//===- MCAssembler.h - Object File Generation -------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #ifndef LLVM_MC_MCASSEMBLER_H #define LLVM_MC_MCASSEMBLER_H #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/PointerIntPair.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/ilist.h" #include "llvm/ADT/ilist_node.h" #include "llvm/MC/MCDirectives.h" #include "llvm/MC/MCFixup.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCLinkerOptimizationHint.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/Support/Casting.h" #include "llvm/Support/DataTypes.h" #include #include // FIXME: Shouldn't be needed. namespace llvm { class raw_ostream; class MCAsmLayout; class MCAssembler; class MCContext; class MCCodeEmitter; class MCExpr; class MCFragment; class MCObjectWriter; class MCSection; class MCSectionData; class MCSubtargetInfo; class MCSymbol; class MCSymbolData; class MCValue; class MCAsmBackend; class MCFragment : public ilist_node { friend class MCAsmLayout; MCFragment(const MCFragment&) = delete; void operator=(const MCFragment&) = delete; public: enum FragmentType { FT_Align, FT_Data, FT_CompactEncodedInst, FT_Fill, FT_Relaxable, FT_Org, FT_Dwarf, FT_DwarfFrame, FT_LEB }; private: FragmentType Kind; /// Parent - The data for the section this fragment is in. MCSectionData *Parent; /// Atom - The atom this fragment is in, as represented by it's defining /// symbol. MCSymbolData *Atom; /// @name Assembler Backend Data /// @{ // // FIXME: This could all be kept private to the assembler implementation. /// Offset - The offset of this fragment in its section. This is ~0 until /// initialized. uint64_t Offset; /// LayoutOrder - The layout order of this fragment. unsigned LayoutOrder; /// @} protected: MCFragment(FragmentType Kind, MCSectionData *Parent = nullptr); public: // Only for sentinel. MCFragment(); virtual ~MCFragment(); FragmentType getKind() const { return Kind; } MCSectionData *getParent() const { return Parent; } void setParent(MCSectionData *Value) { Parent = Value; } MCSymbolData *getAtom() const { return Atom; } void setAtom(MCSymbolData *Value) { Atom = Value; } unsigned getLayoutOrder() const { return LayoutOrder; } void setLayoutOrder(unsigned Value) { LayoutOrder = Value; } /// \brief Does this fragment have instructions emitted into it? By default /// this is false, but specific fragment types may set it to true. virtual bool hasInstructions() const { return false; } /// \brief Should this fragment be placed at the end of an aligned bundle? virtual bool alignToBundleEnd() const { return false; } virtual void setAlignToBundleEnd(bool V) { } /// \brief Get the padding size that must be inserted before this fragment. /// Used for bundling. By default, no padding is inserted. /// Note that padding size is restricted to 8 bits. This is an optimization /// to reduce the amount of space used for each fragment. In practice, larger /// padding should never be required. virtual uint8_t getBundlePadding() const { return 0; } /// \brief Set the padding size for this fragment. By default it's a no-op, /// and only some fragments have a meaningful implementation. virtual void setBundlePadding(uint8_t N) { } void dump(); }; /// Interface implemented by fragments that contain encoded instructions and/or /// data. /// class MCEncodedFragment : public MCFragment { virtual void anchor(); uint8_t BundlePadding; public: MCEncodedFragment(MCFragment::FragmentType FType, MCSectionData *SD = nullptr) : MCFragment(FType, SD), BundlePadding(0) { } virtual ~MCEncodedFragment(); virtual SmallVectorImpl &getContents() = 0; virtual const SmallVectorImpl &getContents() const = 0; uint8_t getBundlePadding() const override { return BundlePadding; } void setBundlePadding(uint8_t N) override { BundlePadding = N; } static bool classof(const MCFragment *F) { MCFragment::FragmentType Kind = F->getKind(); switch (Kind) { default: return false; case MCFragment::FT_Relaxable: case MCFragment::FT_CompactEncodedInst: case MCFragment::FT_Data: return true; } } }; /// Interface implemented by fragments that contain encoded instructions and/or /// data and also have fixups registered. /// class MCEncodedFragmentWithFixups : public MCEncodedFragment { void anchor() override; public: