//===-- llvm/iOther.h - "Other" instruction node definitions -----*- C++ -*--=// // // This file contains the declarations for instructions that fall into the // grandios 'other' catagory... // //===----------------------------------------------------------------------===// #ifndef LLVM_IOTHER_H #define LLVM_IOTHER_H #include "llvm/InstrTypes.h" #include "llvm/Method.h" #include //===----------------------------------------------------------------------===// // PHINode Class //===----------------------------------------------------------------------===// // PHINode - The PHINode class is used to represent the magical mystical PHI // node, that can not exist in nature, but can be synthesized in a computer // scientist's overactive imagination. // // TODO: FIXME: This representation is not good enough. Consider the following // code: // BB0: %x = int %0 // BB1: %y = int %1 // BB2: %z = phi int %0, %1 - Can't tell where constants come from! // // TOFIX: Store pair instead of just // class PHINode : public Instruction { vector IncomingValues; PHINode(const PHINode &PN); public: PHINode(const Type *Ty, const string &Name = ""); inline ~PHINode() { dropAllReferences(); } virtual Instruction *clone() const { return new PHINode(*this); } // Implement all of the functionality required by User... // virtual void dropAllReferences(); virtual const Value *getOperand(unsigned i) const { return (i < IncomingValues.size()) ? IncomingValues[i] : 0; } inline Value *getOperand(unsigned i) { return (Value*)((const PHINode*)this)->getOperand(i); } virtual unsigned getNumOperands() const { return IncomingValues.size(); } virtual bool setOperand(unsigned i, Value *Val); virtual string getOpcode() const { return "phi"; } void addIncoming(Value *D); }; //===----------------------------------------------------------------------===// // MethodArgument Class //===----------------------------------------------------------------------===// class MethodArgument : public Value { // Defined in the InstrType.cpp file Method *Parent; friend class ValueHolder; inline void setParent(Method *parent) { Parent = parent; } public: MethodArgument(const Type *Ty, const string &Name = "") : Value(Ty, Value::MethodArgumentVal, Name) { Parent = 0; } // Specialize setName to handle symbol table majik... virtual void setName(const string &name); inline const Method *getParent() const { return Parent; } inline Method *getParent() { return Parent; } }; //===----------------------------------------------------------------------===// // Classes to function calls and method invocations //===----------------------------------------------------------------------===// class CallInst : public Instruction { MethodUse M; vector Params; CallInst(const CallInst &CI); public: CallInst(Method *M, vector ¶ms, const string &Name = ""); inline ~CallInst() { dropAllReferences(); } virtual string getOpcode() const { return "call"; } virtual Instruction *clone() const { return new CallInst(*this); } bool hasSideEffects() const { return true; } const Method *getCalledMethod() const { return M; } Method *getCalledMethod() { return M; } // Implement all of the functionality required by Instruction... // virtual void dropAllReferences(); virtual const Value *getOperand(unsigned i) const { return i == 0 ? M : ((i <= Params.size()) ? Params[i-1] : 0); } inline Value *getOperand(unsigned i) { return (Value*)((const CallInst*)this)->getOperand(i); } virtual unsigned getNumOperands() const { return Params.size()+1; } virtual bool setOperand(unsigned i, Value *Val); }; #endif