//===-- llvm/Support/ELF.h - ELF constants and data structures --*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This header contains common, non-processor-specific data structures and // constants for the ELF file format. // // The details of the ELF32 bits in this file are largely based on the Tool // Interface Standard (TIS) Executable and Linking Format (ELF) Specification // Version 1.2, May 1995. The ELF64 stuff is based on ELF-64 Object File Format // Version 1.5, Draft 2, May 1998 as well as OpenBSD header files. // //===----------------------------------------------------------------------===// #ifndef LLVM_SUPPORT_ELF_H #define LLVM_SUPPORT_ELF_H #include "llvm/Support/DataTypes.h" #include namespace llvm { namespace ELF { typedef uint32_t Elf32_Addr; // Program address typedef uint16_t Elf32_Half; typedef uint32_t Elf32_Off; // File offset typedef int32_t Elf32_Sword; typedef uint32_t Elf32_Word; typedef uint64_t Elf64_Addr; typedef uint64_t Elf64_Off; typedef int32_t Elf64_Shalf; typedef int32_t Elf64_Sword; typedef uint32_t Elf64_Word; typedef int64_t Elf64_Sxword; typedef uint64_t Elf64_Xword; typedef uint32_t Elf64_Half; typedef uint16_t Elf64_Quarter; // Object file magic string. static const char ElfMagic[] = { 0x7f, 'E', 'L', 'F', '\0' }; // e_ident size and indices. enum { EI_MAG0 = 0, // File identification index. EI_MAG1 = 1, // File identification index. EI_MAG2 = 2, // File identification index. EI_MAG3 = 3, // File identification index. EI_CLASS = 4, // File class. EI_DATA = 5, // Data encoding. EI_VERSION = 6, // File version. EI_OSABI = 7, // OS/ABI identification. EI_ABIVERSION = 8, // ABI version. EI_PAD = 9, // Start of padding bytes. EI_NIDENT = 16 // Number of bytes in e_ident. }; struct Elf32_Ehdr { unsigned char e_ident[EI_NIDENT]; // ELF Identification bytes Elf32_Half e_type; // Type of file (see ET_* below) Elf32_Half e_machine; // Required architecture for this file (see EM_*) Elf32_Word e_version; // Must be equal to 1 Elf32_Addr e_entry; // Address to jump to in order to start program Elf32_Off e_phoff; // Program header table's file offset, in bytes Elf32_Off e_shoff; // Section header table's file offset, in bytes Elf32_Word e_flags; // Processor-specific flags Elf32_Half e_ehsize; // Size of ELF header, in bytes Elf32_Half e_phentsize; // Size of an entry in the program header table Elf32_Half e_phnum; // Number of entries in the program header table Elf32_Half e_shentsize; // Size of an entry in the section header table Elf32_Half e_shnum; // Number of entries in the section header table Elf32_Half e_shstrndx; // Sect hdr table index of sect name string table bool checkMagic() const { return (memcmp(e_ident, ElfMagic, strlen(ElfMagic))) == 0; } unsigned char getFileClass() const { return e_ident[EI_CLASS]; } unsigned char getDataEncoding() const { return e_ident[EI_DATA]; } }; // 64-bit ELF header. Fields are the same as for ELF32, but with different // types (see above). struct Elf64_Ehdr { unsigned char e_ident[EI_NIDENT]; Elf64_Quarter e_type; Elf64_Quarter e_machine; Elf64_Half e_version; Elf64_Addr e_entry; Elf64_Off e_phoff; Elf64_Off e_shoff; Elf64_Half e_flags; Elf64_Quarter