MCEncodedFragmentWithFixups(MCFragment::FragmentType FType, MCSectionData *SD = nullptr) : MCEncodedFragment(FType, SD) { } virtual ~MCEncodedFragmentWithFixups(); typedef SmallVectorImpl::const_iterator const_fixup_iterator; typedef SmallVectorImpl::iterator fixup_iterator; virtual SmallVectorImpl &getFixups() = 0; virtual const SmallVectorImpl &getFixups() const = 0; virtual fixup_iterator fixup_begin() = 0; virtual const_fixup_iterator fixup_begin() const = 0; virtual fixup_iterator fixup_end() = 0; virtual const_fixup_iterator fixup_end() const = 0; static bool classof(const MCFragment *F) { MCFragment::FragmentType Kind = F->getKind(); return Kind == MCFragment::FT_Relaxable || Kind == MCFragment::FT_Data; } }; /// Fragment for data and encoded instructions. /// class MCDataFragment : public MCEncodedFragmentWithFixups { void anchor() override; /// \brief Does this fragment contain encoded instructions anywhere in it? bool HasInstructions; /// \brief Should this fragment be aligned to the end of a bundle? bool AlignToBundleEnd; SmallVector Contents; /// Fixups - The list of fixups in this fragment. SmallVector Fixups; public: MCDataFragment(MCSectionData *SD = nullptr) : MCEncodedFragmentWithFixups(FT_Data, SD), HasInstructions(false), AlignToBundleEnd(false) { } SmallVectorImpl &getContents() override { return Contents; } const SmallVectorImpl &getContents() const override { return Contents; } SmallVectorImpl &getFixups() override { return Fixups; } const SmallVectorImpl &getFixups() const override { return Fixups; } bool hasInstructions() const override { return HasInstructions; } virtual void setHasInstructions(bool V) { HasInstructions = V; } bool alignToBundleEnd() const override { return AlignToBundleEnd; } void setAlignToBundleEnd(bool V) override { AlignToBundleEnd = V; } fixup_iterator fixup_begin() override { return Fixups.begin(); } const_fixup_iterator fixup_begin() const override { return Fixups.begin(); } fixup_iterator fixup_end() override {return Fixups.end();} const_fixup_iterator fixup_end() const override {return Fixups.end();} static bool classof(const MCFragment *F) { return F->getKind() == MCFragment::FT_Data; } }; /// This is a compact (memory-size-wise) fragment for holding an encoded /// instruction (non-relaxable) that has no fixups registered. When applicable, /// it can be used instead of MCDataFragment and lead to lower memory /// consumption. /// class MCCompactEncodedInstFragment : public MCEncodedFragment { void anchor() override; /// \brief Should this fragment be aligned to the end of a bundle? bool AlignToBundleEnd; SmallVector Contents; public: MCCompactEncodedInstFragment(MCSectionData *SD = nullptr) : MCEncodedFragment(FT_CompactEncodedInst, SD), AlignToBundleEnd(false) { } bool hasInstructions() const override { return true; } SmallVectorImpl &getContents() override { return Contents; } const SmallVectorImpl &getContents() const override { return Contents; } bool alignToBundleEnd() const override { return AlignToBundleEnd; } void setAlignToBundleEnd(bool V) override { AlignToBundleEnd = V; } static bool classof(const MCFragment *F) { return F->getKind() == MCFragment::FT_CompactEncodedInst; } }; /// A relaxable fragment holds on to its MCInst, since it may need to be /// relaxed during the assembler layout and relaxation stage. /// class MCRelaxableFragment : public MCEncodedFragmentWithFixups { void anchor() override; /// Inst - The instruction this is a fragment for. MCInst Inst; /// STI - The MCSubtargetInfo in effect when the instruction was encoded. /// Keep a copy instead of a reference to make sure that updates to STI /// in the assembler are not seen here. const MCSubtargetInfo STI; /// Contents - Binary data for the currently encoded instruction. SmallVector Contents; /// Fixups - The list of fixups in this fragment. SmallVector Fixups; public: MCRelaxableFragment(const MCInst &Inst, const MCSubtargetInfo &STI, MCSectionData *SD = nullptr) : MCEncodedFragmentWithFixups(FT_Relaxable, SD), Inst(Inst), STI(STI) {} SmallVectorImpl &getContents() override { return Contents; } const SmallVectorImpl &getContents() const override { return Contents; } const MCInst &getInst() const { return Inst; } void setInst(const MCInst& Value) { Inst = Value; } const MCSubtargetInfo &getSubtargetInfo() { return STI; } SmallVectorImpl &getFixups() override { return Fixups; } const SmallVectorImpl &getFixups() const override { return Fixups; } bool hasInstructions() const override { return true; } fixup_iterator fixup_begin() override { return Fixups.begin(); } const_fixup_iterator fixup_begin() const override { return Fixups.begin(); } fixup_iterator fixup_end() override {return Fixups.end();} const_fixup_iterator fixup_end() const override {return Fixups.end();} static bool classof(const MCFragment *F) { return F->getKind() == MCFragment::FT_Relaxable; } }; class MCAlignFragment : public MCFragment { virtual void anchor(); /// Alignment - The alignment to ensure, in bytes. unsigned Alignment; /// Value - Value to use for filling padding bytes. int64_t Value; /// ValueSize - The size of the integer (in bytes) of \p Value. unsigned ValueSize; /// MaxBytesToEmit - The maximum number of bytes to emit; if the alignment /// cannot be satisfied in this width then this fragment is ignored. unsigned MaxBytesToEmit; /// EmitNops - Flag to indicate that (optimal) NOPs should be emitted instead /// of using the provided value. The exact interpretation of this flag is /// target dependent. bool EmitNops : 1; public: MCAlignFragment(unsigned Alignment, int64_t Value, unsigned ValueSize, unsigned MaxBytesToEmit, MCSectionData *SD = nullptr) : MCFragment(FT_Align, SD), Alignment(Alignment), Value(Value), ValueSize(ValueSize), MaxBytesToEmit(MaxBytesToEmit), EmitNops(false) {} /// @name Accessors /// @{ unsigned getAlignment() const { return Alignment; } int64_t getValue() const { return Value; } unsigned getValueSize() const { return ValueSize; } unsigned getMaxBytesToEmit() const { return MaxBytesToEmit; } bool hasEmitNops() const { return EmitNops; } void setEmitNops(bool Value) { EmitNops = Value; } /// @} static bool classof(const MCFragment *F) { return F->getKind() == MCFragment::FT_Align; } }; class MCFillFragment : public MCFragment { virtual void anchor(); /// Value - Value to use for filling bytes. int64_t Value; /// ValueSize - The size (in bytes) of \p Value to use when filling, or 0 if /// this is a virtual fill fragment. unsigned ValueSize; /// Size - The number of bytes to insert. uint64_t Size; public: MCFillFragment(int64_t Value, unsigned ValueSize, uint64_t Size, MCSectionData *SD = nullptr) : MCFragment(FT_Fill, SD), Value(Value), ValueSize(ValueSize), Size(Size) { assert((!ValueSize || (Size % ValueSize) == 0) && "Fill size must be a multiple of the value size!"); } /// @name Accessors /// @{ int64_t getValue() const { return Value; } unsigned getValueSize() const { return ValueSize; } uint64_t getSize() const { return Size; } /// @} static bool classof(const MCFragment *F) { return F->getKind() == MCFragment::FT_Fill; } }; class MCOrgFragment : public MCFragment { virtual void anchor(); /// Offset - The offset this fragment should start at. const MCExpr *Offset; /// Value - Value to use for filling bytes. int8_t Value; public: MCOrgFragment(const MCExpr &Offset, int8_t Value, MCSectionData *SD = nullptr) : MCFragment(FT_Org, SD), Offset(&Offset), Value(Value) {} /// @name Accessors /// @{ const MCExpr &getOffset() const { return *Offset; } uint8_t getValue() const { return Value; } /// @} static bool classof(const MCFragment *F) { return F->getKind() == MCFragment::FT_Org; } }; class MCLEBFragment : public MCFragment { virtual void anchor(); /// Value - The value this fragment should contain. const MCExpr *Value; /// IsSigned - True if this is a sleb128, false if uleb128. bool IsSigned; SmallString<8> Contents; public: MCLEBFragment(const MCExpr &Value_, bool IsSigned_, MCSectionData *SD = nullptr) : MCFragment(FT_LEB, SD), Value(&Value_), IsSigned(IsSigned_) { Contents.push_back(0); } /// @name Accessors /// @{ const MCExpr &getValue() const { return *Value; } bool isSigned() const { return IsSigned; } SmallString<8> &getContents() { return Contents; } const SmallString<8> &getContents() const { return Contents; } /// @} static bool classof(const MCFragment *F) { return F->getKind() == MCFragment::FT_LEB; } }; class MCDwarfLineAddrFragment : public MCFragment { virtual void anchor(); /// LineDelta - the value of the