//===-- llvm/LLVMContext.h - Class for managing "global" state --*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file declares LLVMContext, a container of "global" state in LLVM, such // as the global type and constant uniquing tables. // //===----------------------------------------------------------------------===// #ifndef LLVM_LLVMCONTEXT_H #define LLVM_LLVMCONTEXT_H #include "llvm/Support/DataTypes.h" #include #include namespace llvm { class LLVMContextImpl; class Constant; class ConstantInt; class ConstantPointerNull; class ConstantStruct; class ConstantAggregateZero; class ConstantArray; class ConstantFP; class ConstantVector; class UndefValue; class MDNode; class MDString; class IntegerType; class PointerType; class StructType; class ArrayType; class VectorType; class OpaqueType; class FunctionType; class Type; class APInt; class APFloat; class Value; /// This is an important class for using LLVM in a threaded context. It /// (opaquely) owns and manages the core "global" data of LLVM's core /// infrastructure, including the type and constant uniquing tables. /// LLVMContext itself provides no locking guarantees, so you should be careful /// to have one context per thread. class LLVMContext { LLVMContextImpl* pImpl; public: LLVMContext(); ~LLVMContext(); // Constant accessors Constant* getNullValue(const Type* Ty); /// @returns the value for an integer constant of the given type that has all /// its bits set to true. /// @brief Get the all ones value Constant* getAllOnesValue(const Type* Ty); // UndefValue accessors UndefValue* getUndef(const Type* Ty); // ConstantInt accessors ConstantInt* getTrue(); ConstantInt* getFalse(); /// If Ty is a vector type, return a Constant with a splat of the given /// value. Otherwise return a ConstantInt for the given value. Constant* getConstantInt(const Type* Ty, uint64_t V, bool isSigned = false); /// Return a ConstantInt with the specified integer value for the specified /// type. If the type is wider than 64 bits, the value will be zero-extended /// to fit the type, unless isSigned is true, in which case the value will /// be interpreted as a 64-bit signed integer and sign-extended to fit /// the type. /// @brief Get a ConstantInt for a specific value. ConstantInt* getConstantInt(const IntegerType* Ty, uint64_t V, bool isSigned = false); /// Return a ConstantInt with the specified value for the specified type. The /// value V will be canonicalized to a an unsigned APInt. Accessing it with /// either getSExtValue() or getZExtValue() will yield a correctly sized and /// signed value for the type Ty. /// @brief Get a ConstantInt for a specific signed value. ConstantInt* getConstantIntSigned(const IntegerType* Ty, int64_t V); Constant *getConstantIntSigned(const Type *Ty, int64_t V); /// Return a ConstantInt with the specified value and an implied Type. The /// type is the integer type that corresponds to the bit width of the value. ConstantInt* getConstantInt(const APInt& V); /// If Ty is a vector type, return a Constant with a splat of the given /// value. Otherwise return a ConstantInt for the given value. Constant* getConstantInt(const Type* Ty, const APInt& V); // ConstantPointerNull accessors ConstantPointerNull* getConstantPointerNull(const PointerType* T); // ConstantStruct accessors Constant* getConstantStruct(const StructType* T, const std::vector& V); Constant* getConstantStruct(const std::vector& V, bool Packed = false); Constant* getConstantStruct(Constant* const *Vals, unsigned NumVals, bool Packed = false); // ConstantAggregateZero accessors ConstantAggregateZero* getConstantAggregateZero(const Type* Ty); // ConstantArray accessors Constant* getConstantArray(const ArrayType* T, const std::vector& V); Constant* getConstantArray(const ArrayType* T, Constant* const* Vals, unsigned NumVals); /// This method constructs a ConstantArray and initializes it with a text /// string. The default behavior (AddNull==true) causes a null terminator to /// be placed at the end of the array. This effectively increases the length /// of the array by one (you've been warned). However, in some situations /// this is not desired so if AddNull==false then the string is copied without /// null termination. Constant* getConstantArray(const std::string& Initializer, bool AddNull = true); // ConstantExpr accessors Constant* getConstantExpr(unsigned Opcode, Constant* C1, Constant* C2); Constant* getConstantExprTrunc(Constant* C, const Type* Ty); Constant* getConstantExprSExt(Constant* C, const Type* Ty); Constant* getConstantExprZExt(Constant* C, const Type* Ty); Constant* getConstantExprFPTrunc(Constant* C, const Type* Ty); Constant* getConstantExprFPExtend(Constant* C, const Type* Ty); Constant* getConstantExprUIToFP(Constant* C, const Type* Ty); Constant* getConstantExprSIToFP(Constant* C, const Type* Ty); Constant* getConstantExprFPToUI(Constant* C, const Type* Ty); Constant* getConstantExprFPToSI(Constant* C, const Type* Ty); Constant* getConstantExprPtrToInt(Constant* C, const Type* Ty); Constant* getConstantExprIntToPtr(Constant* C, const Type* Ty); Constant* getConstantExprBitCast(Constant* C, const Type* Ty); Constant* getConstantExprCast(unsigned ops, Constant* C, const Type* Ty); Constant* getConstantExprZExtOrBitCast(Constant* C, const Type* Ty); Constant* getConstantExprSExtOrBitCast(Constant* C, const