//===-- BranchProbabilityInfo.cpp - Branch Probability Analysis -----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Loops should be simplified before this analysis. // //===----------------------------------------------------------------------===// #include "llvm/Constants.h" #include "llvm/Function.h" #include "llvm/Instructions.h" #include "llvm/LLVMContext.h" #include "llvm/Metadata.h" #include "llvm/Analysis/BranchProbabilityInfo.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/Support/CFG.h" #include "llvm/Support/Debug.h" using namespace llvm; INITIALIZE_PASS_BEGIN(BranchProbabilityInfo, "branch-prob", "Branch Probability Analysis", false, true) INITIALIZE_PASS_DEPENDENCY(LoopInfo) INITIALIZE_PASS_END(BranchProbabilityInfo, "branch-prob", "Branch Probability Analysis", false, true) char BranchProbabilityInfo::ID = 0; // Weights are for internal use only. They are used by heuristics to help to // estimate edges' probability. Example: // // Using "Loop Branch Heuristics" we predict weights of edges for the // block BB2. // ... // | // V // BB1<-+ // | | // | | (Weight = 124) // V | // BB2--+ // | // | (Weight = 4) // V // BB3 // // Probability of the edge BB2->BB1 = 124 / (124 + 4) = 0.96875 // Probability of the edge BB2->BB3 = 4 / (124 + 4) = 0.03125 static const uint32_t LBH_TAKEN_WEIGHT = 124; static const uint32_t LBH_NONTAKEN_WEIGHT = 4; /// \brief Unreachable-terminating branch taken weight. /// /// This is the weight for a branch being taken to a block that terminates /// (eventually) in unreachable. These are predicted as unlikely as possible. static const uint32_t UR_TAKEN_WEIGHT = 1; /// \brief Unreachable-terminating branch not-taken weight. /// /// This is the weight for a branch not being taken toward a block that /// terminates (eventually) in unreachable. Such a branch is essentially never /// taken. Set the weight to an absurdly high value so that nested loops don't /// easily subsume it. static const uint32_t UR_NONTAKEN_WEIGHT = 1024*1024 - 1; static const uint32_t PH_TAKEN_WEIGHT = 20; static const uint32_t PH_NONTAKEN_WEIGHT = 12; static const uint32_t ZH_TAKEN_WEIGHT = 20; static const uint32_t ZH_NONTAKEN_WEIGHT = 12; static const uint32_t FPH_TAKEN_WEIGHT = 20; static const uint32_t FPH_NONTAKEN_WEIGHT = 12; /// \brief Invoke-terminating normal branch taken weight /// /// This is the weight for branching to the normal destination of an invoke /// instruction. We expect this to happen most of the time. Set the weight to an /// absurdly high value so that nested loops subsume it. static const uint32_t IH_TAKEN_WEIGHT = 1024 * 1024 - 1; /// \brief Invoke-terminating normal branch not-taken weight. /// /// This is the weight for branching to the unwind destination of an invoke /// instruction. This is essentially never taken. static const uint32_t IH_NONTAKEN_WEIGHT = 1; // Standard weight value. Used when none of the heuristics set weight for // the edge. static const uint32_t NORMAL_WEIGHT = 16; // Minimum weight of an edge. Please note, that weight is NEVER 0. static const uint32_t MIN_WEIGHT = 1; static uint32_t getMaxWeightFor(BasicBlock *BB) { return UINT32_MAX / BB->getTerminator()->getNumSuccessors(); } /// \brief Calculate edge weights for successors lead to unreachable. /// /// Predict that a successor which leads necessarily to an /// unreachable-terminated block as extremely unlikely. bool BranchProbabilityInfo::calcUnreachableHeuristics(BasicBlock *BB) { TerminatorInst *TI = BB->getTerminator(); if (TI->getNumSuccessors() == 0) { if (isa(TI)) PostDominatedByUnreachable.insert(BB); return false; } SmallPtrSet UnreachableEdges; SmallPtrSet