//===- TopDownClosure.cpp - Compute the top-down interprocedure closure ---===// // // This file implements the TDDataStructures class, which represents the // Top-down Interprocedural closure of the data structure graph over the // program. This is useful (but not strictly necessary?) for applications // like pointer analysis. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/DataStructure.h" #include "llvm/Analysis/DSGraph.h" #include "llvm/Module.h" #include "llvm/DerivedTypes.h" #include "Support/Statistic.h" static RegisterAnalysis Y("tddatastructure", "Top-down Data Structure Analysis Closure"); // releaseMemory - If the pass pipeline is done with this pass, we can release // our memory... here... // void TDDataStructures::releaseMemory() { BUMaps.clear(); for (std::map::iterator I = DSInfo.begin(), E = DSInfo.end(); I != E; ++I) delete I->second; // Empty map so next time memory is released, data structures are not // re-deleted. DSInfo.clear(); } // run - Calculate the top down data structure graphs for each function in the // program. // bool TDDataStructures::run(Module &M) { // Simply calculate the graphs for each function... for (Module::reverse_iterator I = M.rbegin(), E = M.rend(); I != E; ++I) if (!I->isExternal()) calculateGraph(*I); return false; } /// ResolveCallSite - This method is used to link the actual arguments together /// with the formal arguments for a function call in the top-down closure. This /// method assumes that the call site arguments have been mapped into nodes /// local to the specified graph. /// void TDDataStructures::ResolveCallSite(DSGraph &Graph, const DSCallSite &CallSite) { // Resolve all of the function formal arguments... Function &F = Graph.getFunction(); Function::aiterator AI = F.abegin(); for (unsigned i = 0, e = CallSite.getNumPtrArgs(); i != e; ++i, ++AI) { // Advance the argument iterator to the first pointer argument... while (!DataStructureAnalysis::isPointerType(AI->getType())) ++AI; // TD ...Merge the formal arg scalar with the actual arg node DSNodeHandle &NodeForFormal = Graph.getNodeForValue(AI); assert(NodeForFormal.getNode() && "Pointer argument has no dest node!"); NodeForFormal.mergeWith(CallSite.getPtrArg(i)); } // Merge returned node in the caller with the "return" node in callee if (CallSite.getRetVal().getNode() && Graph.getRetNode().getNode()) Graph.getRetNode().mergeWith(CallSite.getRetVal()); } DSGraph &TDDataStructures::calculateGraph(Function &F) { // Make sure this graph has not already been calculated, or that we don't get // into an infinite loop with mutually recursive functions. // DSGraph *&Graph = DSInfo[&F]; if (Graph) return *Graph; BUDataStructures &BU = getAnalysis(); DSGraph &BUGraph = BU.getDSGraph(F); // Copy the BU graph, keeping a mapping from the BUGraph to the current Graph std::map BUNodeMap; Graph = new DSGraph(BUGraph, BUNodeMap); // Convert the mapping from a node-to-node map into a node-to-nodehandle map BUMaps[&F].insert(BUNodeMap.begin(), BUNodeMap.end()); BUNodeMap.clear(); // We are done with the temporary map. const std::vector *CallSitesP = BU.getCallSites(F); if (CallSitesP == 0) { DEBUG(std::cerr << " [TD] No callers for: " << F.getName() << "\n"); return *Graph; // If no call sites, the graph is the same as the BU graph! } // Loop over all call sites of this function, merging each one into this // graph. // DEBUG(std::cerr << " [TD] Inlining callers for: " << F.getName() << "\n"); const std::vector &CallSites = *CallSitesP; for (unsigned c = 0, ce = CallSites.size(); c != ce; ++c) { const DSCallSite &CallSite = CallSites[c]; Function &Caller = *CallSite.getResolvingCaller(); assert(&Caller && !Caller.isExternal() && "Externals function cannot 'call'!"); DEBUG(std::cerr << "\t [TD] Inlining caller #" << c << " '" << Caller.getName() << "' into callee: " << F.getName() << "\n"); if (&Caller == &F) { // Self-recursive call: this can happen after a cycle of calls is inlined. ResolveCallSite(*Graph, CallSite); } else { // Recursively compute the graph for the Caller. It should be fully // resolved except if there is mutual recursion... // DSGraph &CG = calculateGraph(Caller); // Graph to inline DEBUG(std::cerr << "\t\t[TD] Got graph for " << Caller.getName() << " in: " << F.getName() << "\n"); // These two maps keep track of where scalars in the old graph _used_ // to point to, and of new nodes matching nodes of the old graph. std::map OldValMap; std::map OldNodeMap; // Translate call site from having links into the BU graph DSCallSite CallSiteInCG(CallSite, BUMaps[&Caller]); // Clone the Caller's graph into the current graph, keeping // track of where scalars in the old graph _used_ to point... // Do this here because it only needs to happens once for each Caller! // Strip scalars but not allocas since they are alive in callee. // DSNodeHandle RetVal = Graph->cloneInto(CG, OldValMap, OldNodeMap, /*StripScalars*/ true, /*StripAllocas*/ false); ResolveCallSite(*Graph, DSCallSite(CallSiteInCG, OldNodeMap)); } } // Recompute the Incomplete markers and eliminate unreachable nodes. #if 0 Graph->maskIncompleteMarkers(); Graph->markIncompleteNodes(/*markFormals*/ !F.hasInternalLinkage() /*&& FIXME: NEED TO CHECK IF ALL CALLERS FOUND!*/); Graph->removeDeadNodes(/*KeepAllGlobals*/ false, /*KeepCalls*/ false); #endif DEBUG(std::cerr << " [TD] Done inlining callers for: " << F.getName() << " [" << Graph->getGraphSize() << "+" << Graph->getFunctionCalls().size() << "]\n"); return *Graph; }