//===-- llvm/CodeGen/SelectionDAG.h - InstSelection DAG ---------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file declares the SelectionDAG class, and transitively defines the // SDNode class and subclasses. // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_SELECTIONDAG_H #define LLVM_CODEGEN_SELECTIONDAG_H #include "llvm/ADT/FoldingSet.h" #include "llvm/ADT/ilist" #include "llvm/CodeGen/SelectionDAGNodes.h" #include #include #include #include #include namespace llvm { class AliasAnalysis; class TargetLowering; class TargetMachine; class MachineModuleInfo; class MachineFunction; class MachineConstantPoolValue; /// SelectionDAG class - This is used to represent a portion of an LLVM function /// in a low-level Data Dependence DAG representation suitable for instruction /// selection. This DAG is constructed as the first step of instruction /// selection in order to allow implementation of machine specific optimizations /// and code simplifications. /// /// The representation used by the SelectionDAG is a target-independent /// representation, which has some similarities to the GCC RTL representation, /// but is significantly more simple, powerful, and is a graph form instead of a /// linear form. /// class SelectionDAG { TargetLowering &TLI; MachineFunction &MF; MachineModuleInfo *MMI; /// Root - The root of the entire DAG. EntryNode - The starting token. SDOperand Root, EntryNode; /// AllNodes - A linked list of nodes in the current DAG. ilist AllNodes; /// CSEMap - This structure is used to memoize nodes, automatically performing /// CSE with existing nodes with a duplicate is requested. FoldingSet CSEMap; public: SelectionDAG(TargetLowering &tli, MachineFunction &mf, MachineModuleInfo *mmi) : TLI(tli), MF(mf), MMI(mmi) { EntryNode = Root = getNode(ISD::EntryToken, MVT::Other); } ~SelectionDAG(); MachineFunction &getMachineFunction() const { return MF; } const TargetMachine &getTarget() const; TargetLowering &getTargetLoweringInfo() const { return TLI; } MachineModuleInfo *getMachineModuleInfo() const { return MMI; } /// viewGraph - Pop up a GraphViz/gv window with the DAG rendered using 'dot'. /// void viewGraph(); #ifndef NDEBUG std::map NodeGraphAttrs; #endif /// clearGraphAttrs - Clear all previously defined node graph attributes. /// Intended to be used from a debugging tool (eg. gdb). void clearGraphAttrs(); /// setGraphAttrs - Set graph attributes for a node. (eg. "color=red".) /// void setGraphAttrs(const SDNode *N, const char *Attrs); /// getGraphAttrs - Get graph attributes for a node. (eg. "color=red".) /// Used from getNodeAttributes. const std::string getGraphAttrs(const SDNode *N) const; /// setGraphColor - Convenience for setting node color attribute. /// void setGraphColor(const SDNode *N, const char *Color); typedef ilist::const_iterator allnodes_const_iterator; allnodes_const_iterator allnodes_begin() const { return AllNodes.begin(); } allnodes_const_iterator allnodes_end() const { return AllNodes.end(); } typedef ilist::iterator allnodes_iterator; allnodes_iterator allnodes_begin() { return AllNodes.begin(); } allnodes_iterator allnodes_end() { return AllNodes.end(); } /// getRoot - Return the root tag of the SelectionDAG. /// const SDOperand &getRoot() const { return Root; } /// getEntryNode - Return the token chain corresponding to the entry of the /// function. const SDOperand &getEntryNode() const { return EntryNode; } /// setRoot - Set the current root tag of the SelectionDAG. /// const SDOperand &setRoot(SDOperand N) { return Root = N; } /// Combine - This iterates over the nodes in the SelectionDAG, folding /// certain types of nodes together, or eliminating superfluous nodes. When /// the AfterLegalize argument is set to 'true', Combine takes care not to /// generate any nodes that will be illegal on the target. void Combine(bool AfterLegalize, AliasAnalysis &AA); /// Legalize - This transforms the SelectionDAG into a SelectionDAG that is /// compatible with the target instruction selector, as indicated by the /// TargetLowering object. /// /// Note that this is an involved process that may invalidate pointers into /// the graph. void Legalize(); /// RemoveDeadNodes - This method deletes all unreachable nodes in the /// SelectionDAG. void RemoveDeadNodes(); /// RemoveDeadNode - Remove the specified node from the system. If any of its /// operands then becomes dead, remove them as well. The vector Deleted is /// populated with nodes that are deleted. void RemoveDeadNode(SDNode *N, std::vector &Deleted); /// DeleteNode - Remove the specified node from the system. This node must /// have no referrers. void DeleteNode(SDNode *N); /// getVTList - Return an SDVTList that represents the list of values /// specified. SDVTList getVTList(MVT::ValueType VT); SDVTList getVTList(MVT::ValueType VT1, MVT::ValueType VT2); SDVTList getVTList(MVT::ValueType VT1, MVT::ValueType VT2,MVT::ValueType VT3); SDVTList getVTList(const MVT::ValueType *VTs, unsigned NumVTs); /// getNodeValueTypes - These are obsolete, use getVTList instead. const MVT::ValueType *getNodeValueTypes(MVT::ValueType VT) { return getVTList(VT).VTs; } const MVT::ValueType *getNodeValueTypes(MVT::ValueType VT1, MVT::ValueType VT2) { return getVTList(VT1, VT2).VTs; } const MVT::ValueType *getNodeValueTypes(MVT::ValueType VT1,MVT::ValueType VT2, MVT::ValueType VT3) { return getVTList(VT1, VT2, VT3).VTs; } const MVT::ValueType *getNodeValueTypes(std::vector &VTList) { return getVTList(&VTList[0], VTList.size()).VTs; } //===--------------------------------------------------------------------===// // Node creation methods. // SDOperand getString(const std::string &Val); SDOperand getConstant(uint64_t Val, MVT::ValueType VT, bool isTarget = false); SDOperand getTargetConstant(uint64_t Val, MVT::ValueType VT) { return getConstant(Val, VT, true); } SDOperand getConstantFP(double Val, MVT::ValueType VT, bool isTarget = false); SDOperand getConstantFP(const APFloat& Val, MVT::ValueType VT, bool isTarget = false); SDOperand getTargetConstantFP(double Val, MVT::ValueType VT) { return getConstantFP(Val, VT, true); } SDOperand getTargetConstantFP(const APFloat& Val, MVT::ValueType VT) { return getConstantFP(Val, VT, true); } SDOperand getGlobalAddress(const GlobalValue *GV, MVT::ValueType VT, int offset = 0, bool isTargetGA = false); SDOperand getTargetGlobalAddress(const GlobalValue *GV, MVT::ValueType VT, int offset = 0) { return getGlobalAddress(GV, VT, offset, true); } SDOperand getFrameIndex(int FI, MVT::ValueType VT, bool isTarget = false); SDOperand getTargetFrameIndex(int FI, MVT::ValueType VT) { return getFrameIndex(FI, VT, true); } SDOperand getJumpTable(int JTI, MVT::ValueType VT, bool isTarget = false); SDOperand getTargetJumpTable(int JTI, MVT::ValueType VT) { return getJumpTable(JTI, VT, true); } SDOperand getConstantPool(Constant *C, MVT::ValueType VT, unsigned Align = 0, int Offs = 0, bool isT=false); SDOperand getTargetConstantPool(Constant *C, MVT::ValueType VT, unsigned Align = 0, int Offset = 0) { return getConstantPool(C, VT, Align, Offset, true); } SDOperand getConstantPool(MachineConstantPoolValue *C, MVT::ValueType VT, unsigned Align = 0, int Offs = 0, bool isT=false); SDOperand getTargetConstantPool(MachineConstantPoolValue *C, MVT::ValueType VT, unsigned Align = 0, int Offset = 0) { return getConstantPool(C, VT, Align, Offset, true); } SDOperand getBasicBlock(MachineBasicBlock *MBB); SDOperand getExternalSymbol(const char *Sym, MVT::ValueType VT); SDOperand getTargetExternalSymbol(const char *Sym, MVT::ValueType VT); SDOperand getValueType(MVT::ValueType); SDOperand getRegister(unsigned Reg, MVT::ValueType VT); SDOperand getCopyToReg(SDOperand Chain, unsigned Reg, SDOperand N) { return getNode(ISD::CopyToReg, MVT::Other, Chain, getRegister(Reg, N.getValueType()), N); } // This version of the getCopyToReg method takes an extra operand, which // indicates that there is potentially an incoming flag value (if Flag is not // null) and that there should be a flag result. SDOperand getCopyToReg(SDOperand Chain, unsigned Reg, SDOperand N, SDOperand Flag) { const MVT::ValueType *VTs = getNodeValueTypes(MVT::Other, MVT::Flag); SDOperand Ops[] = { Chain, getRegister(Reg, N.getValueType()), N, Flag }; return getNode(ISD::CopyToReg, VTs, 2, Ops, Flag.Val ? 