difference between the two line numbers /// between two .loc dwarf directives. int64_t LineDelta; /// AddrDelta - The expression for the difference of the two symbols that /// make up the address delta between two .loc dwarf directives. const MCExpr *AddrDelta; SmallString<8> Contents; public: MCDwarfLineAddrFragment(int64_t LineDelta, const MCExpr &AddrDelta, MCSectionData *SD = nullptr) : MCFragment(FT_Dwarf, SD), LineDelta(LineDelta), AddrDelta(&AddrDelta) { Contents.push_back(0); } /// @name Accessors /// @{ int64_t getLineDelta() const { return LineDelta; } const MCExpr &getAddrDelta() const { return *AddrDelta; } SmallString<8> &getContents() { return Contents; } const SmallString<8> &getContents() const { return Contents; } /// @} static bool classof(const MCFragment *F) { return F->getKind() == MCFragment::FT_Dwarf; } }; class MCDwarfCallFrameFragment : public MCFragment { virtual void anchor(); /// AddrDelta - The expression for the difference of the two symbols that /// make up the address delta between two .cfi_* dwarf directives. const MCExpr *AddrDelta; SmallString<8> Contents; public: MCDwarfCallFrameFragment(const MCExpr &AddrDelta, MCSectionData *SD = nullptr) : MCFragment(FT_DwarfFrame, SD), AddrDelta(&AddrDelta) { Contents.push_back(0); } /// @name Accessors /// @{ const MCExpr &getAddrDelta() const { return *AddrDelta; } SmallString<8> &getContents() { return Contents; } const SmallString<8> &getContents() const { return Contents; } /// @} static bool classof(const MCFragment *F) { return F->getKind() == MCFragment::FT_DwarfFrame; } }; // FIXME: Should this be a separate class, or just merged into MCSection? Since // we anticipate the fast path being through an MCAssembler, the only reason to // keep it out is for API abstraction. class MCSectionData : public ilist_node { friend class MCAsmLayout; MCSectionData(const MCSectionData&) = delete; void operator=(const MCSectionData&) = delete; public: typedef iplist FragmentListType; typedef FragmentListType::const_iterator const_iterator; typedef FragmentListType::iterator iterator; typedef FragmentListType::const_reverse_iterator const_reverse_iterator; typedef FragmentListType::reverse_iterator reverse_iterator; /// \brief Express the state of bundle locked groups while emitting code. enum BundleLockStateType { NotBundleLocked, BundleLocked, BundleLockedAlignToEnd }; private: FragmentListType Fragments; const MCSection *Section; /// Ordinal - The section index in the assemblers section list. unsigned Ordinal; /// LayoutOrder - The index of this section in the layout order. unsigned LayoutOrder; /// Alignment - The maximum alignment seen in this section. unsigned Alignment; /// \brief Keeping track of bundle-locked state. BundleLockStateType BundleLockState; /// \brief Current nesting depth of bundle_lock directives. unsigned BundleLockNestingDepth; /// \brief We've seen a bundle_lock directive but not its first instruction /// yet. bool BundleGroupBeforeFirstInst; /// @name Assembler Backend Data /// @{ // // FIXME: This could all be kept private to the assembler implementation. /// HasInstructions - Whether this section has had instructions emitted into /// it. unsigned HasInstructions : 1; /// Mapping from subsection number to insertion point for subsection numbers /// below that number. SmallVector, 1> SubsectionFragmentMap; /// @} public: // Only for use as sentinel. MCSectionData(); MCSectionData(const MCSection &Section, MCAssembler *A = nullptr); const MCSection &getSection() const { return *Section; } unsigned getAlignment() const { return Alignment; } void setAlignment(unsigned Value) { Alignment = Value; } bool hasInstructions() const { return HasInstructions; } void setHasInstructions(bool Value) { HasInstructions = Value; } unsigned getOrdinal() const { return Ordinal; } void setOrdinal(unsigned Value) { Ordinal = Value; } unsigned getLayoutOrder() const { return LayoutOrder; } void setLayoutOrder(unsigned Value) { LayoutOrder = Value; } /// @name Fragment Access /// @{ const FragmentListType &getFragmentList() const { return Fragments; } FragmentListType &getFragmentList() { return Fragments; } iterator begin() { return Fragments.begin(); } const_iterator begin() const { return Fragments.begin(); } iterator