//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the target machine instructions to the code generator. // //===----------------------------------------------------------------------===// #ifndef LLVM_TARGET_TARGETINSTRINFO_H #define LLVM_TARGET_TARGETINSTRINFO_H #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/Support/DataTypes.h" #include #include namespace llvm { class MachineInstr; class TargetMachine; class TargetRegisterClass; class LiveVariables; class CalleeSavedInfo; class SDNode; class SelectionDAG; template class SmallVectorImpl; //===----------------------------------------------------------------------===// // Machine Operand Flags and Description //===----------------------------------------------------------------------===// namespace TOI { // Operand constraints: only "tied_to" for now. enum OperandConstraint { TIED_TO = 0 // Must be allocated the same register as. }; /// OperandFlags - These are flags set on operands, but should be considered /// private, all access should go through the TargetOperandInfo accessors. /// See the accessors for a description of what these are. enum OperandFlags { LookupPtrRegClass = 1 << 0, Predicate = 1 << 1, OptionalDef = 1 << 2 }; } /// TargetOperandInfo - This holds information about one operand of a machine /// instruction, indicating the register class for register operands, etc. /// class TargetOperandInfo { public: /// RegClass - This specifies the register class enumeration of the operand /// if the operand is a register. If not, this contains 0. unsigned short RegClass; unsigned short Flags; /// Lower 16 bits are used to specify which constraints are set. The higher 16 /// bits are used to specify the value of constraints (4 bits each). unsigned int Constraints; /// Currently no other information. /// isLookupPtrRegClass - Set if this operand is a pointer value and it /// requires a callback to look up its register class. bool isLookupPtrRegClass() const { return Flags & TOI::LookupPtrRegClass; } /// isPredicate - Set if this is one of the operands that made up of /// the predicate operand that controls an isPredicable() instruction. bool isPredicate() const { return Flags & TOI::Predicate; } /// isOptionalDef - Set if this operand is a optional def. /// bool isOptionalDef() const { return Flags & TOI::OptionalDef; } }; //===----------------------------------------------------------------------===// // Machine Instruction Flags and Description //===----------------------------------------------------------------------===// const unsigned M_BRANCH_FLAG = 1 << 0; const unsigned M_CALL_FLAG = 1 << 1; const unsigned M_RET_FLAG = 1 << 2; const unsigned M_BARRIER_FLAG = 1 << 3; const unsigned M_DELAY_SLOT_FLAG = 1 << 4; const unsigned M_SIMPLE_LOAD_FLAG = 1 << 5; const unsigned M_MAY_STORE_FLAG = 1 << 6; const unsigned M_INDIRECT_FLAG = 1 << 7; const unsigned M_IMPLICIT_DEF_FLAG = 1 << 8; const unsigned M_CONVERTIBLE_TO_3_ADDR = 1 << 9; const unsigned M_COMMUTABLE = 1 << 10; const unsigned M_TERMINATOR_FLAG = 1 << 11; const unsigned M_USES_CUSTOM_DAG_SCHED_INSERTION = 1 << 12; const unsigned M_VARIADIC = 1 << 13; const unsigned M_PREDICABLE = 1 << 14; const unsigned M_REMATERIALIZIBLE = 1 << 15; const unsigned M_NOT_DUPLICABLE = 1 << 16; const unsigned M_HAS_OPTIONAL_DEF = 1 << 17; const unsigned M_NEVER_HAS_SIDE_EFFECTS = 1 << 18; const unsigned M_MAY_HAVE_SIDE_EFFECTS = 1 << 19; class TargetInstrDescriptor { public: unsigned short Opcode; // The opcode number. unsigned short NumOperands; // Num of args (may be more if variable_ops) unsigned short NumDefs; // Num of args that are definitions. unsigned short SchedClass; // enum identifying instr sched class const char * Name; // Name of the instruction record in td file. unsigned Flags; // flags identifying machine instr class unsigned TSFlags; // Target Specific Flag values const unsigned *ImplicitUses; // Registers implicitly read by this instr const unsigned *ImplicitDefs; // Registers implicitly defined by this instr const TargetOperandInfo *OpInfo; // 'numOperands' entries about operands. /// getOperandConstraint - Returns the value of the specific constraint if /// it is set. Returns -1 if it is not set. int getOperandConstraint(unsigned OpNum, TOI::OperandConstraint Constraint) const { assert((OpNum < NumOperands || isVariadic()) && "Invalid operand # of TargetInstrInfo"); if (OpNum < NumOperands && (OpInfo[OpNum].Constraints & (1 << Constraint))) { unsigned Pos = 16 + Constraint * 4; return (int)(OpInfo[OpNum].Constraints >> Pos) & 0xf; } return -1; } /// findTiedToSrcOperand - Returns the operand that is tied to the specified /// dest operand. Returns -1 if there isn't one. int findTiedToSrcOperand(unsigned OpNum) const; /// getName - Return the name of the record in the .td file for this /// instruction, for example "ADD8ri". const char *getName() const { return Name; } /// getNumOperands - Return the number of declared MachineOperands for this /// MachineInstruction. Note that variadic (isVariadic() returns true) /// instructions may have additional operands at the end of the list, and note /// that the machine instruction may include implicit register def/uses as /// well. unsigned getNumOperands() const { return NumOperands; } /// getNumDefs - Return the number of MachineOperands that are register /// definitions. Register definitions always occur at the start of the /// machine operand list. This is the number of "outs" in the .td file. unsigned getNumDefs() const { return NumDefs; } /// isVariadic - Return true if this instruction can have a variable number of /// operands. In this case, the variable operands will be after the normal /// operands but before the implicit definitions and uses (if any are /// present). bool isVariadic() const { return Flags & M_VARIADIC; } /// hasOptionalDef - Set if this instruction has an optional definition, e.g. /// ARM instructions which can set condition code if 's' bit is set. bool hasOptionalDef() const { return Flags & M_HAS_OPTIONAL_DEF; } /// getImplicitUses - Return a list of machine operands that are potentially /// read by any instance of this machine instruction. For example, on X86, /// the "adc" instruction adds two register operands and adds the carry bit in /// from the flags register. In this case, the instruction is marked as /// implicitly reading the flags. Likewise, the variable shift instruction on /// X86 is marked as implicitly reading the 'CL' register, which it always /// does. /// /// This method returns null if the instruction has no implicit uses. const unsigned *getImplicitUses() const { return ImplicitUses; } /// getImplicitDefs - Return a list of machine operands that are potentially /// written by any instance of this machine instruction. For example, on X86, /// many instructions implicitly set the flags register. In this case, they /// are marked as setting the FLAGS. Likewise, many instructions always /// deposit their result in a physical register. For example, the X86 divide /// instruction always deposits the quotient and remainder in the EAX/EDX /// registers. For that instruction, this will return a list containing the /// EAX/EDX/EFLAGS registers. /// /// This method returns null if the instruction has no implicit uses. const unsigned *getImplicitDefs() const { return ImplicitDefs; } /// getSchedClass - Return the scheduling class for this instruction. The /// scheduling class is an index into the InstrItineraryData table. This /// returns zero if there is no known scheduling information for the /// instruction. /// unsigned getSchedClass() const { return SchedClass; } bool isReturn() const { return Flags & M_RET_FLAG; } bool isCall() const { return Flags & M_CALL_FLAG; } /// isImplicitDef - Return true if this is an "IMPLICIT_DEF" instruction, /// which defines a register to an unspecified value. These basically /// correspond to x = undef. bool isImplicitDef() const { return Flags & M_IMPLICIT_DEF_FLAG; } /// isBarrier - Returns true if the specified instruction stops control flow /// from executing the instruction immediately following it. Examples include /// unconditional branches and return instructions. bool isBarrier() const { return Flags & M_BARRIER_FLAG; } /// isTerminator - Returns true if this instruction part of the terminator for /// a basic block. Typically this is things like return and branch /// instructions. /// /// Various passes use this to insert code into the bottom of a basic block, /// but before control flow occurs. bool isTerminator() const { return Flags & M_TERMINATOR_FLAG; } /// isBranch - Returns true if this is a conditional, unconditional, or /// indirect branch. Predicates below can be used to discriminate between /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to /// get more information. bool isBranch() const { return Flags & M_BRANCH_FLAG; } /// isIndirectBranch - Return true if this is an indirect branch, such as a /// branch through a register. bool isIndirectBranch() const { return Flags & M_INDIRECT_FLAG; } /// isConditionalBranch - Return true if this is a branch which may fall /// through to the next instruction or may transfer control flow to some other /// block. The TargetInstrInfo::AnalyzeBranch method can be used to get more /// information about this branch. bool isConditionalBranch() const { return isBranch() & !isBarrier() & !isIndirectBranch(); } /// isUnconditionalBranch - Return true if this is a branch which always /// transfers control flow to some other block. The /// TargetInstrInfo::AnalyzeBranch method can be used to get more information /// about this branch. bool isUnconditionalBranch() const { return isBranch() & isBarrier() & !isIndirectBranch(); } // isPredicable - Return true if this instruction has a predicate operand that // controls execution. It may be set to 'always', or may be set to other /// values. There are various methods in TargetInstrInfo that can be used to /// control and modify the predicate in this instruction. bool isPredicable() const { return Flags & M_PREDICABLE; } /// isNotDuplicable - Return true if this instruction cannot be safely /// duplicated. For example, if the instruction has a unique labels attached /// to it, duplicating it would cause multiple definition errors. bool isNotDuplicable() const { return Flags & M_NOT_DUPLICABLE; } /// hasDelaySlot - Returns true if the specified instruction has a delay slot /// which must be filled by the code generator. bool hasDelaySlot() const { return Flags & M_DELAY_SLOT_FLAG; } /// isSimpleLoad - Return true for instructions that are simple loads from /// memory. This should only be set on instructions that load a value from /// memory and return it in their only virtual register definition. /// Instructions that return a value loaded from memory and then modified in /// some way should not return true for this. bool isSimpleLoad() const { return Flags & M_SIMPLE_LOAD_FLAG; } //===--------------------------------------------------------------------===// // Side Effect Analysis //===--------------------------------------------------------------------===// /// mayStore - Return true if this instruction could possibly modify memory. /// Instructions with this flag set are not necessarily simple store /// instructions, they may store a modified value based on their operands, or /// may not actually modify anything, for example. bool mayStore() const { return Flags & M_MAY_STORE_FLAG; } // TODO: mayLoad. /// hasNoSideEffects - Return true if all instances of this instruction are /// guaranteed to have no side effects other than: /// 1. The register operands that are def/used by the MachineInstr. /// 2. Registers that are implicitly def/used by the MachineInstr. /// 3. Memory Accesses captured by mayLoad() or mayStore(). /// /// Examples of other side effects would be calling a function, modifying /// 'invisible' machine state like a control register, etc. /// /// If some instances of this instruction are side-effect free but others are /// not, the hasConditionalSideEffects() property should return true, not this /// one. /// /// Note that you should not call this method directly, instead, call the /// TargetInstrInfo::hasUnmodelledSideEffects method, which handles analysis /// of the machine instruction. bool hasNoSideEffects() const { return Flags & M_NEVER_HAS_SIDE_EFFECTS; } /// hasConditionalSideEffects - Return true if some instances of this /// instruction are guaranteed to have no side effects other than those listed /// for hasNoSideEffects(). To determine whether a specific machineinstr has /// side effects, the TargetInstrInfo::isReallySideEffectFree virtual method /// is invoked to decide. /// /// Note that you should not call this method directly, instead, call the /// TargetInstrInfo::hasUnmodelledSideEffects method, which handles analysis /// of the machine instruction. bool hasConditionalSideEffects() const { return Flags & M_MAY_HAVE_SIDE_EFFECTS; } //===--------------------------------------------------------------------===// // Flags that indicate whether an instruction can be modified by a method. //===--------------------------------------------------------------------===// /// isCommutableInstr - Return true if this may be a 2- or 3-address /// instruction (of the form "X = op Y, Z, ..."), which produces the same /// result if Y and Z are exchanged. If this flag is set, then the /// TargetInstrInfo::commuteInstruction method may be used to hack on the /// instruction. /// /// Note that this flag may be set on instructions that are only commutable /// sometimes. In these cases, the call to commuteInstruction will fail. /// Also note that some instructions require non-trivial modification to /// commute them. bool isCommutableInstr() const { return Flags & M_COMMUTABLE; } /// isConvertibleTo3Addr - Return true if this is a 2-address instruction /// which can be changed into a 3-address instruction if needed. Doing this /// transformation can be profitable in the register allocator, because it /// means that the instruction can use a 2-address form if possible, but /// degrade into a less efficient form if the source and dest register cannot /// be assigned to the same register. For example, this allows the x86 /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which /// is the same speed as the shift but has bigger code size. /// /// If this returns true, then the target must implement the /// TargetInstrInfo::convertToThreeAddress method for this instruction, which /// is allowed to fail if the transformation isn't valid for this specific /// instruction (e.g. shl reg, 4 on x86). /// bool isConvertibleTo3Addr() const { return Flags & M_CONVERTIBLE_TO_3_ADDR; } /// usesCustomDAGSchedInsertionHook - Return true if this instruction requires /// custom insertion support when the DAG scheduler is inserting it into a /// machine basic block. If this is true for the instruction, it basically /// means that it is a pseudo instruction used at SelectionDAG time that is /// expanded