e_ehsize; Elf64_Quarter e_phentsize; Elf64_Quarter e_phnum; Elf64_Quarter e_shentsize; Elf64_Quarter e_shnum; Elf64_Quarter e_shstrndx; bool checkMagic() const { return (memcmp(e_ident, ElfMagic, strlen(ElfMagic))) == 0; } unsigned char getFileClass() const { return e_ident[EI_CLASS]; } unsigned char getDataEncoding() const { return e_ident[EI_DATA]; } }; // File types enum { ET_NONE = 0, // No file type ET_REL = 1, // Relocatable file ET_EXEC = 2, // Executable file ET_DYN = 3, // Shared object file ET_CORE = 4, // Core file ET_LOPROC = 0xff00, // Beginning of processor-specific codes ET_HIPROC = 0xffff // Processor-specific }; // Versioning enum { EV_NONE = 0, EV_CURRENT = 1 }; // Machine architectures enum { EM_NONE = 0, // No machine EM_M32 = 1, // AT&T WE 32100 EM_SPARC = 2, // SPARC EM_386 = 3, // Intel 386 EM_68K = 4, // Motorola 68000 EM_88K = 5, // Motorola 88000 EM_486 = 6, // Intel 486 (deprecated) EM_860 = 7, // Intel 80860 EM_MIPS = 8, // MIPS R3000 EM_PPC = 20, // PowerPC EM_PPC64 = 21, // PowerPC64 EM_ARM = 40, // ARM EM_ALPHA = 41, // DEC Alpha EM_SPARCV9 = 43, // SPARC V9 EM_X86_64 = 62, // AMD64 EM_MBLAZE = 47787 // Xilinx MicroBlaze }; // Object file classes. enum { ELFCLASSNONE = 0, ELFCLASS32 = 1, // 32-bit object file ELFCLASS64 = 2 // 64-bit object file }; // Object file byte orderings. enum { ELFDATANONE = 0, // Invalid data encoding. ELFDATA2LSB = 1, // Little-endian object file ELFDATA2MSB = 2 // Big-endian object file }; // OS ABI identification. enum { ELFOSABI_NONE = 0, // UNIX System V ABI ELFOSABI_HPUX = 1, // HP-UX operating system ELFOSABI_NETBSD = 2, // NetBSD ELFOSABI_LINUX = 3, // GNU/Linux ELFOSABI_HURD = 4, // GNU/Hurd ELFOSABI_SOLARIS = 6, // Solaris ELFOSABI_AIX = 7, // AIX ELFOSABI_IRIX = 8, // IRIX ELFOSABI_FREEBSD = 9, // FreeBSD ELFOSABI_TRU64 = 10, // TRU64 UNIX ELFOSABI_MODESTO = 11, // Novell Modesto ELFOSABI_OPENBSD = 12, // OpenBSD ELFOSABI_OPENVMS = 13, // OpenVMS ELFOSABI_NSK = 14, // Hewlett-Packard Non-Stop Kernel ELFOSABI_AROS = 15, // AROS ELFOSABI_FENIXOS = 16, // FenixOS ELFOSABI_C6000_ELFABI = 64, // Bare-metal TMS320C6000 ELFOSABI_C6000_LINUX = 65, // Linux TMS320C6000 ELFOSABI_ARM = 97, // ARM ELFOSABI_STANDALONE = 255 // Standalone (embedded) application }; // X86_64 relocations. enum { R_X86_64_NONE = 0, R_X86_64_64 = 1, R_X86_64_PC32 = 2, R_X86_64_GOT32 = 3, R_X86_64_PLT32 = 4, R_X86_64_COPY = 5, R_X86_64_GLOB_DAT = 6, R_X86_64_JUMP_SLOT = 7, R_X86_64_RELATIVE = 8, R_X86_64_GOTPCREL = 9, R_X86_64_32 = 10, R_X86_64_32S = 11, R_X86_64_16 = 12, R_X86_64_PC16 = 13, R_X86_64_8 = 14, R_X86_64_PC8 = 15, R_X86_64_DTPMOD64 = 16, R_X86_64_DTPOFF64 = 17, R_X86_64_TPOFF64 = 18, R_X86_64_TLSGD = 19, R_X86_64_TLSLD = 20, R_X86_64_DTPOFF32 = 21, R_X86_64_GOTTPOFF = 22, R_X86_64_TPOFF32 = 23, R_X86_64_PC64 = 24, R_X86_64_GOTOFF64 = 25, R_X86_64_GOTPC32 = 26, R_X86_64_SIZE32 = 32, R_X86_64_SIZE64 = 33, R_X86_64_GOTPC32_TLSDESC = 34, R_X86_64_TLSDESC_CALL = 35, R_X86_64_TLSDESC = 36 }; // i386 relocations. // TODO: this is just a subset enum { R_386_NONE = 0, R_386_32 = 1, R_386_PC32 = 2, R_386_GOT32 = 3, R_386_PLT32 = 4, R_386_COPY = 5, R_386_GLOB_DAT = 6, R_386_JUMP_SLOT = 7, R_386_RELATIVE = 8, R_386_GOTOFF = 9, R_386_GOTPC = 10, R_386_32PLT = 11, R_386_TLS_TPOFF = 14, R_386_TLS_IE = 15, R_386_TLS_GOTIE = 16, R_386_TLS_LE = 17, R_386_TLS_GD = 18, R_386_TLS_LDM = 19, R_386_16 = 20, R_386_PC16 = 21, R_386_8 = 22, R_386_PC8 = 23, R_386_TLS_GD_32 = 24, R_386_TLS_GD_PUSH = 25, R_386_TLS_GD_CALL = 26, R_386_TLS_GD_POP = 27, R_386_TLS_LDM_32 = 28, R_386_TLS_LDM_PUSH = 29, R_386_TLS_LDM_CALL = 30, R_386_TLS_LDM_POP = 31, R_386_TLS_LDO_32 = 32, R_386_TLS_IE_32 = 33, R_386_TLS_LE_32 = 34, R_386_TLS_DTPMOD32 = 35, R_386_TLS_DTPOFF32 = 36, R_386_TLS_TPOFF32 = 37, R_386_TLS_GOTDESC = 39, R_386_TLS_DESC_CALL = 40, R_386_TLS_DESC = 41, R_386_IRELATIVE = 42, R_386_NUM = 43 }; // MBlaze relocations. enum { R_MICROBLAZE_NONE = 0, R_MICROBLAZE_32 = 1, R_MICROBLAZE_32_PCREL = 2, R_MICROBLAZE_64_PCREL = 3, R_MICROBLAZE_32_PCREL_LO = 4, R_MICROBLAZE_64 = 5, R_MICROBLAZE_32_LO = 6, R_MICROBLAZE_SRO32 = 7, R_MICROBLAZE_SRW32 = 8, R_MICROBLAZE_64_NONE = 9, R_MICROBLAZE_32_SYM_OP_SYM = 10, R_MICROBLAZE_GNU_VTINHERIT = 11, R_MICROBLAZE_GNU_VTENTRY = 12, R_MICROBLAZE_GOTPC_64 = 13, R_MICROBLAZE_GOT_64 = 14, R_MICROBLAZE_PLT_64 = 15, R_MICROBLAZE_REL = 16, R_MICROBLAZE_JUMP_SLOT = 17, R_MICROBLAZE_GLOB_DAT = 18, R_MICROBLAZE_GOTOFF_64 = 19, R_MICROBLAZE_GOTOFF_32 = 20, R_MICROBLAZE_COPY = 21 }; // ARM Specific e_flags enum { EF_ARM_EABIMASK = 0xFF000000U }; // ELF Relocation types for ARM // Meets 2.08 ABI Specs. enum { R_ARM_NONE = 0x00, R_ARM_PC24 = 0x01, R_ARM_ABS32 = 0x02, R_ARM_REL32 = 0x03, R_ARM_LDR_PC_G0 = 0x04, R_ARM_ABS16 = 0x05, R_ARM_ABS12 = 0x06, R_ARM_THM_ABS5 = 0x07, R_ARM_ABS8 = 0x08, R_ARM_SBREL32 = 0x09, R_ARM_THM_CALL = 0x0a, R_ARM_THM_PC8 = 0x0b, R_ARM_BREL_ADJ = 0x0c, R_ARM_TLS_DESC = 0x0d, R_ARM_THM_SWI8 = 0x0e, R_ARM_XPC25 = 0x0f, R_ARM_THM_XPC22 = 0x10, R_ARM_TLS_DTPMOD32 = 0x11, R_ARM_TLS_DTPOFF32 = 0x12, R_ARM_TLS_TPOFF32 = 0x13, R_ARM_COPY = 0x14, R_ARM_GLOB_DAT = 0x15, R_ARM_JUMP_SLOT = 0x16, R_ARM_RELATIVE = 0x17, R_ARM_GOTOFF32 = 0x18, R_ARM_BASE_PREL = 0x19, R_ARM_GOT_BREL = 0x1a, R_ARM_PLT32 = 0x1b, R_ARM_CALL = 0x1c, R_ARM_JUMP24 = 0x1d, R_ARM_THM_JUMP24 = 0x1e, R_ARM_BASE_ABS = 0x1f, R_ARM_ALU_PCREL_7_0 = 0x20, R_ARM_ALU_PCREL_15_8 = 0x21, R_ARM_ALU_PCREL_23_15 = 0x22, R_ARM_LDR_SBREL_11_0_NC = 0x23, R_ARM_ALU_SBREL_19_12_NC = 0x24, R_ARM_ALU_SBREL_27_20_CK = 0x25, R_ARM_TARGET1 = 0x26, R_ARM_SBREL31 = 0x27, R_ARM_V4BX = 0x28, R_ARM_TARGET2 = 0x29, R_ARM_PREL31 = 0x2a, R_ARM_MOVW_ABS_NC = 0x2b, R_ARM_MOVT_ABS = 0x2c, R_ARM_MOVW_PREL_NC = 0x2d, R_ARM_MOVT_PREL = 0x2e, R_ARM_THM_MOVW_ABS_NC = 0x2f, R_ARM_THM_MOVT_ABS = 0x30, R_ARM_THM_MOVW_PREL_NC = 0x31, R_ARM_THM_MOVT_PREL = 0x32, R_ARM_THM_JUMP19 = 0x33, R_ARM_THM_JUMP6 = 0x34, R_ARM_THM_ALU_PREL_11_0 = 0x35, R_ARM_THM_PC12 = 0x36, R_ARM_ABS32_NOI = 0x37, R_ARM_REL32_NOI = 0x38, R_ARM_ALU_PC_G0_NC = 0x39, R_ARM_ALU_PC_G0 = 0x3a, R_ARM_ALU_PC_G1_NC = 0x3b, R_ARM_ALU_PC_G1 = 0x3c, R_ARM_ALU_PC_G2 = 0x3d, R_ARM_LDR_PC_G1 = 0x3e, R_ARM_LDR_PC_G2 = 0x3f, R_ARM_LDRS_PC_G0 = 0x40, R_ARM_LDRS_PC_G1 = 0x41, R_ARM_LDRS_PC_G2 = 0x42, R_ARM_LDC_PC_G0 = 0x43, R_ARM_LDC_PC_G1 = 0x44, R_ARM_LDC_PC_G2 = 0x45, R_ARM_ALU_SB_G0_NC = 0x46, R_ARM_ALU_SB_G0 = 0x47, R_ARM_ALU_SB_G1_NC = 0x48, R_ARM_ALU_SB_G1 = 0x49, R_ARM_ALU_SB_G2 = 0x4a, R_ARM_LDR_SB_G0 = 0x4b, R_ARM_LDR_SB_G1 = 0x4c, R_ARM_LDR_SB_G2 = 0x4d, R_ARM_LDRS_SB_G0 = 0x4e, R_ARM_LDRS_SB_G1 = 0x4f, R_ARM_LDRS_SB_G2 = 0x50, R_ARM_LDC_SB_G0 = 0x51, R_ARM_LDC_SB_G1 = 0x52, R_ARM_LDC_SB_G2 = 0x53, R_ARM_MOVW_BREL_NC = 0x54, R_ARM_MOVT_BREL = 0x55, R_ARM_MOVW_BREL = 0x56, R_ARM_THM_MOVW_BREL_NC = 0x57, R_ARM_THM_MOVT_BREL = 0x58, R_ARM_THM_MOVW_BREL = 0x59, R_ARM_TLS_GOTDESC = 0x5a, R_ARM_TLS_CALL = 0x5b, R_ARM_TLS_DESCSEQ = 0x5c, R_ARM_THM_TLS_CALL = 0x5d, R_ARM_PLT32_ABS = 0x5e, R_ARM_GOT_ABS = 0x5f, R_ARM_GOT_PREL = 0x60, R_ARM_GOT_BREL12 = 0x61, R_ARM_GOTOFF12 = 0x62, R_ARM_GOTRELAX = 0x63, R_ARM_GNU_VTENTRY = 0x64, R_ARM_GNU_VTINHERIT = 0x65, R_ARM_THM_JUMP11 = 0x66, R_ARM_THM_JUMP8 = 0x67, R_ARM_TLS_GD32 = 0x68, R_ARM_TLS_LDM32 = 0x69, R_ARM_TLS_LDO32 = 0x6a, R_ARM_TLS_IE32 = 0x6b, R_ARM_TLS_LE32 = 0x6c, R_ARM_TLS_LDO12 = 0x6d, R_ARM_TLS_LE12 = 0x6e, R_ARM_TLS_IE12GP = 0x6f, R_ARM_PRIVATE_0 = 0x70, R_ARM_PRIVATE_1 = 0x71, R_ARM_PRIVATE_2 = 0x72, R_ARM_PRIVATE_3 = 0x73, R_ARM_PRIVATE_4 = 0x74, R_ARM_PRIVATE_5 = 0x75, R_ARM_PRIVATE_6 = 0x76, R_ARM_PRIVATE_7 = 0x77, R_ARM_PRIVATE_8 = 0x78, R_ARM_PRIVATE_9 = 0x79, R_ARM_PRIVATE_10 = 0x7a, R_ARM_PRIVATE_11 = 0x7b, R_ARM_PRIVATE_12 = 0x7c, R_ARM_PRIVATE_13 = 0x7d, R_ARM_PRIVATE_14 = 0x7e, R_ARM_PRIVATE_15 = 0x7f, R_ARM_ME_TOO = 0x80, R_ARM_THM_TLS_DESCSEQ16 = 0x81, R_ARM_THM_TLS_DESCSEQ32 = 0x82 }; // Section header. struct Elf32_Shdr { Elf32_Word sh_name; // Section name (index into string table) Elf32_Word sh_type; // Section type (SHT_*) Elf32_Word sh_flags; // Section flags (SHF_*) Elf32_Addr sh_addr; // Address where section is to be loaded Elf32_Off sh_offset; // File offset of section data, in bytes Elf32_Word sh_size; // Size of section, in bytes Elf32_Word sh_link; // Section type-specific header table index link Elf32_Word sh_info; // Section type-specific extra information Elf32_Word sh_addralign; // Section address alignment Elf32_Word sh_entsize; // Size of records contained within the section }; // Section header for ELF64 - same fields as ELF32, different types. struct Elf64_Shdr { Elf64_Half sh_name; Elf64_Half sh_type; Elf64_Xword sh_flags; Elf64_Addr sh_addr; Elf64_Off sh_offset; Elf64_Xword sh_size; Elf64_Half sh_link; Elf64_Half sh_info; Elf64_Xword sh_addralign; Elf64_Xword sh_entsize; }; // Special section indices. enum { SHN_UNDEF = 0, // Undefined, missing, irrelevant, or meaningless SHN_LORESERVE = 0xff00, // Lowest reserved index SHN_LOPROC = 0xff00, // Lowest processor-specific index SHN_HIPROC = 0xff1f, // Highest processor-specific index SHN_ABS = 0xfff1, // Symbol has absolute value; does not need relocation SHN_COMMON = 0xfff2, // FORTRAN COMMON or C external global variables SHN_XINDEX = 0xffff, // Mark that the index is >= SHN_LORESERVE SHN_HIRESERVE = 0xffff // Highest reserved index }; // Section types. enum { SHT_NULL = 0, // No associated section (inactive entry). SHT_PROGBITS = 1, // Program-defined contents. SHT_SYMTAB = 2, // Symbol table. SHT_STRTAB = 3, // String table. SHT_RELA = 4, // Relocation entries; explicit addends. SHT_HASH = 5, // Symbol hash table. SHT_DYNAMIC = 6, // Information