ReachableEdges; for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) { if (PostDominatedByUnreachable.count(*I)) UnreachableEdges.insert(*I); else ReachableEdges.insert(*I); } // If all successors are in the set of blocks post-dominated by unreachable, // this block is too. if (UnreachableEdges.size() == TI->getNumSuccessors()) PostDominatedByUnreachable.insert(BB); // Skip probabilities if this block has a single successor or if all were // reachable. if (TI->getNumSuccessors() == 1 || UnreachableEdges.empty()) return false; uint32_t UnreachableWeight = std::max(UR_TAKEN_WEIGHT / UnreachableEdges.size(), MIN_WEIGHT); for (SmallPtrSet::iterator I = UnreachableEdges.begin(), E = UnreachableEdges.end(); I != E; ++I) setEdgeWeight(BB, *I, UnreachableWeight); if (ReachableEdges.empty()) return true; uint32_t ReachableWeight = std::max(UR_NONTAKEN_WEIGHT / ReachableEdges.size(), NORMAL_WEIGHT); for (SmallPtrSet::iterator I = ReachableEdges.begin(), E = ReachableEdges.end(); I != E; ++I) setEdgeWeight(BB, *I, ReachableWeight); return true; } // Propagate existing explicit probabilities from either profile data or // 'expect' intrinsic processing. bool BranchProbabilityInfo::calcMetadataWeights(BasicBlock *BB) { TerminatorInst *TI = BB->getTerminator(); if (TI->getNumSuccessors() == 1) return false; if (!isa(TI) && !isa(TI)) return false; MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof); if (!WeightsNode) return false; // Ensure there are weights for all of the successors. Note that the first // operand to the metadata node is a name, not a weight. if (WeightsNode->getNumOperands() != TI->getNumSuccessors() + 1) return false; // Build up the final weights that will be used in a temporary buffer, but // don't add them until all weihts are present. Each weight value is clamped // to [1, getMaxWeightFor(BB)]. uint32_t WeightLimit = getMaxWeightFor(BB); SmallVector Weights; Weights.reserve(TI->getNumSuccessors()); for (unsigned i = 1, e = WeightsNode->getNumOperands(); i != e; ++i) { ConstantInt *Weight = dyn_cast(WeightsNode->getOperand(i)); if (!Weight) return false; Weights.push_back( std::max(1, Weight->getLimitedValue(WeightLimit))); } assert(Weights.size() == TI->getNumSuccessors() && "Checked above"); for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) setEdgeWeight(BB, TI->getSuccessor(i), Weights[i]); return true; } // Calculate Edge Weights using "Pointer Heuristics". Predict a comparsion // between two pointer or pointer and NULL will fail. bool BranchProbabilityInfo::calcPointerHeuristics(BasicBlock *BB) { BranchInst * BI = dyn_cast(BB->getTerminator()); if (!BI || !BI->isConditional()) return false; Value *Cond = BI->getCondition(); ICmpInst *CI = dyn_cast(Cond); if (!CI || !CI->isEquality()) return false; Value *LHS = CI->getOperand(0); if (!LHS->getType()->isPointerTy()) return false; assert(CI->getOperand(1)->getType()->isPointerTy()); BasicBlock *Taken = BI->getSuccessor(0); BasicBlock *NonTaken = BI->getSuccessor(1); // p != 0 -> isProb = true // p == 0 -> isProb = false // p != q -> isProb = true // p == q -> isProb = false; bool isProb = CI->getPredicate() == ICmpInst::ICMP_NE; if (!isProb) std::swap(Taken, NonTaken); setEdgeWeight(BB, Taken, PH_TAKEN_WEIGHT); setEdgeWeight(BB, NonTaken, PH_NONTAKEN_WEIGHT); return true; } // Calculate Edge Weights using "Loop Branch Heuristics". Predict backedges // as taken, exiting edges as not-taken. bool BranchProbabilityInfo::calcLoopBranchHeuristics(BasicBlock *BB) { Loop *L = LI->getLoopFor(BB); if (!L) return false; SmallPtrSet BackEdges; SmallPtrSet ExitingEdges; SmallPtrSet InEdges; // Edges from header to the