end() { return Fragments.end(); } const_iterator end() const { return Fragments.end(); } reverse_iterator rbegin() { return Fragments.rbegin(); } const_reverse_iterator rbegin() const { return Fragments.rbegin(); } reverse_iterator rend() { return Fragments.rend(); } const_reverse_iterator rend() const { return Fragments.rend(); } size_t size() const { return Fragments.size(); } bool empty() const { return Fragments.empty(); } iterator getSubsectionInsertionPoint(unsigned Subsection); bool isBundleLocked() const { return BundleLockState != NotBundleLocked; } BundleLockStateType getBundleLockState() const { return BundleLockState; } void setBundleLockState(BundleLockStateType NewState); bool isBundleGroupBeforeFirstInst() const { return BundleGroupBeforeFirstInst; } void setBundleGroupBeforeFirstInst(bool IsFirst) { BundleGroupBeforeFirstInst = IsFirst; } void dump(); /// @} }; // FIXME: Same concerns as with SectionData. class MCSymbolData : public ilist_node { const MCSymbol *Symbol; /// Fragment - The fragment this symbol's value is relative to, if any. Also /// stores if this symbol is visible outside this translation unit (bit 0) or /// if it is private extern (bit 1). PointerIntPair Fragment; union { /// Offset - The offset to apply to the fragment address to form this /// symbol's value. uint64_t Offset; /// CommonSize - The size of the symbol, if it is 'common'. uint64_t CommonSize; }; /// SymbolSize - An expression describing how to calculate the size of /// a symbol. If a symbol has no size this field will be NULL. const MCExpr *SymbolSize; /// CommonAlign - The alignment of the symbol, if it is 'common', or -1. // // FIXME: Pack this in with other fields? unsigned CommonAlign; /// Flags - The Flags field is used by object file implementations to store /// additional per symbol information which is not easily classified. uint32_t Flags; /// Index - Index field, for use by the object file implementation. uint64_t Index; public: // Only for use as sentinel. MCSymbolData(); MCSymbolData(const MCSymbol &Symbol, MCFragment *Fragment, uint64_t Offset, MCAssembler *A = nullptr); /// @name Accessors /// @{ const MCSymbol &getSymbol() const { return *Symbol; } MCFragment *getFragment() const { return Fragment.getPointer(); } void setFragment(MCFragment *Value) { Fragment.setPointer(Value); } uint64_t getOffset() const { assert(!isCommon()); return Offset; } void setOffset(uint64_t Value) { assert(!isCommon()); Offset = Value; } /// @} /// @name Symbol Attributes /// @{ bool isExternal() const { return Fragment.getInt() & 1; } void setExternal(bool Value) { Fragment.setInt((Fragment.getInt() & ~1) | unsigned(Value)); } bool isPrivateExtern() const { return Fragment.getInt() & 2; } void setPrivateExtern(bool Value) { Fragment.setInt((Fragment.getInt() & ~2) | (unsigned(Value) << 1)); } /// isCommon - Is this a 'common' symbol. bool isCommon() const { return CommonAlign != -1U; } /// setCommon - Mark this symbol as being 'common'. /// /// \param Size - The size of the symbol. /// \param Align - The alignment of the symbol. void setCommon(uint64_t Size, unsigned Align) { assert(getOffset() == 0); CommonSize = Size; CommonAlign = Align; } /// getCommonSize - Return the size of a 'common' symbol. uint64_t getCommonSize() const { assert(isCommon() && "Not a 'common' symbol!"); return CommonSize; } void setSize(const MCExpr *SS) { SymbolSize = SS; } const MCExpr *getSize() const { return SymbolSize; } /// getCommonAlignment - Return the alignment of a 'common' symbol. unsigned getCommonAlignment() const { assert(isCommon() && "Not a 'common' symbol!"); return CommonAlign; } /// getFlags - Get the (implementation defined) symbol flags. uint32_t getFlags() const { return Flags; } /// setFlags - Set the (implementation defined) symbol flags. void setFlags(uint32_t Value) { Flags = Value; } /// modifyFlags - Modify the flags via a mask void modifyFlags(uint32_t Value, uint32_t Mask) { Flags = (Flags & ~Mask) | Value; } /// getIndex - Get the (implementation defined) index. uint64_t getIndex() const { return Index; } /// setIndex - Set the (implementation defined) index. void setIndex(uint64_t Value) { Index = Value; } /// @} void dump() const; }; // FIXME: This really doesn't