for dynamic linking. SHT_NOTE = 7, // Information about the file. SHT_NOBITS = 8, // Data occupies no space in the file. SHT_REL = 9, // Relocation entries; no explicit addends. SHT_SHLIB = 10, // Reserved. SHT_DYNSYM = 11, // Symbol table. SHT_INIT_ARRAY = 14, // Pointers to initialization functions. SHT_FINI_ARRAY = 15, // Pointers to termination functions. SHT_PREINIT_ARRAY = 16, // Pointers to pre-init functions. SHT_GROUP = 17, // Section group. SHT_SYMTAB_SHNDX = 18, // Indices for SHN_XINDEX entries. SHT_LOOS = 0x60000000, // Lowest operating system-specific type. SHT_HIOS = 0x6fffffff, // Highest operating system-specific type. SHT_LOPROC = 0x70000000, // Lowest processor architecture-specific type. // Fixme: All this is duplicated in MCSectionELF. Why?? // Exception Index table SHT_ARM_EXIDX = 0x70000001U, // BPABI DLL dynamic linking pre-emption map SHT_ARM_PREEMPTMAP = 0x70000002U, // Object file compatibility attributes SHT_ARM_ATTRIBUTES = 0x70000003U, SHT_ARM_DEBUGOVERLAY = 0x70000004U, SHT_ARM_OVERLAYSECTION = 0x70000005U, SHT_X86_64_UNWIND = 0x70000001, // Unwind information SHT_HIPROC = 0x7fffffff, // Highest processor architecture-specific type. SHT_LOUSER = 0x80000000, // Lowest type reserved for applications. SHT_HIUSER = 0xffffffff // Highest type reserved for applications. }; // Section flags. enum { // Section data should be writable during execution. SHF_WRITE = 0x1, // Section occupies memory during program execution. SHF_ALLOC = 0x2, // Section contains executable machine instructions. SHF_EXECINSTR = 0x4, // The data in this section may be merged. SHF_MERGE = 0x10, // The data in this section is null-terminated strings. SHF_STRINGS = 0x20, // A field in this section holds a section header table index. SHF_INFO_LINK = 0x40U, // Adds special ordering requirements for link editors. SHF_LINK_ORDER = 0x80U, // This section requires special OS-specific processing to avoid incorrect // behavior. SHF_OS_NONCONFORMING = 0x100U, // This section is a member of a section group. SHF_GROUP = 0x200U, // This section holds Thread-Local Storage. SHF_TLS = 0x400U, // Start of target-specific flags. /// XCORE_SHF_CP_SECTION - All sections with the "c" flag are grouped /// together by the linker to form the constant pool and the cp register is /// set to the start of the constant pool by the boot code. XCORE_SHF_CP_SECTION = 0x800U, /// XCORE_SHF_DP_SECTION - All sections with the "d" flag are grouped /// together by the linker to form the data section and the dp register is /// set to the start of the section by the boot code. XCORE_SHF_DP_SECTION = 0x1000U, // Bits indicating processor-specific flags. SHF_MASKPROC = 0xf0000000 }; // Section Group Flags enum { GRP_COMDAT = 0x1, GRP_MASKOS = 0x0ff00000, GRP_MASKPROC = 0xf0000000 }; // Symbol table entries for ELF32. struct Elf32_Sym { Elf32_Word st_name; // Symbol name (index into string table) Elf32_Addr st_value; // Value or address associated with the symbol Elf32_Word st_size; // Size of the symbol unsigned char st_info; // Symbol's type and binding attributes unsigned char st_other; // Must be zero; reserved Elf32_Half st_shndx; // Which section (header table index) it's defined