loop. for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) { if (!L->contains(*I)) ExitingEdges.insert(*I); else if (L->getHeader() == *I) BackEdges.insert(*I); else InEdges.insert(*I); } if (uint32_t numBackEdges = BackEdges.size()) { uint32_t backWeight = LBH_TAKEN_WEIGHT / numBackEdges; if (backWeight < NORMAL_WEIGHT) backWeight = NORMAL_WEIGHT; for (SmallPtrSet::iterator EI = BackEdges.begin(), EE = BackEdges.end(); EI != EE; ++EI) { BasicBlock *Back = *EI; setEdgeWeight(BB, Back, backWeight); } } if (uint32_t numInEdges = InEdges.size()) { uint32_t inWeight = LBH_TAKEN_WEIGHT / numInEdges; if (inWeight < NORMAL_WEIGHT) inWeight = NORMAL_WEIGHT; for (SmallPtrSet::iterator EI = InEdges.begin(), EE = InEdges.end(); EI != EE; ++EI) { BasicBlock *Back = *EI; setEdgeWeight(BB, Back, inWeight); } } if (uint32_t numExitingEdges = ExitingEdges.size()) { uint32_t exitWeight = LBH_NONTAKEN_WEIGHT / numExitingEdges; if (exitWeight < MIN_WEIGHT) exitWeight = MIN_WEIGHT; for (SmallPtrSet::iterator EI = ExitingEdges.begin(), EE = ExitingEdges.end(); EI != EE; ++EI) { BasicBlock *Exiting = *EI; setEdgeWeight(BB, Exiting, exitWeight); } } return true; } bool BranchProbabilityInfo::calcZeroHeuristics(BasicBlock *BB) { BranchInst * BI = dyn_cast(BB->getTerminator()); if (!BI || !BI->isConditional()) return false; Value *Cond = BI->getCondition(); ICmpInst *CI = dyn_cast(Cond); if (!CI) return false; Value *RHS = CI->getOperand(1); ConstantInt *CV = dyn_cast(RHS); if (!CV) return false; bool isProb; if (CV->isZero()) { switch (CI->getPredicate()) { case CmpInst::ICMP_EQ: // X == 0 -> Unlikely isProb = false; break; case CmpInst::ICMP_NE: // X != 0 -> Likely isProb = true; break; case CmpInst::ICMP_SLT: // X < 0 -> Unlikely isProb = false; break; case CmpInst::ICMP_SGT: // X > 0 -> Likely isProb = true; break; default: return false; } } else if (CV->isOne() && CI->getPredicate() == CmpInst::ICMP_SLT) { // InstCombine canonicalizes X <= 0 into X < 1. // X <= 0 -> Unlikely isProb = false; } else if (CV->isAllOnesValue() && CI->getPredicate() == CmpInst::ICMP_SGT) { // InstCombine canonicalizes X >= 0 into X > -1. // X >= 0 -> Likely isProb = true; } else { return false; } BasicBlock *Taken = BI->getSuccessor(0); BasicBlock *NonTaken = BI->getSuccessor(1); if (!isProb) std::swap(Taken, NonTaken); setEdgeWeight(BB, Taken, ZH_TAKEN_WEIGHT); setEdgeWeight(BB, NonTaken, ZH_NONTAKEN_WEIGHT); return true; } bool BranchProbabilityInfo::calcFloatingPointHeuristics(BasicBlock *BB) { BranchInst *BI = dyn_cast(BB->getTerminator()); if (!BI || !BI->isConditional()) return false; Value *Cond = BI->getCondition(); FCmpInst *FCmp = dyn_cast(Cond); if (!FCmp) return false; bool isProb; if (FCmp->isEquality()) { // f1 == f2 -> Unlikely // f1 != f2 -> Likely isProb = !FCmp->isTrueWhenEqual(); } else if (FCmp->getPredicate() == FCmpInst::FCMP_ORD) { // !isnan -> Likely isProb = true; } else if (FCmp->getPredicate() == FCmpInst::FCMP_UNO) { // isnan -> Unlikely isProb = false; } else { return false; } BasicBlock *Taken = BI->getSuccessor(0); BasicBlock *NonTaken = BI->getSuccessor(1); if (!isProb) std::swap(Taken, NonTaken); setEdgeWeight(BB, Taken, FPH_TAKEN_WEIGHT); setEdgeWeight(BB, NonTaken, FPH_NONTAKEN_WEIGHT); return true; } bool BranchProbabilityInfo::calcInvokeHeuristics(BasicBlock *BB) { InvokeInst *II = dyn_cast(BB->getTerminator()); if (!II) return false; BasicBlock *Normal = II->getNormalDest(); BasicBlock *Unwind = II->getUnwindDest(); setEdgeWeight(BB, Normal, IH_TAKEN_WEIGHT); setEdgeWeight(BB, Unwind, IH_NONTAKEN_WEIGHT); return true; } void BranchProbabilityInfo::getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.setPreservesAll(); } bool