belong here. See comments below. struct IndirectSymbolData { MCSymbol *Symbol; MCSectionData *SectionData; }; // FIXME: Ditto this. Purely so the Streamer and the ObjectWriter can talk // to one another. struct DataRegionData { // This enum should be kept in sync w/ the mach-o definition in // llvm/Object/MachOFormat.h. enum KindTy { Data = 1, JumpTable8, JumpTable16, JumpTable32 } Kind; MCSymbol *Start; MCSymbol *End; }; class MCAssembler { friend class MCAsmLayout; public: typedef iplist SectionDataListType; typedef iplist SymbolDataListType; typedef SectionDataListType::const_iterator const_iterator; typedef SectionDataListType::iterator iterator; typedef SymbolDataListType::const_iterator const_symbol_iterator; typedef SymbolDataListType::iterator symbol_iterator; typedef iterator_range symbol_range; typedef iterator_range const_symbol_range; typedef std::vector FileNameVectorType; typedef FileNameVectorType::const_iterator const_file_name_iterator; typedef std::vector::const_iterator const_indirect_symbol_iterator; typedef std::vector::iterator indirect_symbol_iterator; typedef std::vector::const_iterator const_data_region_iterator; typedef std::vector::iterator data_region_iterator; /// MachO specific deployment target version info. // A Major version of 0 indicates that no version information was supplied // and so the corresponding load command should not be emitted. typedef struct { MCVersionMinType Kind; unsigned Major; unsigned Minor; unsigned Update; } VersionMinInfoType; private: MCAssembler(const MCAssembler&) = delete; void operator=(const MCAssembler&) = delete; MCContext &Context; MCAsmBackend &Backend; MCCodeEmitter &Emitter; MCObjectWriter &Writer; raw_ostream &OS; iplist Sections; iplist Symbols; DenseSet LocalsUsedInReloc; /// The map of sections to their associated assembler backend data. // // FIXME: Avoid this indirection? DenseMap SectionMap; /// The map of symbols to their associated assembler backend data. // // FIXME: Avoid this indirection? DenseMap SymbolMap; std::vector IndirectSymbols; std::vector DataRegions; /// The list of linker options to propagate into the object file. std::vector > LinkerOptions; /// List of declared file names FileNameVectorType FileNames; /// The set of function symbols for which a .thumb_func directive has /// been seen. // // FIXME: We really would like this in target specific code rather than // here. Maybe when the relocation stuff moves to target specific, // this can go with it? The streamer would need some target specific // refactoring too. mutable SmallPtrSet ThumbFuncs; /// \brief The bundle alignment size currently set in the assembler. /// /// By default it's 0, which means bundling is disabled. unsigned BundleAlignSize; unsigned RelaxAll : 1; unsigned SubsectionsViaSymbols : 1; /// ELF specific e_header flags // It would be good if there were an MCELFAssembler class to hold this. // ELF header flags are used both by the integrated and standalone assemblers. // Access to the flags is necessary in cases where assembler directives affect // which flags to be set. unsigned ELFHeaderEFlags; /// Used to communicate Linker Optimization Hint information between /// the Streamer and the .o writer MCLOHContainer LOHContainer; VersionMinInfoType VersionMinInfo; private: /// Evaluate a fixup to a relocatable expression and the value which should be /// placed into the fixup. /// /// \param Layout The layout to use for evaluation. /// \param Fixup The fixup to evaluate. /// \param DF The fragment the fixup is inside. /// \param Target [out] On return, the relocatable expression the fixup /// evaluates to. /// \param Value [out] On return, the value of the fixup as currently laid /// out. /// \return Whether the fixup value was fully resolved. This is true if the /// \p Value result is fixed, otherwise the value may change due to /// relocation. bool evaluateFixup(const MCAsmLayout &Layout, const MCFixup &Fixup, const MCFragment *DF, MCValue &Target, uint64_t &Value) const; /// Check whether a fixup can be satisfied, or whether it needs to be relaxed /// (increased in size, in order to hold its value correctly). bool fixupNeedsRelaxation(const MCFixup &Fixup, const MCRelaxableFragment *DF, const MCAsmLayout &Layout) const; /// Check