//===- CodeGen/MachineValueType.h - Machine-Level types ---------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the set of machine-level target independent types which // legal values in the code generator use. // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_MACHINEVALUETYPE_H #define LLVM_CODEGEN_MACHINEVALUETYPE_H #include "llvm/ADT/iterator_range.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" namespace llvm { class Type; /// MVT - Machine Value Type. Every type that is supported natively by some /// processor targeted by LLVM occurs here. This means that any legal value /// type can be represented by an MVT. class MVT { public: enum SimpleValueType { // INVALID_SIMPLE_VALUE_TYPE - Simple value types less than zero are // considered extended value types. INVALID_SIMPLE_VALUE_TYPE = -1, // If you change this numbering, you must change the values in // ValueTypes.td as well! Other = 0, // This is a non-standard value i1 = 1, // This is a 1 bit integer value i8 = 2, // This is an 8 bit integer value i16 = 3, // This is a 16 bit integer value i32 = 4, // This is a 32 bit integer value i64 = 5, // This is a 64 bit integer value i128 = 6, // This is a 128 bit integer value FIRST_INTEGER_VALUETYPE = i1, LAST_INTEGER_VALUETYPE = i128, f16 = 7, // This is a 16 bit floating point value f32 = 8, // This is a 32 bit floating point value f64 = 9, // This is a 64 bit floating point value f80 = 10, // This is a 80 bit floating point value f128 = 11, // This is a 128 bit floating point value ppcf128 = 12, // This is a PPC 128-bit floating point value FIRST_FP_VALUETYPE = f16, LAST_FP_VALUETYPE = ppcf128, v2i1 = 13, // 2 x i1 v4i1 = 14, // 4 x i1 v8i1 = 15, // 8 x i1 v16i1 = 16, // 16 x i1 v32i1 = 17, // 32 x i1 v64i1 = 18, // 64 x i1 v1i8 = 19, // 1 x i8 v2i8 = 20, // 2 x i8 v4i8 = 21, // 4 x i8 v8i8 = 22, // 8 x i8 v16i8 = 23, // 16 x i8 v32i8 = 24, // 32 x i8 v64i8 = 25, // 64 x i8 v1i16 = 26, // 1 x i16 v2i16 = 27, // 2 x i16 v4i16 = 28, // 4 x i16 v8i16 = 29, // 8 x i16 v16i16 = 30, // 16 x i16 v32i16 = 31, // 32 x i16 v1i32 = 32, // 1 x i32 v2i32 = 33, // 2 x i32 v4i32 = 34, // 4 x i32 v8i32 = 35, // 8 x i32 v16i32 = 36, // 16 x i32 v1i64 = 37, // 1 x i64 v2i64 = 38, // 2 x i64 v4i64 = 39, // 4 x i64 v8i64 = 40, // 8 x i64 v16i64 = 41, // 16 x i64 FIRST_INTEGER_VECTOR_VALUETYPE = v2i1, LAST_INTEGER_VECTOR_VALUETYPE = v16i64, v2f16 = 42, // 2 x f16 v4f16 = 43, // 4 x f16 v8f16 = 44, // 8 x f16 v1f32 = 45, // 1 x f32 v2f32 = 46, // 2 x f32 v4f32 = 47, // 4 x f32 v8f32 = 48, // 8 x f32 v16f32 = 49, // 16 x f32 v1f64 = 50, // 1 x f64 v2f64 = 51, // 2 x f64 v4f64 = 52, // 4 x f64 v8f64 = 53, // 8 x f64 FIRST_FP_VECTOR_VALUETYPE = v2f16, LAST_FP_VECTOR_VALUETYPE = v8f64, FIRST_VECTOR_VALUETYPE = v2i1, LAST_VECTOR_VALUETYPE = v8f64, x86mmx = 54, // This is an X86 MMX value Glue = 55, // This glues nodes together during pre-RA sched isVoid = 56, // This has no value Untyped = 57, // This value takes a register, but has // unspecified type. The register class // will be determined by the opcode. FIRST_VALUETYPE = 0, // This is always the beginning of the list. LAST_VALUETYPE = 58, // This always remains at the end of the list. // This is the current maximum for LAST_VALUETYPE. // MVT::MAX_ALLOWED_VALUETYPE