in // These accessors and mutators correspond to the ELF32_ST_BIND, // ELF32_ST_TYPE, and ELF32_ST_INFO macros defined in the ELF specification: unsigned char getBinding() const { return st_info >> 4; } unsigned char getType() const { return st_info & 0x0f; } void setBinding(unsigned char b) { setBindingAndType(b, getType()); } void setType(unsigned char t) { setBindingAndType(getBinding(), t); } void setBindingAndType(unsigned char b, unsigned char t) { st_info = (b << 4) + (t & 0x0f); } }; // Symbol table entries for ELF64. struct Elf64_Sym { Elf64_Word st_name; // Symbol name (index into string table) unsigned char st_info; // Symbol's type and binding attributes unsigned char st_other; // Must be zero; reserved Elf64_Half st_shndx; // Which section (header table index) it's defined in Elf64_Addr st_value; // Value or address associated with the symbol Elf64_Xword st_size; // Size of the symbol // These accessors and mutators are identical to those defined for ELF32 // symbol table entries. unsigned char getBinding() const { return st_info >> 4; } unsigned char getType() const { return st_info & 0x0f; } void setBinding(unsigned char b) { setBindingAndType(b, getType()); } void setType(unsigned char t) { setBindingAndType(getBinding(), t); } void setBindingAndType(unsigned char b, unsigned char t) { st_info = (b << 4) + (t & 0x0f); } }; // The size (in bytes) of symbol table entries. enum { SYMENTRY_SIZE32 = 16, // 32-bit symbol entry size SYMENTRY_SIZE64 = 24 // 64-bit symbol entry size. }; // Symbol bindings. enum { STB_LOCAL = 0, // Local symbol, not visible outside obj file containing def STB_GLOBAL = 1, // Global symbol, visible to all object files being combined STB_WEAK = 2, // Weak symbol, like global but lower-precedence STB_LOPROC = 13, // Lowest processor-specific binding type STB_HIPROC = 15 // Highest processor-specific binding type }; // Symbol types. enum { STT_NOTYPE = 0, // Symbol's type is not specified STT_OBJECT = 1, // Symbol is a data object (variable, array, etc.) STT_FUNC = 2, // Symbol is executable code (function, etc.) STT_SECTION = 3, // Symbol refers to a section STT_FILE = 4, // Local, absolute symbol that refers to a file STT_COMMON = 5, // An uninitialized common block STT_TLS = 6, // Thread local data object STT_LOPROC = 13, // Lowest processor-specific symbol type STT_HIPROC = 15 // Highest processor-specific symbol type }; enum { STV_DEFAULT = 0, // Visibility is specified by binding type STV_INTERNAL = 1, // Defined by processor supplements STV_HIDDEN = 2, // Not visible to other components STV_PROTECTED = 3 // Visible in other components but not preemptable }; // Relocation entry, without explicit addend. struct Elf32_Rel { Elf32_Addr r_offset; // Location (file byte offset, or program virtual addr) Elf32_Word r_info; // Symbol table index and type of relocation to apply // These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE, // and ELF32_R_INFO macros defined in the ELF specification: Elf32_Word getSymbol() const { return (r_info >> 8); } unsigned char getType() const { return (unsigned char) (r_info & 0x0ff); } void setSymbol(Elf32_Word