4 : 3); } // Similar to last getCopyToReg() except parameter Reg is a SDOperand SDOperand getCopyToReg(SDOperand Chain, SDOperand Reg, SDOperand N, SDOperand Flag) { const MVT::ValueType *VTs = getNodeValueTypes(MVT::Other, MVT::Flag); SDOperand Ops[] = { Chain, Reg, N, Flag }; return getNode(ISD::CopyToReg, VTs, 2, Ops, Flag.Val ? 4 : 3); } SDOperand getCopyFromReg(SDOperand Chain, unsigned Reg, MVT::ValueType VT) { const MVT::ValueType *VTs = getNodeValueTypes(VT, MVT::Other); SDOperand Ops[] = { Chain, getRegister(Reg, VT) }; return getNode(ISD::CopyFromReg, VTs, 2, Ops, 2); } // This version of the getCopyFromReg method takes an extra operand, which // indicates that there is potentially an incoming flag value (if Flag is not // null) and that there should be a flag result. SDOperand getCopyFromReg(SDOperand Chain, unsigned Reg, MVT::ValueType VT, SDOperand Flag) { const MVT::ValueType *VTs = getNodeValueTypes(VT, MVT::Other, MVT::Flag); SDOperand Ops[] = { Chain, getRegister(Reg, VT), Flag }; return getNode(ISD::CopyFromReg, VTs, 3, Ops, Flag.Val ? 3 : 2); } SDOperand getCondCode(ISD::CondCode Cond); /// getZeroExtendInReg - Return the expression required to zero extend the Op /// value assuming it was the smaller SrcTy value. SDOperand getZeroExtendInReg(SDOperand Op, MVT::ValueType SrcTy); /// getCALLSEQ_START - Return a new CALLSEQ_START node, which always must have /// a flag result (to ensure it's not CSE'd). SDOperand getCALLSEQ_START(SDOperand Chain, SDOperand Op) { const MVT::ValueType *VTs = getNodeValueTypes(MVT::Other, MVT::Flag); SDOperand Ops[] = { Chain, Op }; return getNode(ISD::CALLSEQ_START, VTs, 2, Ops, 2); } /// getNode - Gets or creates the specified node. /// SDOperand getNode(unsigned Opcode, MVT::ValueType VT); SDOperand getNode(unsigned Opcode, MVT::ValueType VT, SDOperand N); SDOperand getNode(unsigned Opcode, MVT::ValueType VT, SDOperand N1, SDOperand N2); SDOperand getNode(unsigned Opcode, MVT::ValueType VT, SDOperand N1, SDOperand N2, SDOperand N3); SDOperand getNode(unsigned Opcode, MVT::ValueType VT, SDOperand N1, SDOperand N2, SDOperand N3, SDOperand N4); SDOperand getNode(unsigned Opcode, MVT::ValueType VT, SDOperand N1, SDOperand N2, SDOperand N3, SDOperand N4, SDOperand N5); SDOperand getNode(unsigned Opcode, MVT::ValueType VT, const SDOperand *Ops, unsigned NumOps); SDOperand getNode(unsigned Opcode, std::vector &ResultTys, const SDOperand *Ops, unsigned NumOps); SDOperand getNode(unsigned Opcode, const MVT::ValueType *VTs, unsigned NumVTs, const SDOperand *Ops, unsigned NumOps); SDOperand getNode(unsigned Opcode, SDVTList VTs, const SDOperand *Ops, unsigned NumOps); /// getSetCC - Helper function to make it easier to build SetCC's if you just /// have an ISD::CondCode instead of an SDOperand. /// SDOperand getSetCC(MVT::ValueType VT, SDOperand LHS, SDOperand RHS, ISD::CondCode Cond) { return getNode(ISD::SETCC, VT, LHS, RHS, getCondCode(Cond)); } /// getSelectCC - Helper function to make it easier to build SelectCC's if you /// just have an ISD::CondCode instead of an SDOperand. /// SDOperand getSelectCC(SDOperand LHS, SDOperand RHS, SDOperand True, SDOperand False, ISD::CondCode Cond) { return getNode(ISD::SELECT_CC, True.getValueType(), LHS, RHS, True, False, getCondCode(Cond)); } /// getVAArg - VAArg produces a result and token chain, and takes a pointer /// and a source value as input. SDOperand getVAArg(MVT::ValueType VT, SDOperand Chain, SDOperand Ptr, SDOperand SV); /// getLoad - Loads are not normal binary operators: their result type is not /// determined by their operands, and they produce a value AND a token chain. /// SDOperand getLoad(MVT::ValueType VT, SDOperand Chain, SDOperand Ptr, const Value *SV, int SVOffset, bool isVolatile=false, unsigned Alignment=0); SDOperand getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT, SDOperand Chain, SDOperand Ptr, const Value *SV, int SVOffset, MVT::ValueType EVT, bool isVolatile=false, unsigned Alignment=0); SDOperand getIndexedLoad(SDOperand OrigLoad, SDOperand Base, SDOperand Offset, ISD::MemIndexedMode AM); /// getStore - Helper function to build ISD::STORE nodes. /// SDOperand getStore(SDOperand Chain, SDOperand Val, SDOperand Ptr, const Value *SV, int SVOffset, bool