Type* Ty); Constant* getConstantExprTruncOrBitCast(Constant* C, const Type* Ty); Constant* getConstantExprPointerCast(Constant* C, const Type* Ty); Constant* getConstantExprIntegerCast(Constant* C, const Type* Ty, bool isSigned); Constant* getConstantExprFPCast(Constant* C, const Type* Ty); Constant* getConstantExprSelect(Constant* C, Constant* V1, Constant* V2); /// getAlignOf constant expr - computes the alignment of a type in a target /// independent way (Note: the return type is an i32; Note: assumes that i8 /// is byte aligned). /// Constant* getConstantExprAlignOf(const Type* Ty); Constant* getConstantExprCompare(unsigned short pred, Constant* C1, Constant* C2); Constant* getConstantExprNeg(Constant* C); Constant* getConstantExprFNeg(Constant* C); Constant* getConstantExprNot(Constant* C); Constant* getConstantExprAdd(Constant* C1, Constant* C2); Constant* getConstantExprFAdd(Constant* C1, Constant* C2); Constant* getConstantExprSub(Constant* C1, Constant* C2); Constant* getConstantExprFSub(Constant* C1, Constant* C2); Constant* getConstantExprMul(Constant* C1, Constant* C2); Constant* getConstantExprFMul(Constant* C1, Constant* C2); Constant* getConstantExprUDiv(Constant* C1, Constant* C2); Constant* getConstantExprSDiv(Constant* C1, Constant* C2); Constant* getConstantExprFDiv(Constant* C1, Constant* C2); Constant* getConstantExprURem(Constant* C1, Constant* C2); Constant* getConstantExprSRem(Constant* C1, Constant* C2); Constant* getConstantExprFRem(Constant* C1, Constant* C2); Constant* getConstantExprAnd(Constant* C1, Constant* C2); Constant* getConstantExprOr(Constant* C1, Constant* C2); Constant* getConstantExprXor(Constant* C1, Constant* C2); Constant* getConstantExprICmp(unsigned short pred, Constant* LHS, Constant* RHS); Constant* getConstantExprFCmp(unsigned short pred, Constant* LHS, Constant* RHS); Constant* getConstantExprShl(Constant* C1, Constant* C2); Constant* getConstantExprLShr(Constant* C1, Constant* C2); Constant* getConstantExprAShr(Constant* C1, Constant* C2); Constant* getConstantExprGetElementPtr(Constant* C, Constant* const* IdxList, unsigned NumIdx); Constant* getConstantExprGetElementPtr(Constant* C, Value* const* IdxList, unsigned NumIdx); Constant* getConstantExprExtractElement(Constant* Vec, Constant* Idx); Constant* getConstantExprInsertElement(Constant* Vec, Constant* Elt, Constant* Idx); Constant* getConstantExprShuffleVector(Constant* V1, Constant* V2, Constant* Mask); Constant* getConstantExprExtractValue(Constant* Agg, const unsigned* IdxList, unsigned NumIdx); Constant* getConstantExprInsertValue(Constant* Agg, Constant* Val, const unsigned* IdxList, unsigned NumIdx); /// getSizeOf constant expr - computes the size of a type in a target /// independent way (Note: the return type is an i64). /// Constant* getConstantExprSizeOf(const Type* Ty); /// Floating point negation must be implemented with f(x) = -0.0 - x. This /// method returns the negative zero constant for floating point or vector /// floating point types; for all other types, it returns the null value. Constant* getZeroValueForNegation(const Type* Ty); // ConstantFP accessors ConstantFP* getConstantFP(const APFloat& V); /// get() - This returns a ConstantFP, or a vector containing a splat of a /// ConstantFP, for the specified value in the specified type. This should /// only be used for simple constant values like 2.0/1.0 etc, that are /// known-valid both as host double and as the target format. Constant* getConstantFP(const Type* Ty, double V); ConstantFP* getConstantFPNegativeZero(const Type* Ty); // ConstantVector accessors Constant* getConstantVector(const VectorType* T, const std::vector& V); Constant* getConstantVector(const std::vector& V); Constant* getConstantVector(Constant* const* Vals, unsigned NumVals); // MDNode accessors MDNode* getMDNode(Value* const* Vals, unsigned NumVals); // MDString accessors MDString* getMDString(const char *StrBegin, const char *StrEnd); MDString* getMDString(const std::string &Str); // FunctionType accessors FunctionType* getFunctionType(const Type* Result, bool isVarArg); FunctionType* getFunctionType(const Type* Result, const std::vector& Params, bool isVarArg); // IntegerType accessors const IntegerType* getIntegerType(unsigned NumBits); // OpaqueType accessors OpaqueType* getOpaqueType(); // StructType accessors StructType* getStructType(bool isPacked=false); StructType* getStructType(const std::vector& Params, bool isPacked = false); StructType* getStructType(const Type* type, ...); // ArrayType accessors ArrayType* getArrayType(const Type* ElementType, uint64_t NumElements); // PointerType accessors PointerType* getPointerType(const Type* ElementType, unsigned AddressSpace); PointerType* getPointerTypeUnqual(const Type* ElementType); // VectorType accessors VectorType* getVectorType(const Type* ElementType, unsigned NumElements); VectorType* getVectorTypeInteger(const VectorType* VTy); VectorType* getVectorTypeExtendedElement(const VectorType* VTy); VectorType* getVectorTypeTruncatedElement(const VectorType* VTy); // Other helpers /// @brief Create a result type for fcmp/icmp const Type* makeCmpResultType(const Type* opnd_type); // Methods for erasing constants void erase(MDString *M); void erase(MDNode *M); void erase(ConstantAggregateZero *Z); }; /// FOR BACKWARDS COMPATIBILITY - Returns a global context. extern LLVMContext& getGlobalContext(); } #endif