s) { setSymbolAndType(s, getType()); } void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); } void setSymbolAndType(Elf32_Word s, unsigned char t) { r_info = (s << 8) + t; } }; // Relocation entry with explicit addend. struct Elf32_Rela { Elf32_Addr r_offset; // Location (file byte offset, or program virtual addr) Elf32_Word r_info; // Symbol table index and type of relocation to apply Elf32_Sword r_addend; // Compute value for relocatable field by adding this // These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE, // and ELF32_R_INFO macros defined in the ELF specification: Elf32_Word getSymbol() const { return (r_info >> 8); } unsigned char getType() const { return (unsigned char) (r_info & 0x0ff); } void setSymbol(Elf32_Word s) { setSymbolAndType(s, getType()); } void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); } void setSymbolAndType(Elf32_Word s, unsigned char t) { r_info = (s << 8) + t; } }; // Relocation entry, without explicit addend. struct Elf64_Rel { Elf64_Addr r_offset; // Location (file byte offset, or program virtual addr). Elf64_Xword r_info; // Symbol table index and type of relocation to apply. // These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE, // and ELF64_R_INFO macros defined in the ELF specification: Elf64_Xword getSymbol() const { return (r_info >> 32); } unsigned char getType() const { return (unsigned char) (r_info & 0xffffffffL); } void setSymbol(Elf32_Word s) { setSymbolAndType(s, getType()); } void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); } void setSymbolAndType(Elf64_Xword s, unsigned char t) { r_info = (s << 32) + (t&0xffffffffL); } }; // Relocation entry with explicit addend. struct Elf64_Rela { Elf64_Addr r_offset; // Location (file byte offset, or program virtual addr). Elf64_Xword r_info; // Symbol table index and type of relocation to apply. Elf64_Sxword r_addend; // Compute value for relocatable field by adding this. // These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE, // and ELF64_R_INFO macros defined in the ELF specification: Elf64_Xword getSymbol() const { return (r_info >> 32); } unsigned char getType() const { return (unsigned char) (r_info & 0xffffffffL); } void setSymbol(Elf64_Xword s) { setSymbolAndType(s, getType()); } void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); } void setSymbolAndType(Elf64_Xword s, unsigned char t) { r_info = (s << 32) + (t&0xffffffffL); } }; // Program header for ELF32. struct Elf32_Phdr { Elf32_Word p_type; // Type of segment Elf32_Off p_offset; // File offset where segment is located, in bytes Elf32_Addr p_vaddr; // Virtual address of beginning of segment Elf32_Addr p_paddr; // Physical address of beginning of segment (OS-specific) Elf32_Word p_filesz; // Num. of bytes in file image of segment (may be zero) Elf32_Word p_memsz; // Num. of bytes in mem image of segment (may be zero) Elf32_Word p_flags; // Segment flags Elf32_Word p_align; // Segment alignment constraint }; // Program header for ELF64. struct Elf64_Phdr { Elf64_Word p_type; // Type of segment Elf64_Word p_flags; // Segment flags Elf64_Off p_offset; // File offset where segment is located, in bytes Elf64_Addr p_vaddr; // Virtual address of beginning of segment Elf64_Addr p_paddr; // Physical