isVolatile=false, unsigned Alignment=0); SDOperand getTruncStore(SDOperand Chain, SDOperand Val, SDOperand Ptr, const Value *SV, int SVOffset, MVT::ValueType TVT, bool isVolatile=false, unsigned Alignment=0); SDOperand getIndexedStore(SDOperand OrigStoe, SDOperand Base, SDOperand Offset, ISD::MemIndexedMode AM); // getSrcValue - construct a node to track a Value* through the backend SDOperand getSrcValue(const Value* I, int offset = 0); /// UpdateNodeOperands - *Mutate* the specified node in-place to have the /// specified operands. If the resultant node already exists in the DAG, /// this does not modify the specified node, instead it returns the node that /// already exists. If the resultant node does not exist in the DAG, the /// input node is returned. As a degenerate case, if you specify the same /// input operands as the node already has, the input node is returned. SDOperand UpdateNodeOperands(SDOperand N, SDOperand Op); SDOperand UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2); SDOperand UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3); SDOperand UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3, SDOperand Op4); SDOperand UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3, SDOperand Op4, SDOperand Op5); SDOperand UpdateNodeOperands(SDOperand N, SDOperand *Ops, unsigned NumOps); /// SelectNodeTo - These are used for target selectors to *mutate* the /// specified node to have the specified return type, Target opcode, and /// operands. Note that target opcodes are stored as /// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field. The 0th value /// of the resultant node is returned. SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT::ValueType VT); SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT::ValueType VT, SDOperand Op1); SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT::ValueType VT, SDOperand Op1, SDOperand Op2); SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT::ValueType VT, SDOperand Op1, SDOperand Op2, SDOperand Op3); SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT::ValueType VT, const SDOperand *Ops, unsigned NumOps); SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT::ValueType VT1, MVT::ValueType VT2, SDOperand Op1, SDOperand Op2); SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT::ValueType VT1, MVT::ValueType VT2, SDOperand Op1, SDOperand Op2, SDOperand Op3); /// getTargetNode - These are used for target selectors to create a new node /// with specified return type(s), target opcode, and operands. /// /// Note that getTargetNode returns the resultant node. If there is already a /// node of the specified opcode and operands, it returns that node instead of /// the current one. SDNode *getTargetNode(unsigned Opcode, MVT::ValueType VT); SDNode *getTargetNode(unsigned Opcode, MVT::ValueType VT, SDOperand Op1); SDNode *getTargetNode(unsigned Opcode, MVT::ValueType VT, SDOperand Op1, SDOperand Op2); SDNode *getTargetNode(unsigned Opcode, MVT::ValueType VT, SDOperand Op1, SDOperand Op2, SDOperand Op3); SDNode *getTargetNode(unsigned Opcode, MVT::ValueType VT, const SDOperand *Ops, unsigned NumOps); SDNode *getTargetNode(unsigned Opcode, MVT::ValueType VT1, MVT::ValueType VT2, SDOperand Op1); SDNode *getTargetNode(unsigned Opcode, MVT::ValueType VT1, MVT::ValueType VT2, SDOperand Op1, SDOperand Op2); SDNode *getTargetNode(unsigned Opcode, MVT::ValueType VT1, MVT::ValueType VT2, SDOperand Op1, SDOperand Op2, SDOperand Op3); SDNode *getTargetNode(unsigned Opcode, MVT::ValueType VT1, MVT::ValueType VT2, const SDOperand *Ops, unsigned NumOps); SDNode *getTargetNode(unsigned Opcode, MVT::ValueType VT1, MVT::ValueType VT2, MVT::ValueType VT3, SDOperand Op1, SDOperand Op2); SDNode *getTargetNode(unsigned Opcode, MVT::ValueType VT1, MVT::ValueType VT2, MVT::ValueType VT3, SDOperand Op1, SDOperand Op2, SDOperand Op3); SDNode *getTargetNode(unsigned Opcode, MVT::ValueType VT1, MVT::ValueType VT2, MVT::ValueType VT3, const SDOperand *Ops, unsigned NumOps); SDNode *getTargetNode(unsigned Opcode, MVT::ValueType VT1, MVT::ValueType VT2, MVT::ValueType VT3, MVT::ValueType VT4, const SDOperand *Ops, unsigned