//==- ScheduleDAGInstrs.h - MachineInstr Scheduling --------------*- C++ -*-==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the ScheduleDAGInstrs class, which implements // scheduling for a MachineInstr-based dependency graph. // //===----------------------------------------------------------------------===// #ifndef SCHEDULEDAGINSTRS_H #define SCHEDULEDAGINSTRS_H #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/ScheduleDAG.h" #include "llvm/Support/Compiler.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SparseSet.h" #include namespace llvm { class MachineLoopInfo; class MachineDominatorTree; class LiveIntervals; class RegPressureTracker; /// LoopDependencies - This class analyzes loop-oriented register /// dependencies, which are used to guide scheduling decisions. /// For example, loop induction variable increments should be /// scheduled as soon as possible after the variable's last use. /// class LoopDependencies { const MachineDominatorTree &MDT; public: typedef std::map > LoopDeps; LoopDeps Deps; LoopDependencies(const MachineDominatorTree &mdt) : MDT(mdt) {} /// VisitLoop - Clear out any previous state and analyze the given loop. /// void VisitLoop(const MachineLoop *Loop) { assert(Deps.empty() && "stale loop dependencies"); MachineBasicBlock *Header = Loop->getHeader(); SmallSet LoopLiveIns; for (MachineBasicBlock::livein_iterator LI = Header->livein_begin(), LE = Header->livein_end(); LI != LE; ++LI) LoopLiveIns.insert(*LI); const MachineDomTreeNode *Node = MDT.getNode(Header); const MachineBasicBlock *MBB = Node->getBlock(); assert(Loop->contains(MBB) && "Loop does not contain header!"); VisitRegion(Node, MBB, Loop, LoopLiveIns); } private: void VisitRegion(const MachineDomTreeNode *Node, const MachineBasicBlock *MBB, const MachineLoop *Loop, const SmallSet &LoopLiveIns) { unsigned Count = 0; for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end(); I != E; ++I) { const MachineInstr *MI = I; if (MI->isDebugValue()) continue; for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI->getOperand(i); if (!MO.isReg() || !MO.isUse()) continue; unsigned MOReg = MO.getReg(); if (LoopLiveIns.count(MOReg)) Deps.insert(std::make_pair(MOReg, std::make_pair(&MO, Count))); } ++Count; // Not every iteration due to dbg_value above. } const std::vector &Children = Node->getChildren(); for (std::vector::const_iterator I = Children.begin(), E = Children.end(); I != E; ++I) { const MachineDomTreeNode *ChildNode = *I; MachineBasicBlock *ChildBlock = ChildNode->getBlock(); if (Loop->contains(ChildBlock)) VisitRegion(ChildNode, ChildBlock, Loop, LoopLiveIns); } } }; /// An individual mapping from virtual register number to SUnit. struct VReg2SUnit { unsigned VirtReg; SUnit *SU; VReg2SUnit(unsigned reg, SUnit *su): VirtReg(reg), SU(su) {} unsigned getSparseSetIndex() const { return TargetRegisterInfo::virtReg2Index(VirtReg); } }; /// Record a physical register access. /// For non data-dependent uses, OpIdx == -1. struct PhysRegSUOper { SUnit *SU; int OpIdx; PhysRegSUOper(SUnit *su, int op): SU(su), OpIdx(op) {} }; /// Combine a SparseSet with a 1x1 vector to track physical registers. /// The SparseSet allows iterating over the (few) live registers for quickly /// comparing against a regmask or clearing the set. /// /// Storage for the map is allocated once for the pass. The map can be /// cleared between scheduling regions without freeing unused entries. class Reg2SUnitsMap { SparseSet PhysRegSet; std::vector > SUnits; public: typedef SparseSet::const_iterator const_iterator; // Allow iteration over register numbers (keys) in the map. If needed, we // can provide an iterator over SUnits (values) as well. const_iterator reg_begin() const { return PhysRegSet.begin(); } const_iterator reg_end() const { return PhysRegSet.end(); } /// Initialize the map with the number of registers. /// If the map is already large enough, no allocation occurs. /// For simplicity we expect the map to be empty(). void setRegLimit(unsigned Limit); /// Returns true if the map is empty. bool empty() const { return PhysRegSet.empty(); } /// Clear the map without deallocating storage. void clear(); bool contains(unsigned Reg) const { return PhysRegSet.count(Reg); } /// If this register is mapped, return its existing SUnits vector. /// Otherwise map the register and return an empty SUnits vector. std::vector &operator[](unsigned Reg) { bool New = PhysRegSet.insert(Reg).second; assert((!New || SUnits[Reg].empty()) && "stale SUnits vector"); (void)New; return SUnits[Reg]; } /// Erase an existing element without freeing memory. void erase(unsigned Reg) { PhysRegSet.erase(Reg); SUnits[Reg].clear(); } }; /// Use SparseSet as a SparseMap by relying on the fact that it never /// compares ValueT's, only unsigned keys. This allows the set to be cleared /// between scheduling regions in constant time as long as ValueT does not /// require a destructor. typedef SparseSet VReg2SUnitMap; /// ScheduleDAGInstrs - A ScheduleDAG subclass for scheduling lists of /// MachineInstrs. class ScheduleDAGInstrs : public ScheduleDAG { protected: const MachineLoopInfo &MLI; const MachineDominatorTree &MDT; const MachineFrameInfo *MFI; const InstrItineraryData *InstrItins; /// Live Intervals provides reaching defs in preRA scheduling. LiveIntervals *LIS; /// isPostRA flag indicates vregs cannot be present. bool IsPostRA; /// UnitLatencies (misnamed) flag avoids computing def-use latencies, using /// the def-side latency only. bool UnitLatencies; /// The standard