out into magic code by the target when MachineInstrs are formed. /// /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method /// is used to insert this into the MachineBasicBlock. bool usesCustomDAGSchedInsertionHook() const { return Flags & M_USES_CUSTOM_DAG_SCHED_INSERTION; } /// isRematerializable - Returns true if this instruction is a candidate for /// remat. This flag is deprecated, please don't use it anymore. If this /// flag is set, the isReallyTriviallyReMaterializable() method is called to /// verify the instruction is really rematable. bool isRematerializable() const { return Flags & M_REMATERIALIZIBLE; } }; //--------------------------------------------------------------------------- /// /// TargetInstrInfo - Interface to description of machine instructions /// class TargetInstrInfo { const TargetInstrDescriptor* desc; // raw array to allow static init'n unsigned NumOpcodes; // number of entries in the desc array unsigned numRealOpCodes; // number of non-dummy op codes TargetInstrInfo(const TargetInstrInfo &); // DO NOT IMPLEMENT void operator=(const TargetInstrInfo &); // DO NOT IMPLEMENT public: TargetInstrInfo(const TargetInstrDescriptor *desc, unsigned NumOpcodes); virtual ~TargetInstrInfo(); // Invariant opcodes: All instruction sets have these as their low opcodes. enum { PHI = 0, INLINEASM = 1, LABEL = 2, EXTRACT_SUBREG = 3, INSERT_SUBREG = 4 }; unsigned getNumOpcodes() const { return NumOpcodes; } /// get - Return the machine instruction descriptor that corresponds to the /// specified instruction opcode. /// const TargetInstrDescriptor& get(unsigned Opcode) const { assert(Opcode < NumOpcodes); return desc[Opcode]; } /// isTriviallyReMaterializable - Return true if the instruction is trivially /// rematerializable, meaning it has no side effects and requires no operands /// that aren't always available. bool isTriviallyReMaterializable(MachineInstr *MI) const { return MI->getDesc()->isRematerializable() && isReallyTriviallyReMaterializable(MI); } /// hasUnmodelledSideEffects - Returns true if the instruction has side /// effects that are not captured by any operands of the instruction or other /// flags. bool hasUnmodelledSideEffects(MachineInstr *MI) const { const TargetInstrDescriptor *TID = MI->getDesc(); if (TID->hasNoSideEffects()) return false; if (!TID->hasConditionalSideEffects()) return true; return !isReallySideEffectFree(MI); // May have side effects } protected: /// isReallyTriviallyReMaterializable - For instructions with opcodes for /// which the M_REMATERIALIZABLE flag is set, this function tests whether the /// instruction itself is actually trivially rematerializable, considering /// its operands. This is used for targets that have instructions that are /// only trivially rematerializable for specific uses. This predicate must /// return false if the instruction has any side effects other than /// producing a value, or if it requres any address registers that are not /// always available. virtual bool isReallyTriviallyReMaterializable(MachineInstr *MI) const { return true; } /// isReallySideEffectFree - If the M_MAY_HAVE_SIDE_EFFECTS flag is set, this /// method is called to determine if the specific instance of this /// instruction has side effects. This is useful in cases of instructions, /// like loads, which generally always have side effects. A load from a /// constant pool doesn't have side effects, though. So we need to /// differentiate it from the general case. virtual bool isReallySideEffectFree(MachineInstr *MI) const { return false; } public: /// getOperandConstraint - Returns the value of the specific constraint if /// it is set. Returns -1 if it is not set. int getOperandConstraint(unsigned Opcode, unsigned OpNum, TOI::OperandConstraint Constraint) const { return get(Opcode).getOperandConstraint(OpNum, Constraint); } /// Return true if the instruction is a register to register move /// and leave the source and dest operands in the passed parameters. virtual bool isMoveInstr(const MachineInstr& MI, unsigned& sourceReg, unsigned& destReg) const { return false; } /// isLoadFromStackSlot - If the specified machine instruction is a direct /// load from a stack slot, return the virtual or physical register number of /// the destination along with the FrameIndex of the loaded stack slot. If /// not, return 0. This predicate must return 0 if the instruction has /// any side effects other than loading from the stack slot. virtual unsigned isLoadFromStackSlot(MachineInstr *MI, int &FrameIndex) const{ return 0; } /// isStoreToStackSlot - If the specified machine instruction is a direct /// store to a stack slot, return the virtual or physical register number of /// the source reg along with the FrameIndex of the loaded stack slot. If /// not, return 0. This predicate must return 0 if the instruction has /// any side effects other than storing to the stack slot. virtual unsigned isStoreToStackSlot(MachineInstr *MI, int &FrameIndex) const { return 0; } /// convertToThreeAddress - This method must be implemented by targets that /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target /// may be able to convert a two-address instruction into one or more true /// three-address instructions on demand. This allows the X86 target (for /// example) to convert ADD and SHL instructions into LEA instructions if they /// would require register copies due to two-addressness. /// /// This method returns a null pointer if the transformation cannot be /// performed, otherwise it returns the last new instruction. /// virtual MachineInstr * convertToThreeAddress(MachineFunction::iterator &MFI, MachineBasicBlock::iterator &MBBI, LiveVariables &LV) const { return 0; } /// commuteInstruction - If a target has any instructions that are commutable, /// but require converting to a different instruction or making non-trivial /// changes to commute them, this method can overloaded to do this. The /// default implementation of this method simply swaps the first two operands /// of MI and returns it. /// /// If a target wants to make more aggressive changes, they can construct and /// return a new machine instruction. If an instruction cannot commute, it /// can also return null. /// virtual MachineInstr *commuteInstruction(MachineInstr *MI) const = 0; /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning /// true if it cannot be understood (e.g. it's a switch dispatch or isn't /// implemented for a target). Upon success, this returns false and returns /// with the following information in various cases: /// /// 1. If this block ends with no branches (it just falls through to its succ) /// just return false, leaving TBB/FBB null. /// 2. If this block ends with only an unconditional branch, it sets TBB to be /// the destination block. /// 3. If this block ends with an conditional branch and it falls through to /// an successor block, it sets TBB to be the branch destination block and a /// list of operands that evaluate the condition. These /// operands can be passed to other TargetInstrInfo methods to create new /// branches. /// 4. If this block ends with an conditional branch and an unconditional /// block, it returns the 'true' destination in TBB, the 'false' destination /// in FBB, and a list of operands that evaluate the condition. These /// operands can be passed to other TargetInstrInfo methods to create new /// branches. /// /// Note that RemoveBranch and InsertBranch must be implemented to support /// cases where this method returns success. /// virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, std::vector &Cond) const { return true; } /// RemoveBranch - Remove the branching code at the end of the specific MBB. /// this is only invoked in cases where AnalyzeBranch returns success. It /// returns the number of instructions that were removed. virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const { assert(0 && "Target didn't implement TargetInstrInfo::RemoveBranch!"); return 0; } /// InsertBranch - Insert a branch into the end of the specified /// MachineBasicBlock. This operands to this method are the same as those /// returned by AnalyzeBranch. This is invoked in cases where AnalyzeBranch /// returns success and when an unconditional branch (TBB is non-null, FBB is /// null, Cond is empty) needs to be inserted. It returns the number of /// instructions inserted. virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, const std::vector &Cond) const { assert(0 && "Target didn't implement TargetInstrInfo::InsertBranch!"); return 0; } /// copyRegToReg - Add a copy between a pair of registers virtual void copyRegToReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, unsigned SrcReg, const TargetRegisterClass *DestRC, const TargetRegisterClass *SrcRC) const { assert(0 && "Target didn't implement TargetInstrInfo::copyRegToReg!"); } virtual void storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg, bool isKill, int FrameIndex, const TargetRegisterClass *RC) const { assert(0 && "Target didn't implement TargetInstrInfo::storeRegToStackSlot!"); } virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill, SmallVectorImpl &Addr, const TargetRegisterClass *RC, SmallVectorImpl &NewMIs) const { assert(0 && "Target didn't implement TargetInstrInfo::storeRegToAddr!"); } virtual void loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, int FrameIndex, const TargetRegisterClass *RC) const { assert(0 && "Target didn't implement TargetInstrInfo::loadRegFromStackSlot!"); } virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg, SmallVectorImpl &Addr, const TargetRegisterClass *RC, SmallVectorImpl &NewMIs) const { assert(0 && "Target didn't implement TargetInstrInfo::loadRegFromAddr!"); } /// spillCalleeSavedRegisters - Issues instruction(s) to spill all callee /// saved registers and returns true if it isn't possible / profitable to do /// so by issuing a series of store instructions via /// storeRegToStackSlot(). Returns false otherwise. virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const