//===----------- ReductionRules.h - Reduction Rules -------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Reduction Rules. // //===----------------------------------------------------------------------===// #ifndef LLVM_REDUCTIONRULES_H #define LLVM_REDUCTIONRULES_H #include "Graph.h" #include "Math.h" #include "Solution.h" namespace PBQP { /// \brief Reduce a node of degree one. /// /// Propagate costs from the given node, which must be of degree one, to its /// neighbor. Notify the problem domain. template void applyR1(GraphT &G, typename GraphT::NodeId NId) { typedef typename GraphT::NodeId NodeId; typedef typename GraphT::EdgeId EdgeId; typedef typename GraphT::Vector Vector; typedef typename GraphT::Matrix Matrix; typedef typename GraphT::RawVector RawVector; assert(G.getNodeDegree(NId) == 1 && "R1 applied to node with degree != 1."); EdgeId EId = *G.adjEdgeIds(NId).begin(); NodeId MId = G.getEdgeOtherNodeId(EId, NId); const Matrix &ECosts = G.getEdgeCosts(EId); const Vector &XCosts = G.getNodeCosts(NId); RawVector YCosts = G.getNodeCosts(MId); // Duplicate a little to avoid transposing matrices. if (NId == G.getEdgeNode1Id(EId)) { for (unsigned j = 0; j < YCosts.getLength(); ++j) { PBQPNum Min = ECosts[0][j] + XCosts[0]; for (unsigned i = 1; i < XCosts.getLength(); ++i) { PBQPNum C = ECosts[i][j] + XCosts[i]; if (C < Min) Min = C; } YCosts[j] += Min; } } else { for (unsigned i = 0; i < YCosts.getLength(); ++i) { PBQPNum Min = ECosts[i][0] + XCosts[0]; for (unsigned j = 1; j < XCosts.getLength(); ++j) { PBQPNum C = ECosts[i][j] + XCosts[j]; if (C < Min) Min = C; } YCosts[i] += Min; } } G.setNodeCosts(MId, YCosts); G.disconnectEdge(EId, MId); } template void applyR2(GraphT &G, typename GraphT::NodeId NId) { typedef typename GraphT::NodeId NodeId; typedef typename GraphT::EdgeId EdgeId; typedef typename GraphT::Vector Vector; typedef typename GraphT::Matrix Matrix; typedef typename GraphT::RawMatrix RawMatrix; assert(G.getNodeDegree(NId) == 2 && "R2 applied to node with degree != 2."); const Vector &XCosts = G.getNodeCosts(NId); typename GraphT::AdjEdgeItr AEItr = G.adjEdgeIds(NId).begin(); EdgeId YXEId = *AEItr, ZXEId = *(++AEItr); NodeId YNId = G.getEdgeOtherNodeId(YXEId, NId), ZNId = G.getEdgeOtherNodeId(ZXEId, NId); bool FlipEdge1 = (G.getEdgeNode1Id(YXEId) == NId), FlipEdge2 = (G.getEdgeNode1Id(ZXEId) == NId); const Matrix *YXECosts = FlipEdge1 ? new Matrix(G.getEdgeCosts(YXEId).transpose()) : &G.getEdgeCosts(YXEId); const Matrix *ZXECosts = FlipEdge2 ? new Matrix(G.getEdgeCosts(ZXEId).transpose()) : &G.getEdgeCosts(ZXEId); unsigned XLen = XCosts.getLength(), YLen = YXECosts->getRows(), ZLen = ZXECosts->getRows(); RawMatrix Delta(YLen, ZLen); for (unsigned i = 0; i < YLen; ++i) { for (unsigned j = 0; j < ZLen; ++j) { PBQPNum Min = (*YXECosts)[i][0] + (*ZXECosts)[j][0] + XCosts[0]; for (unsigned k = 1; k < XLen; ++k) { PBQPNum C = (*YXECosts)[i][k] + (*ZXECosts)[j][k] + XCosts[k]; if (C < Min) { Min = C; } } Delta[i][j] = Min; } } if (FlipEdge1) delete YXECosts; if (FlipEdge2) delete ZXECosts; EdgeId YZEId = G.findEdge(YNId, ZNId); if (YZEId == G.invalidEdgeId()) { YZEId = G.addEdge(YNId, ZNId, Delta); } else { const Matrix &YZECosts = G.getEdgeCosts(YZEId); if (YNId == G.getEdgeNode1Id(YZEId)) { G.setEdgeCosts(YZEId, Delta + YZECosts); } else { G.setEdgeCosts(YZEId, Delta.transpose() + YZECosts); } } G.disconnectEdge(YXEId, YNId); G.disconnectEdge(ZXEId, ZNId); // TODO: Try to normalize newly added/modified edge. } // \brief Find a solution to a fully reduced graph by backpropagation. // // Given a graph and a reduction order, pop each node from the reduction // order and greedily compute a minimum solution based on the node costs, and // the dependent costs due to previously solved nodes. // // Note - This does not return the graph to its original (pre-reduction) // state: the existing solvers destructively alter the node and edge // costs. Given that, the backpropagate function doesn't attempt to // replace the edges either, but leaves the graph in its reduced // state. template Solution backpropagate(GraphT& G, StackT stack) { typedef GraphBase::NodeId NodeId; typedef typename GraphT::Matrix Matrix; typedef typename GraphT::RawVector RawVector; Solution s; while (!stack.empty()) { NodeId NId = stack.back(); stack.pop_back(); RawVector v = G.getNodeCosts(NId); for (auto EId : G.adjEdgeIds(NId)) { const Matrix& edgeCosts = G.getEdgeCosts(EId); if (NId == G.getEdgeNode1Id(EId)) { NodeId mId = G.getEdgeNode2Id(EId); v += edgeCosts.getColAsVector(s.getSelection(mId)); } else { NodeId mId = G.getEdgeNode1Id(EId); v += edgeCosts.getRowAsVector(s.getSelection(mId)); } } s.setSelection(NId, v.minIndex()); } return s; } } #endif // LLVM_REDUCTIONRULES_H