DAG builder does not normally include terminators as DAG /// nodes because it does not create the necessary dependencies to prevent /// reordering. A specialized scheduler can overide /// TargetInstrInfo::isSchedulingBoundary then enable this flag to indicate /// it has taken responsibility for scheduling the terminator correctly. bool CanHandleTerminators; /// State specific to the current scheduling region. /// ------------------------------------------------ /// The block in which to insert instructions MachineBasicBlock *BB; /// The beginning of the range to be scheduled. MachineBasicBlock::iterator RegionBegin; /// The end of the range to be scheduled. MachineBasicBlock::iterator RegionEnd; /// The index in BB of RegionEnd. unsigned EndIndex; /// After calling BuildSchedGraph, each machine instruction in the current /// scheduling region is mapped to an SUnit. DenseMap MISUnitMap; /// State internal to DAG building. /// ------------------------------- /// Defs, Uses - Remember where defs and uses of each register are as we /// iterate upward through the instructions. This is allocated here instead /// of inside BuildSchedGraph to avoid the need for it to be initialized and /// destructed for each block. Reg2SUnitsMap Defs; Reg2SUnitsMap Uses; /// Track the last instructon in this region defining each virtual register. VReg2SUnitMap VRegDefs; /// PendingLoads - Remember where unknown loads are after the most recent /// unknown store, as we iterate. As with Defs and Uses, this is here /// to minimize construction/destruction. std::vector PendingLoads; /// LoopRegs - Track which registers are used for loop-carried dependencies. /// LoopDependencies LoopRegs; /// DbgValues - Remember instruction that precedes DBG_VALUE. /// These are generated by buildSchedGraph but persist so they can be /// referenced when emitting the final schedule. typedef std::vector > DbgValueVector; DbgValueVector DbgValues; MachineInstr *FirstDbgValue; public: explicit ScheduleDAGInstrs(MachineFunction &mf, const MachineLoopInfo &mli, const MachineDominatorTree &mdt, bool IsPostRAFlag, LiveIntervals *LIS = 0); virtual ~ScheduleDAGInstrs() {} /// begin - Return an iterator to the top of the current scheduling region. MachineBasicBlock::iterator begin() const { return RegionBegin; } /// end - Return an iterator to the bottom of the current scheduling region. MachineBasicBlock::iterator end() const { return RegionEnd; } /// newSUnit - Creates a new SUnit and return a ptr to it. SUnit *newSUnit(MachineInstr *MI); /// getSUnit - Return an existing SUnit for this MI, or NULL. SUnit *getSUnit(MachineInstr *MI) const; /// startBlock - Prepare to perform scheduling in the given block. virtual void startBlock(MachineBasicBlock *BB); /// finishBlock - Clean up after scheduling in the given block. virtual void finishBlock(); /// Initialize the scheduler state for the next scheduling region. virtual void enterRegion(MachineBasicBlock *bb, MachineBasicBlock::iterator begin, MachineBasicBlock::iterator end, unsigned endcount); /// Notify that the scheduler has finished scheduling the current region. virtual void exitRegion(); /// buildSchedGraph - Build SUnits from the MachineBasicBlock that we are /// input. void buildSchedGraph(AliasAnalysis *AA, RegPressureTracker *RPTracker = 0); /// addSchedBarrierDeps - Add dependencies from instructions in the current /// list of instructions being scheduled to scheduling barrier. We want to /// make sure instructions which define registers that are either used by /// the terminator or are live-out are properly scheduled. This is /// especially important when the definition latency of the return value(s) /// are too high to be hidden by the branch or when the liveout registers /// used by instructions in the fallthrough block. void addSchedBarrierDeps(); /// computeLatency - Compute node latency. /// virtual void computeLatency(SUnit *SU); /// schedule - Order nodes according to selected style, filling /// in the Sequence member. /// /// Typically, a scheduling algorithm will implement schedule() without /// overriding enterRegion() or exitRegion(). virtual void schedule() = 0; /// finalizeSchedule - Allow targets to perform final scheduling actions at /// the level of the whole MachineFunction. By default does nothing. virtual void finalizeSchedule() {} virtual void dumpNode(const SUnit *SU) const; /// Return a label for a DAG node that points to an instruction. virtual std::string getGraphNodeLabel(const SUnit *SU) const; /// Return a label for the region of code covered by the DAG. virtual std::string getDAGName() const; protected: void initSUnits(); void addPhysRegDataDeps(SUnit *SU, unsigned OperIdx); void addPhysRegDeps(SUnit *SU, unsigned OperIdx); void addVRegDefDeps(SUnit *SU, unsigned OperIdx); void addVRegUseDeps(SUnit *SU, unsigned OperIdx); }; /// newSUnit - Creates a new SUnit and return a ptr to it. inline SUnit *ScheduleDAGInstrs::newSUnit(MachineInstr *MI) { #ifndef NDEBUG const SUnit *Addr = SUnits.empty() ? 0 : &SUnits[0]; #endif SUnits.push_back(SUnit(MI, (unsigned)SUnits.size())); assert((Addr == 0 || Addr == &SUnits[0]) && "SUnits std::vector reallocated on the fly!"); SUnits.back().OrigNode = &SUnits.back(); return &SUnits.back(); } /// getSUnit - Return an existing SUnit for this MI, or NULL. inline SUnit *ScheduleDAGInstrs::getSUnit(MachineInstr *MI) const { DenseMap::const_iterator I = MISUnitMap.find(MI); if (I == MISUnitMap.end()) return 0; return I->second; } } // namespace llvm #endif