std::vector &CSI) const { return false; } /// restoreCalleeSavedRegisters - Issues instruction(s) to restore all callee /// saved registers and returns true if it isn't possible / profitable to do /// so by issuing a series of load instructions via loadRegToStackSlot(). /// Returns false otherwise. virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const std::vector &CSI) const { return false; } /// foldMemoryOperand - Attempt to fold a load or store of the specified stack /// slot into the specified machine instruction for the specified operand(s). /// If this is possible, a new instruction is returned with the specified /// operand folded, otherwise NULL is returned. The client is responsible for /// removing the old instruction and adding the new one in the instruction /// stream. virtual MachineInstr* foldMemoryOperand(MachineInstr* MI, SmallVectorImpl &Ops, int FrameIndex) const { return 0; } /// foldMemoryOperand - Same as the previous version except it allows folding /// of any load and store from / to any address, not just from a specific /// stack slot. virtual MachineInstr* foldMemoryOperand(MachineInstr* MI, SmallVectorImpl &Ops, MachineInstr* LoadMI) const { return 0; } /// canFoldMemoryOperand - Returns true if the specified load / store is /// folding is possible. virtual bool canFoldMemoryOperand(MachineInstr *MI, SmallVectorImpl &Ops) const{ return false; } /// unfoldMemoryOperand - Separate a single instruction which folded a load or /// a store or a load and a store into two or more instruction. If this is /// possible, returns true as well as the new instructions by reference. virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI, unsigned Reg, bool UnfoldLoad, bool UnfoldStore, SmallVectorImpl &NewMIs) const{ return false; } virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, SmallVectorImpl &NewNodes) const { return false; } /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new /// instruction after load / store are unfolded from an instruction of the /// specified opcode. It returns zero if the specified unfolding is not /// possible. virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore) const { return 0; } /// BlockHasNoFallThrough - Return true if the specified block does not /// fall-through into its successor block. This is primarily used when a /// branch is unanalyzable. It is useful for things like unconditional /// indirect branches (jump tables). virtual bool BlockHasNoFallThrough(MachineBasicBlock &MBB) const { return false; } /// ReverseBranchCondition - Reverses the branch condition of the specified /// condition list, returning false on success and true if it cannot be /// reversed. virtual bool ReverseBranchCondition(std::vector &Cond) const { return true; } /// insertNoop - Insert a noop into the instruction stream at the specified /// point. virtual void insertNoop(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const { assert(0 && "Target didn't implement insertNoop!"); abort(); } /// isPredicated - Returns true if the instruction is already predicated. /// virtual bool isPredicated(const MachineInstr *MI) const { return false; } /// isUnpredicatedTerminator - Returns true if the instruction is a /// terminator instruction that has not been predicated. virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const; /// PredicateInstruction - Convert the instruction into a predicated /// instruction. It returns true if the operation was successful. virtual bool PredicateInstruction(MachineInstr *MI, const std::vector &Pred) const = 0; /// SubsumesPredicate - Returns true if the first specified predicate /// subsumes the second, e.g. GE subsumes GT. virtual bool SubsumesPredicate(const std::vector &Pred1, const std::vector &Pred2) const { return false; } /// DefinesPredicate - If the specified instruction defines any predicate /// or condition code register(s) used for predication, returns true as well /// as the definition predicate(s) by reference. virtual bool DefinesPredicate(MachineInstr *MI, std::vector &Pred) const { return false; } /// getPointerRegClass - Returns a TargetRegisterClass used for pointer /// values. virtual const TargetRegisterClass *getPointerRegClass() const { assert(0 && "Target didn't implement getPointerRegClass!"); abort(); return 0; // Must return a value in order to compile with VS 2005 } }; /// TargetInstrInfoImpl - This is the default implementation of /// TargetInstrInfo, which just provides a couple of default implementations /// for various methods. This separated out because it is implemented in /// libcodegen, not in libtarget. class TargetInstrInfoImpl : public TargetInstrInfo { protected: TargetInstrInfoImpl(const TargetInstrDescriptor *desc, unsigned NumOpcodes) : TargetInstrInfo(desc, NumOpcodes) {} public: virtual MachineInstr *commuteInstruction(MachineInstr *MI) const; virtual bool PredicateInstruction(MachineInstr *MI, const std::vector &Pred) const; }; } // End llvm namespace #endif