NumOps); /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. /// This can cause recursive merging of nodes in the DAG. Use the first /// version if 'From' is known to have a single result, use the second /// if you have two nodes with identical results, use the third otherwise. /// /// These methods all take an optional vector, which (if not null) is /// populated with any nodes that are deleted from the SelectionDAG, due to /// new equivalences that are discovered. /// void ReplaceAllUsesWith(SDOperand From, SDOperand Op, std::vector *Deleted = 0); void ReplaceAllUsesWith(SDNode *From, SDNode *To, std::vector *Deleted = 0); void ReplaceAllUsesWith(SDNode *From, const SDOperand *To, std::vector *Deleted = 0); /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving /// uses of other values produced by From.Val alone. The Deleted vector is /// handled the same was as for ReplaceAllUsesWith, but it is required for /// this method. void ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To, std::vector &Deleted); /// AssignNodeIds - Assign a unique node id for each node in the DAG based on /// their allnodes order. It returns the maximum id. unsigned AssignNodeIds(); /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG /// based on their topological order. It returns the maximum id and a vector /// of the SDNodes* in assigned order by reference. unsigned AssignTopologicalOrder(std::vector &TopOrder); /// isCommutativeBinOp - Returns true if the opcode is a commutative binary /// operation. static bool isCommutativeBinOp(unsigned Opcode) { switch (Opcode) { case ISD::ADD: case ISD::MUL: case ISD::MULHU: case ISD::MULHS: case ISD::FADD: case ISD::FMUL: case ISD::AND: case ISD::OR: case ISD::XOR: case ISD::ADDC: case ISD::ADDE: return true; default: return false; } } void dump() const; /// FoldSetCC - Constant fold a setcc to true or false. SDOperand FoldSetCC(MVT::ValueType VT, SDOperand N1, SDOperand N2, ISD::CondCode Cond); /// MaskedValueIsZero - Return true if 'Op & Mask' is known to be zero. We /// use this predicate to simplify operations downstream. Op and Mask are /// known to be the same type. bool MaskedValueIsZero(SDOperand Op, uint64_t Mask, unsigned Depth = 0) const; /// ComputeMaskedBits - Determine which of the bits specified in Mask are /// known to be either zero or one and return them in the KnownZero/KnownOne /// bitsets. This code only analyzes bits in Mask, in order to short-circuit /// processing. Targets can implement the computeMaskedBitsForTargetNode /// method in the TargetLowering class to allow target nodes to be understood. void ComputeMaskedBits(SDOperand Op, uint64_t Mask, uint64_t &KnownZero, uint64_t &KnownOne, unsigned Depth = 0) const; /// ComputeNumSignBits - Return the number of times the sign bit of the /// register is replicated into the other bits. We know that at least 1 bit /// is always equal to the sign bit (itself), but other cases can give us /// information. For example, immediately after an "SRA X, 2", we know that /// the top 3 bits are all equal to each other, so we return 3. Targets can /// implement the ComputeNumSignBitsForTarget method in the TargetLowering /// class to allow target nodes to be understood. unsigned ComputeNumSignBits(SDOperand Op, unsigned Depth = 0) const; private: void RemoveNodeFromCSEMaps(SDNode *N); SDNode *AddNonLeafNodeToCSEMaps(SDNode *N); SDNode *FindModifiedNodeSlot(SDNode *N, SDOperand Op, void *&InsertPos); SDNode *FindModifiedNodeSlot(SDNode *N, SDOperand Op1, SDOperand Op2, void *&InsertPos); SDNode *FindModifiedNodeSlot(SDNode *N, const SDOperand *Ops, unsigned NumOps, void *&InsertPos); void DeleteNodeNotInCSEMaps(SDNode *N); // List of non-single value types. std::list > VTList; // Maps to auto-CSE operations. std::vector CondCodeNodes; std::vector ValueTypeNodes; std::map ExternalSymbols; std::map TargetExternalSymbols; std::map StringNodes; }; template <> struct GraphTraits : public GraphTraits { typedef SelectionDAG::allnodes_iterator nodes_iterator; static nodes_iterator nodes_begin(SelectionDAG *G) { return G->allnodes_begin(); } static nodes_iterator nodes_end(SelectionDAG *G) { return G->allnodes_end(); } }; } // end namespace llvm #endif