whether the given fragment needs relaxation. bool fragmentNeedsRelaxation(const MCRelaxableFragment *IF, const MCAsmLayout &Layout) const; /// \brief Perform one layout iteration and return true if any offsets /// were adjusted. bool layoutOnce(MCAsmLayout &Layout); /// \brief Perform one layout iteration of the given section and return true /// if any offsets were adjusted. bool layoutSectionOnce(MCAsmLayout &Layout, MCSectionData &SD); bool relaxInstruction(MCAsmLayout &Layout, MCRelaxableFragment &IF); bool relaxLEB(MCAsmLayout &Layout, MCLEBFragment &IF); bool relaxDwarfLineAddr(MCAsmLayout &Layout, MCDwarfLineAddrFragment &DF); bool relaxDwarfCallFrameFragment(MCAsmLayout &Layout, MCDwarfCallFrameFragment &DF); /// finishLayout - Finalize a layout, including fragment lowering. void finishLayout(MCAsmLayout &Layout); std::pair handleFixup(const MCAsmLayout &Layout, MCFragment &F, const MCFixup &Fixup); public: void addLocalUsedInReloc(const MCSymbol &Sym); bool isLocalUsedInReloc(const MCSymbol &Sym) const; /// Compute the effective fragment size assuming it is laid out at the given /// \p SectionAddress and \p FragmentOffset. uint64_t computeFragmentSize(const MCAsmLayout &Layout, const MCFragment &F) const; /// Find the symbol which defines the atom containing the given symbol, or /// null if there is no such symbol. const MCSymbolData *getAtom(const MCSymbolData *Symbol) const; /// Check whether a particular symbol is visible to the linker and is required /// in the symbol table, or whether it can be discarded by the assembler. This /// also effects whether the assembler treats the label as potentially /// defining a separate atom. bool isSymbolLinkerVisible(const MCSymbol &SD) const; /// Emit the section contents using the given object writer. void writeSectionData(const MCSectionData *Section, const MCAsmLayout &Layout) const; /// Check whether a given symbol has been flagged with .thumb_func. bool isThumbFunc(const MCSymbol *Func) const; /// Flag a function symbol as the target of a .thumb_func directive. void setIsThumbFunc(const MCSymbol *Func) { ThumbFuncs.insert(Func); } /// ELF e_header flags unsigned getELFHeaderEFlags() const {return ELFHeaderEFlags;} void setELFHeaderEFlags(unsigned Flags) { ELFHeaderEFlags = Flags;} /// MachO deployment target version information. const VersionMinInfoType &getVersionMinInfo() const { return VersionMinInfo; } void setVersionMinInfo(MCVersionMinType Kind, unsigned Major, unsigned Minor, unsigned Update) { VersionMinInfo.Kind = Kind; VersionMinInfo.Major = Major; VersionMinInfo.Minor = Minor; VersionMinInfo.Update = Update; } public: /// Construct a new assembler instance. /// /// \param OS The stream to output to. // // FIXME: How are we going to parameterize this? Two obvious options are stay // concrete and require clients to pass in a target like object. The other // option is to make this abstract, and have targets provide concrete // implementations as we do with AsmParser. MCAssembler(MCContext &Context_, MCAsmBackend &Backend_, MCCodeEmitter &Emitter_, MCObjectWriter &Writer_, raw_ostream &OS); ~MCAssembler(); /// Reuse an assembler instance /// void reset(); MCContext &getContext() const { return Context; } MCAsmBackend &getBackend() const { return Backend; } MCCodeEmitter &getEmitter() const { return Emitter; } MCObjectWriter &getWriter() const { return Writer; } /// Finish - Do final processing and write the object to the output stream. /// \p Writer is used for custom object writer (as the MCJIT does), /// if not specified it is automatically created from backend. void Finish(); // FIXME: This does not belong here. bool getSubsectionsViaSymbols() const { return SubsectionsViaSymbols; } void setSubsectionsViaSymbols(bool Value) { SubsectionsViaSymbols = Value; } bool getRelaxAll() const { return RelaxAll; } void setRelaxAll(bool Value) { RelaxAll = Value; } bool isBundlingEnabled() const { return BundleAlignSize != 0; } unsigned getBundleAlignSize() const { return BundleAlignSize; } void setBundleAlignSize(unsigned Size) { assert((Size == 0 || !