is used for asserts and to size bit vectors // This value must be a multiple of 32. MAX_ALLOWED_VALUETYPE = 64, // Metadata - This is MDNode or MDString. Metadata = 250, // iPTRAny - An int value the size of the pointer of the current // target to any address space. This must only be used internal to // tblgen. Other than for overloading, we treat iPTRAny the same as iPTR. iPTRAny = 251, // vAny - A vector with any length and element size. This is used // for intrinsics that have overloadings based on vector types. // This is only for tblgen's consumption! vAny = 252, // fAny - Any floating-point or vector floating-point value. This is used // for intrinsics that have overloadings based on floating-point types. // This is only for tblgen's consumption! fAny = 253, // iAny - An integer or vector integer value of any bit width. This is // used for intrinsics that have overloadings based on integer bit widths. // This is only for tblgen's consumption! iAny = 254, // iPTR - An int value the size of the pointer of the current // target. This should only be used internal to tblgen! iPTR = 255, // Any - Any type. This is used for intrinsics that have overloadings. // This is only for tblgen's consumption! Any = 256 }; SimpleValueType SimpleTy; LLVM_CONSTEXPR MVT() : SimpleTy(INVALID_SIMPLE_VALUE_TYPE) {} LLVM_CONSTEXPR MVT(SimpleValueType SVT) : SimpleTy(SVT) { } bool operator>(const MVT& S) const { return SimpleTy > S.SimpleTy; } bool operator<(const MVT& S) const { return SimpleTy < S.SimpleTy; } bool operator==(const MVT& S) const { return SimpleTy == S.SimpleTy; } bool operator!=(const MVT& S) const { return SimpleTy != S.SimpleTy; } bool operator>=(const MVT& S) const { return SimpleTy >= S.SimpleTy; } bool operator<=(const MVT& S) const { return SimpleTy <= S.SimpleTy; } /// isValid - Return true if this is a valid simple valuetype. bool isValid() const { return (SimpleTy >= MVT::FIRST_VALUETYPE && SimpleTy < MVT::LAST_VALUETYPE); } /// isFloatingPoint - Return true if this is a FP, or a vector FP type. bool isFloatingPoint() const { return ((SimpleTy >= MVT::FIRST_FP_VALUETYPE && SimpleTy <= MVT::LAST_FP_VALUETYPE) || (SimpleTy >= MVT::FIRST_FP_VECTOR_VALUETYPE && SimpleTy <= MVT::LAST_FP_VECTOR_VALUETYPE)); } /// isInteger - Return true if this is an integer, or a vector integer type. bool isInteger() const { return ((SimpleTy >= MVT::FIRST_INTEGER_VALUETYPE && SimpleTy <= MVT::LAST_INTEGER_VALUETYPE) || (SimpleTy >= MVT::FIRST_INTEGER_VECTOR_VALUETYPE && SimpleTy <= MVT::LAST_INTEGER_VECTOR_VALUETYPE)); } /// isVector - Return true if this is a vector value type. bool isVector() const { return (SimpleTy >= MVT::FIRST_VECTOR_VALUETYPE && SimpleTy <= MVT::LAST_VECTOR_VALUETYPE); } /// is16BitVector - Return true if this is a 16-bit vector type. bool is16BitVector() const { return (SimpleTy == MVT::v2i8 || SimpleTy == MVT::v1i16 || SimpleTy == MVT::v16i1); } /// is32BitVector - Return true if this is a 32-bit vector type. bool is32BitVector() const { return (SimpleTy == MVT::v4i8 || SimpleTy == MVT::v2i16 || SimpleTy == MVT::v1i32 || SimpleTy == MVT::v2f16 || SimpleTy == MVT::v1f32); } /// is64BitVector - Return true if this is a 64-bit vector type. bool is64BitVector() const { return (SimpleTy == MVT::v8i8 || SimpleTy == MVT::v4i16 || SimpleTy == MVT::v2i32 || SimpleTy == MVT::v1i64 || SimpleTy == MVT::v4f16 || SimpleTy == MVT::v2f32 || SimpleTy == MVT::v1f64); } /// is128BitVector - Return true if this is a 128-bit vector type. bool is128BitVector() const { return (SimpleTy == MVT::v16i8 || SimpleTy == MVT::v8i16 || SimpleTy == MVT::v4i32 || SimpleTy == MVT::v2i64 || SimpleTy == MVT::v8f16 || SimpleTy == MVT::v4f32 || SimpleTy == MVT::v2f64); } /// is256BitVector - Return true if this is a 256-bit vector type. bool is256BitVector() const { return (SimpleTy == MVT::v8f32 || SimpleTy == MVT::v4f64 || SimpleTy == MVT::v32i8 || SimpleTy == MVT::v16i16 || SimpleTy == MVT::v8i32 || SimpleTy == MVT::v4i64); } /// is512BitVector - Return true if this is a 512-bit vector type. bool is512BitVector() const { return (SimpleTy == MVT::v8f64 || SimpleTy == MVT::v16f32 || SimpleTy == MVT::v64i8 || SimpleTy == MVT::v32i16 || SimpleTy == MVT::v8i64 || SimpleTy == MVT::v16i32); } /// is1024BitVector - Return true if this is a 1024-bit vector type. bool is1024BitVector() const { return (SimpleTy == MVT::v16i64); } /// isOverloaded - Return true if this is an overloaded type for TableGen. bool isOverloaded() const { return (SimpleTy==MVT::Any || SimpleTy==MVT::iAny || SimpleTy==MVT::fAny || SimpleTy==MVT::vAny || SimpleTy==MVT::iPTRAny); } /// isPow2VectorType - Returns true if the given vector is a power of 2. bool isPow2VectorType() const { unsigned NElts = getVectorNumElements(); return !(NElts & (NElts - 1)); } /// getPow2VectorType - Widens the length of the given vector MVT up to /// the nearest power of 2 and returns that type. MVT getPow2VectorType() const { if (isPow2VectorType()) return *this; unsigned NElts = getVectorNumElements(); unsigned Pow2NElts = 1 << Log2_32_Ceil(NElts); return MVT::getVectorVT(getVectorElementType(), Pow2NElts); } /// getScalarType - If this is a vector type, return the element type, /// otherwise return this. MVT getScalarType() const { return isVector() ? getVectorElementType() : *this; } MVT getVectorElementType() const { switch (SimpleTy) { default: llvm_unreachable("Not a vector MVT!"); case v2i1 : case v4i1 : case v8i1 : case v16i1 : case v32i1 : case v64i1: return i1; case v1i8 : case v2i8 : case v4i8 : case v8i8 : case v16i8: case v32i8: case v64i8: return i8; case v1i16: case v2i16: case v4i16: case v8i16: case v16i16: case v32i16: return i16; case v1i32: case v2i32: case v4i32: case v8i32: case v16i32: return i32; case v1i64: case v2i64: case v4i64: case v8i64: case v16i64: return i64; case v2f16: case v4f16: case v8f16: return f16; case v1f32: case v2f32: case v4f32: case v8f32: case v16f32: return f32; case v1f64: case v2f64: case v4f64: case v8f64: return f64; } } unsigned getVectorNumElements() const { switch (SimpleTy) { default: llvm_unreachable("Not a vector MVT!"); case v32i1: case v32i8: case v32i16: return 32; case v64i1: case v64i8: return 64; case v16i1: case v16i8: case v16i16: case v16i32: case v16i64: case v16f32: return 16; case v8i1 : case v8i8 : case v8i16: case v8i32: case v8i64: case v8f16: case v8f32: case v8f64: return 8; case v4i1: case v4i8: case v4i16: case v4i32: case v4i64: case v4f16: case v4f32: case v4f64: return 4; case v2i1: case v2i8: case v2i16: case v2i32: case v2i64: case v2f16: case v2f32: case v2f64: return 2; case v1i8: case v1i16: case v1i32: case v1i64: case v1f32: case v1f64: return 1; } } unsigned getSizeInBits() const { switch (SimpleTy) { default: llvm_unreachable("getSizeInBits called on extended MVT."); case Other: llvm_unreachable("Value type is non-standard value, Other."); case iPTR: llvm_unreachable("Value type size is target-dependent. Ask TLI."); case iPTRAny: case iAny: case fAny: case vAny: case Any: llvm_unreachable("Value type is overloaded."); case Metadata: llvm_unreachable("Value type is metadata."); case i1 : return 1; case v2i1: return 2; case v4i1: return 4; case i8 : case v1i8: case v8i1: return 8; case i16 : case f16: case v16i1: case v2i8: case v1i16: return 16; case f32 : case i32 : case v32i1: case v4i8: case v2i16: case v2f16: case v1f32: case v1i32: return 32; case x86mmx: case f64 : case i64 : case v64i1: case v8i8: case v4i16: case v2i32: case v1i64: case v4f16: case v2f32: case v1f64: return 64; case f80 : return 80; case f128: case ppcf128: case i128: case v16i8: case v8i16: case v4i32: case v2i64: case v8f16: case v4f32: case v2f64: return 128; case v32i8: case v16i16: case v8i32: case v4i64: case v8f32: case v4f64: return 256; case v64i8: case v32i16: case v16i32: case v8i64: case v16f32: case v8f64: return 512; case v16i64:return 1024; } } unsigned getScalarSizeInBits() const { return getScalarType().getSizeInBits(); } /// getStoreSize - Return the number of bytes overwritten by a store /// of the specified value type. unsigned getStoreSize() const { return (getSizeInBits() + 7) / 8; } /// getStoreSizeInBits - Return the number of bits overwritten by a store /// of the specified value type. unsigned getStoreSizeInBits() const { return getStoreSize() * 8; } /// Return true if this has more bits than VT. bool bitsGT(MVT VT) const { return getSizeInBits() > VT.getSizeInBits(); } /// Return true if this has no less bits than VT. bool bitsGE(MVT VT) const { return getSizeInBits() >= VT.getSizeInBits(); } /// Return true if this has less bits than VT. bool bitsLT(MVT VT) const { return getSizeInBits() < VT.getSizeInBits(); } /// Return true if this has no more bits than VT. bool bitsLE(MVT VT) const { return getSizeInBits() <= VT.getSizeInBits(); } static MVT getFloatingPointVT(unsigned BitWidth) { switch (BitWidth) { default: llvm_unreachable("Bad bit width!"); case 16: return MVT::f16; case 32: return MVT::f32; case 64: return MVT::f64; case 80: return MVT::f80; case 128: return MVT::f128; } } static MVT getIntegerVT(unsigned BitWidth) { switch (BitWidth) { default: return (MVT::SimpleValueType)(MVT::INVALID_SIMPLE_VALUE_TYPE); case 1: return MVT::i1; case 8: return MVT::i8; case 16: return MVT::i16; case 32: return MVT::i32; case 64: return MVT::i64; case 128: return MVT::i128; } } static MVT getVectorVT(MVT VT, unsigned NumElements) { switch (VT.SimpleTy) { default: break; case MVT::i1: if (NumElements == 2) return MVT::v2i1; if (NumElements == 4) return MVT::v4i1; if (NumElements == 8) return MVT::v8i1; if (NumElements == 16) return MVT::v16i1; if (NumElements == 32) return MVT::v32i1; if (NumElements == 64) return MVT::v64i1; break; case MVT::i8: if (NumElements == 1) return MVT::v1i8; if (NumElements == 2) return