address of beginning of segment (OS-specific) Elf64_Xword p_filesz; // Num. of bytes in file image of segment (may be zero) Elf64_Xword p_memsz; // Num. of bytes in mem image of segment (may be zero) Elf64_Xword p_align; // Segment alignment constraint }; // Segment types. enum { PT_NULL = 0, // Unused segment. PT_LOAD = 1, // Loadable segment. PT_DYNAMIC = 2, // Dynamic linking information. PT_INTERP = 3, // Interpreter pathname. PT_NOTE = 4, // Auxiliary information. PT_SHLIB = 5, // Reserved. PT_PHDR = 6, // The program header table itself. PT_LOPROC = 0x70000000, // Lowest processor-specific program hdr entry type. PT_HIPROC = 0x7fffffff // Highest processor-specific program hdr entry type. }; // Segment flag bits. enum { PF_X = 1, // Execute PF_W = 2, // Write PF_R = 4, // Read PF_MASKPROC = 0xf0000000 // Unspecified }; // Dynamic table entry for ELF32. struct Elf32_Dyn { Elf32_Sword d_tag; // Type of dynamic table entry. union { Elf32_Word d_val; // Integer value of entry. Elf32_Addr d_ptr; // Pointer value of entry. } d_un; }; // Dynamic table entry for ELF64. struct Elf64_Dyn { Elf64_Sxword d_tag; // Type of dynamic table entry. union { Elf64_Xword d_val; // Integer value of entry. Elf64_Addr d_ptr; // Pointer value of entry. } d_un; }; // Dynamic table entry tags. enum { DT_NULL = 0, // Marks end of dynamic array. DT_NEEDED = 1, // String table offset of needed library. DT_PLTRELSZ = 2, // Size of relocation entries in PLT. DT_PLTGOT = 3, // Address associated with linkage table. DT_HASH = 4, // Address of symbolic hash table. DT_STRTAB = 5, // Address of dynamic string table. DT_SYMTAB = 6, // Address of dynamic symbol table. DT_RELA = 7, // Address of relocation table (Rela entries). DT_RELASZ = 8, // Size of Rela relocation table. DT_RELAENT = 9, // Size of a Rela relocation entry. DT_STRSZ = 10, // Total size of the string table. DT_SYMENT = 11, // Size of a symbol table entry. DT_INIT = 12, // Address of initialization function. DT_FINI = 13, // Address of termination function. DT_SONAME = 14, // String table offset of a shared objects name. DT_RPATH = 15, // String table offset of library search path. DT_SYMBOLIC = 16, // Changes symbol resolution algorithm. DT_REL = 17, // Address of relocation table (Rel entries). DT_RELSZ = 18, // Size of Rel relocation table. DT_RELENT = 19, // Size of a Rel relocation entry. DT_PLTREL = 20, // Type of relocation entry used for linking. DT_DEBUG = 21, // Reserved for debugger. DT_TEXTREL = 22, // Relocations exist for non-writable segments. DT_JMPREL = 23, // Address of relocations associated with PLT. DT_BIND_NOW = 24, // Process all relocations before execution. DT_INIT_ARRAY = 25, // Pointer to array of initialization functions. DT_FINI_ARRAY = 26, // Pointer to array of termination functions. DT_INIT_ARRAYSZ = 27, // Size of DT_INIT_ARRAY. DT_FINI_ARRAYSZ = 28, // Size of DT_FINI_ARRAY. DT_LOOS = 0x60000000, // Start of environment specific tags. DT_HIOS = 0x6FFFFFFF, // End of environment specific tags. DT_LOPROC = 0x70000000, // Start of processor specific tags. DT_HIPROC = 0x7FFFFFFF // End of processor specific tags. }; } // end namespace ELF } // end namespace llvm #endif