BranchProbabilityInfo::runOnFunction(Function &F) { LastF = &F; // Store the last function we ran on for printing. LI = &getAnalysis(); assert(PostDominatedByUnreachable.empty()); // Walk the basic blocks in post-order so that we can build up state about // the successors of a block iteratively. for (po_iterator I = po_begin(&F.getEntryBlock()), E = po_end(&F.getEntryBlock()); I != E; ++I) { DEBUG(dbgs() << "Computing probabilities for " << I->getName() << "\n"); if (calcUnreachableHeuristics(*I)) continue; if (calcMetadataWeights(*I)) continue; if (calcLoopBranchHeuristics(*I)) continue; if (calcPointerHeuristics(*I)) continue; if (calcZeroHeuristics(*I)) continue; if (calcFloatingPointHeuristics(*I)) continue; calcInvokeHeuristics(*I); } PostDominatedByUnreachable.clear(); return false; } void BranchProbabilityInfo::print(raw_ostream &OS, const Module *) const { OS << "---- Branch Probabilities ----\n"; // We print the probabilities from the last function the analysis ran over, // or the function it is currently running over. assert(LastF && "Cannot print prior to running over a function"); for (Function::const_iterator BI = LastF->begin(), BE = LastF->end(); BI != BE; ++BI) { for (succ_const_iterator SI = succ_begin(BI), SE = succ_end(BI); SI != SE; ++SI) { printEdgeProbability(OS << " ", BI, *SI); } } } uint32_t BranchProbabilityInfo::getSumForBlock(const BasicBlock *BB) const { uint32_t Sum = 0; for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) { const BasicBlock *Succ = *I; uint32_t Weight = getEdgeWeight(BB, Succ); uint32_t PrevSum = Sum; Sum += Weight; assert(Sum > PrevSum); (void) PrevSum; } return Sum; } bool BranchProbabilityInfo:: isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const { // Hot probability is at least 4/5 = 80% // FIXME: Compare against a static "hot" BranchProbability. return getEdgeProbability(Src, Dst) > BranchProbability(4, 5); } BasicBlock *BranchProbabilityInfo::getHotSucc(BasicBlock *BB) const { uint32_t Sum = 0; uint32_t MaxWeight = 0; BasicBlock *MaxSucc = 0; for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) { BasicBlock *Succ = *I; uint32_t Weight = getEdgeWeight(BB, Succ); uint32_t PrevSum = Sum; Sum += Weight; assert(Sum > PrevSum); (void) PrevSum; if (Weight > MaxWeight) { MaxWeight = Weight; MaxSucc = Succ; } } // Hot probability is at least 4/5 = 80% if (BranchProbability(MaxWeight, Sum) > BranchProbability(4, 5)) return MaxSucc; return 0; } // Return edge's weight. If can't find it, return DEFAULT_WEIGHT value. uint32_t BranchProbabilityInfo:: getEdgeWeight(const BasicBlock *Src, const BasicBlock *Dst) const { Edge E(Src, Dst); DenseMap::const_iterator I = Weights.find(E); if (I != Weights.end()) return I->second; return DEFAULT_WEIGHT; } void BranchProbabilityInfo:: setEdgeWeight(const BasicBlock *Src, const BasicBlock *Dst, uint32_t Weight) { Weights[std::make_pair(Src, Dst)] = Weight; DEBUG(dbgs() << "set edge " << Src->getName() << " -> " << Dst->getName() << " weight to " << Weight << (isEdgeHot(Src, Dst) ? " [is HOT now]\n" : "\n")); } BranchProbability BranchProbabilityInfo:: getEdgeProbability(const BasicBlock *Src, const BasicBlock *Dst) const { uint32_t N = getEdgeWeight(Src, Dst); uint32_t D = getSumForBlock(Src); return BranchProbability(N, D); } raw_ostream & BranchProbabilityInfo::printEdgeProbability(raw_ostream &OS, const BasicBlock *Src, const BasicBlock *Dst) const { const BranchProbability Prob = getEdgeProbability(Src, Dst); OS << "edge " << Src->getName() << " -> " << Dst->getName() << " probability is " << Prob << (isEdgeHot(Src, Dst) ? " [HOT edge]\n" : "\n"); return OS; }