MVT::v2i8; if (NumElements == 4) return MVT::v4i8; if (NumElements == 8) return MVT::v8i8; if (NumElements == 16) return MVT::v16i8; if (NumElements == 32) return MVT::v32i8; if (NumElements == 64) return MVT::v64i8; break; case MVT::i16: if (NumElements == 1) return MVT::v1i16; if (NumElements == 2) return MVT::v2i16; if (NumElements == 4) return MVT::v4i16; if (NumElements == 8) return MVT::v8i16; if (NumElements == 16) return MVT::v16i16; if (NumElements == 32) return MVT::v32i16; break; case MVT::i32: if (NumElements == 1) return MVT::v1i32; if (NumElements == 2) return MVT::v2i32; if (NumElements == 4) return MVT::v4i32; if (NumElements == 8) return MVT::v8i32; if (NumElements == 16) return MVT::v16i32; break; case MVT::i64: if (NumElements == 1) return MVT::v1i64; if (NumElements == 2) return MVT::v2i64; if (NumElements == 4) return MVT::v4i64; if (NumElements == 8) return MVT::v8i64; if (NumElements == 16) return MVT::v16i64; break; case MVT::f16: if (NumElements == 2) return MVT::v2f16; if (NumElements == 4) return MVT::v4f16; if (NumElements == 8) return MVT::v8f16; break; case MVT::f32: if (NumElements == 1) return MVT::v1f32; if (NumElements == 2) return MVT::v2f32; if (NumElements == 4) return MVT::v4f32; if (NumElements == 8) return MVT::v8f32; if (NumElements == 16) return MVT::v16f32; break; case MVT::f64: if (NumElements == 1) return MVT::v1f64; if (NumElements == 2) return MVT::v2f64; if (NumElements == 4) return MVT::v4f64; if (NumElements == 8) return MVT::v8f64; break; } return (MVT::SimpleValueType)(MVT::INVALID_SIMPLE_VALUE_TYPE); } /// Return the value type corresponding to the specified type. This returns /// all pointers as iPTR. If HandleUnknown is true, unknown types are /// returned as Other, otherwise they are invalid. static MVT getVT(Type *Ty, bool HandleUnknown = false); private: /// A simple iterator over the MVT::SimpleValueType enum. struct mvt_iterator { SimpleValueType VT; mvt_iterator(SimpleValueType VT) : VT(VT) {} MVT operator*() const { return VT; } bool operator!=(const mvt_iterator &LHS) const { return VT != LHS.VT; } mvt_iterator& operator++() { VT = (MVT::SimpleValueType)((int)VT + 1); assert((int)VT <= MVT::MAX_ALLOWED_VALUETYPE && "MVT iterator overflowed."); return *this; } }; /// A range of the MVT::SimpleValueType enum. typedef iterator_range mvt_range; public: /// SimpleValueType Iteration /// @{ static mvt_range all_valuetypes() { return mvt_range(MVT::FIRST_VALUETYPE, MVT::LAST_VALUETYPE); } static mvt_range integer_valuetypes() { return mvt_range(MVT::FIRST_INTEGER_VALUETYPE, (MVT::SimpleValueType)(MVT::LAST_INTEGER_VALUETYPE + 1)); } static mvt_range fp_valuetypes() { return mvt_range(MVT::FIRST_FP_VALUETYPE, (MVT::SimpleValueType)(MVT::LAST_FP_VALUETYPE + 1)); } static mvt_range vector_valuetypes() { return mvt_range(MVT::FIRST_VECTOR_VALUETYPE, (MVT::SimpleValueType)(MVT::LAST_VECTOR_VALUETYPE + 1)); } static mvt_range integer_vector_valuetypes() { return mvt_range( MVT::FIRST_INTEGER_VECTOR_VALUETYPE, (MVT::SimpleValueType)(MVT::LAST_INTEGER_VECTOR_VALUETYPE + 1)); } static mvt_range fp_vector_valuetypes() { return mvt_range( MVT::FIRST_FP_VECTOR_VALUETYPE, (MVT::SimpleValueType)(MVT::LAST_FP_VECTOR_VALUETYPE + 1)); } /// @} }; } // End llvm namespace #endif