(Size & (Size - 1))) && "Expect a power-of-two bundle align size"); BundleAlignSize = Size; } /// @name Section List Access /// @{ const SectionDataListType &getSectionList() const { return Sections; } SectionDataListType &getSectionList() { return Sections; } iterator begin() { return Sections.begin(); } const_iterator begin() const { return Sections.begin(); } iterator end() { return Sections.end(); } const_iterator end() const { return Sections.end(); } size_t size() const { return Sections.size(); } /// @} /// @name Symbol List Access /// @{ const SymbolDataListType &getSymbolList() const { return Symbols; } SymbolDataListType &getSymbolList() { return Symbols; } symbol_iterator symbol_begin() { return Symbols.begin(); } const_symbol_iterator symbol_begin() const { return Symbols.begin(); } symbol_iterator symbol_end() { return Symbols.end(); } const_symbol_iterator symbol_end() const { return Symbols.end(); } symbol_range symbols() { return make_range(symbol_begin(), symbol_end()); } const_symbol_range symbols() const { return make_range(symbol_begin(), symbol_end()); } size_t symbol_size() const { return Symbols.size(); } /// @} /// @name Indirect Symbol List Access /// @{ // FIXME: This is a total hack, this should not be here. Once things are // factored so that the streamer has direct access to the .o writer, it can // disappear. std::vector &getIndirectSymbols() { return IndirectSymbols; } indirect_symbol_iterator indirect_symbol_begin() { return IndirectSymbols.begin(); } const_indirect_symbol_iterator indirect_symbol_begin() const { return IndirectSymbols.begin(); } indirect_symbol_iterator indirect_symbol_end() { return IndirectSymbols.end(); } const_indirect_symbol_iterator indirect_symbol_end() const { return IndirectSymbols.end(); } size_t indirect_symbol_size() const { return IndirectSymbols.size(); } /// @} /// @name Linker Option List Access /// @{ std::vector > &getLinkerOptions() { return LinkerOptions; } /// @} /// @name Data Region List Access /// @{ // FIXME: This is a total hack, this should not be here. Once things are // factored so that the streamer has direct access to the .o writer, it can // disappear. std::vector &getDataRegions() { return DataRegions; } data_region_iterator data_region_begin() { return DataRegions.begin(); } const_data_region_iterator data_region_begin() const { return DataRegions.begin(); } data_region_iterator data_region_end() { return DataRegions.end(); } const_data_region_iterator data_region_end() const { return DataRegions.end(); } size_t data_region_size() const { return DataRegions.size(); } /// @} /// @name Data Region List Access /// @{ // FIXME: This is a total hack, this should not be here. Once things are // factored so that the streamer has direct access to the .o writer, it can // disappear. MCLOHContainer & getLOHContainer() { return LOHContainer; } const MCLOHContainer & getLOHContainer() const { return const_cast(this)->getLOHContainer(); } /// @} /// @name Backend Data Access /// @{ MCSectionData &getSectionData(const MCSection &Section) const { MCSectionData *Entry = SectionMap.lookup(&Section); assert(Entry && "Missing section data!"); return *Entry; } MCSectionData &getOrCreateSectionData(const MCSection &Section, bool *Created = nullptr) { MCSectionData *&Entry = SectionMap[&Section]; if (Created) *Created = !Entry; if (!Entry) Entry = new MCSectionData(Section, this); return *Entry; } bool hasSymbolData(const MCSymbol &Symbol) const { return SymbolMap.lookup(&Symbol) != nullptr; } MCSymbolData &getSymbolData(const MCSymbol &Symbol) { return const_cast( static_cast(*this).getSymbolData(Symbol)); } const MCSymbolData &getSymbolData(const MCSymbol &Symbol) const { MCSymbolData *Entry = SymbolMap.lookup(&Symbol); assert(Entry && "Missing symbol data!"); return *Entry; } MCSymbolData &getOrCreateSymbolData(const MCSymbol &Symbol, bool *Created = nullptr) { MCSymbolData *&Entry = SymbolMap[&Symbol]; if (Created) *Created = !Entry; if (!Entry) Entry = new MCSymbolData(Symbol, nullptr, 0, this); return *Entry; } const_file_name_iterator file_names_begin() const { return FileNames.begin(); } const_file_name_iterator file_names_end() const { return FileNames.end(); } void addFileName(StringRef FileName) { if (std::find(file_names_begin(), file_names_end(), FileName) == file_names_end()) FileNames.push_back(FileName); } /// @} void dump(); }; } // end namespace llvm #endif