reference to the frozen set of reserved /// registers. This method should always be preferred to calling /// TRI::getReservedRegs() when possible. const BitVector &getReservedRegs() const { assert(reservedRegsFrozen() && "Reserved registers haven't been frozen yet. " "Use TRI::getReservedRegs()."); return ReservedRegs; } /// isReserved - Returns true when PhysReg is a reserved register. /// /// Reserved registers may belong to an allocatable register class, but the /// target has explicitly requested that they are not used. /// bool isReserved(unsigned PhysReg) const { return getReservedRegs().test(PhysReg); } /// isAllocatable - Returns true when PhysReg belongs to an allocatable /// register class and it hasn't been reserved. /// /// Allocatable registers may show up in the allocation order of some virtual /// register, so a register allocator needs to track its liveness and /// availability. bool isAllocatable(unsigned PhysReg) const { return TRI->isInAllocatableClass(PhysReg) && !isReserved(PhysReg); } //===--------------------------------------------------------------------===// // LiveIn Management //===--------------------------------------------------------------------===// /// addLiveIn - Add the specified register as a live-in. Note that it /// is an error to add the same register to the same set more than once. void addLiveIn(unsigned Reg, unsigned vreg = 0) { LiveIns.push_back(std::make_pair(Reg, vreg)); } // Iteration support for the live-ins set. It's kept in sorted order // by register number. typedef std::vector >::const_iterator livein_iterator; livein_iterator livein_begin() const { return LiveIns.begin(); } livein_iterator livein_end() const { return LiveIns.end(); } bool livein_empty() const { return LiveIns.empty(); } bool isLiveIn(unsigned Reg) const; /// getLiveInPhysReg - If VReg is a live-in virtual register, return the /// corresponding live-in physical register. unsigned getLiveInPhysReg(unsigned VReg) const; /// getLiveInVirtReg - If PReg is a live-in physical register, return the /// corresponding live-in physical register. unsigned getLiveInVirtReg(unsigned PReg) const; /// EmitLiveInCopies - Emit copies to initialize livein virtual registers /// into the given entry block. void EmitLiveInCopies(MachineBasicBlock *EntryMBB, const TargetRegisterInfo &TRI, const TargetInstrInfo &TII); /// defusechain_iterator - This class provides iterator support for machine /// operands in the function that use or define a specific register. If /// ReturnUses is true it returns uses of registers, if ReturnDefs is true it /// returns defs. If neither are true then you are silly and it always /// returns end(). If SkipDebug is true it skips uses marked Debug /// when incrementing. template class defusechain_iterator : public std::iterator { MachineOperand *Op; explicit defusechain_iterator(MachineOperand *op) : Op(op) { // If the first node isn't one we're interested in, advance to one that // we are interested in. if (op) { if ((!ReturnUses && op->isUse()) || (!ReturnDefs && op->isDef()) || (SkipDebug && op->isDebug())) ++*this; } } friend class MachineRegisterInfo; public: typedef std::iterator::reference reference; typedef std::iterator::pointer pointer; defusechain_iterator(const defusechain_iterator &I) : Op(I.Op) {} defusechain_iterator() : Op(0) {} bool operator==(const defusechain_iterator &x) const { return Op == x.Op; } bool operator!=(const defusechain_iterator &x) const { return !operator==(x); } /// atEnd - return true if this iterator is equal to reg_end() on the value. bool atEnd() const { return Op == 0; } // Iterator traversal: forward iteration only defusechain_iterator &operator++() { // Preincrement assert(Op && "Cannot increment end iterator!"); Op = getNextOperandForReg(Op); // All defs come before the uses, so stop def_iterator early. if (!ReturnUses) { if (Op) { if (Op->isUse()) Op = 0; else assert(!Op->isDebug() && "Can't have debug defs"); } } else { // If this is an operand we don't care about, skip it. while (Op && ((!ReturnDefs && Op->isDef()) || (SkipDebug && Op->isDebug()))) Op = getNextOperandForReg(Op); } return *this; } defusechain_iterator operator++(int) { // Postincrement defusechain_iterator tmp = *this; ++*this; return tmp; } /// skipInstruction - move forward until reaching a different instruction. /// Return the skipped instruction that is no longer pointed to, or NULL if /// already pointing to end(). MachineInstr *skipInstruction() { if (!Op) return 0; MachineInstr *MI = Op->getParent(); do ++*this; while (Op && Op->getParent() == MI); return MI; } MachineInstr *skipBundle() { if (!Op) return 0; MachineInstr *MI = getBundleStart(Op->getParent()); do ++*this; while (Op && getBundleStart(Op->getParent()) == MI); return MI; } MachineOperand &getOperand() const { assert(Op && "Cannot dereference end iterator!"); return *Op; } /// getOperandNo - Return the operand # of this MachineOperand in its /// MachineInstr. unsigned getOperandNo() const { assert(Op && "Cannot dereference end iterator!"); return Op - &Op->getParent()->getOperand(0); } // Retrieve a reference to the current operand. MachineInstr &operator*() const { assert(Op && "Cannot dereference end iterator!"); return *Op->getParent(); } MachineInstr *operator->() const { assert(Op && "Cannot dereference end iterator!"); return Op->getParent(); } }; }; } // End llvm namespace #endif